| /* | 
 |  *  linux/kernel/hrtimer.c | 
 |  * | 
 |  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
 |  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
 |  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
 |  * | 
 |  *  High-resolution kernel timers | 
 |  * | 
 |  *  In contrast to the low-resolution timeout API implemented in | 
 |  *  kernel/timer.c, hrtimers provide finer resolution and accuracy | 
 |  *  depending on system configuration and capabilities. | 
 |  * | 
 |  *  These timers are currently used for: | 
 |  *   - itimers | 
 |  *   - POSIX timers | 
 |  *   - nanosleep | 
 |  *   - precise in-kernel timing | 
 |  * | 
 |  *  Started by: Thomas Gleixner and Ingo Molnar | 
 |  * | 
 |  *  Credits: | 
 |  *	based on kernel/timer.c | 
 |  * | 
 |  *	Help, testing, suggestions, bugfixes, improvements were | 
 |  *	provided by: | 
 |  * | 
 |  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel | 
 |  *	et. al. | 
 |  * | 
 |  *  For licencing details see kernel-base/COPYING | 
 |  */ | 
 |  | 
 | #include <linux/cpu.h> | 
 | #include <linux/module.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/hrtimer.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/err.h> | 
 | #include <linux/debugobjects.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | /** | 
 |  * ktime_get - get the monotonic time in ktime_t format | 
 |  * | 
 |  * returns the time in ktime_t format | 
 |  */ | 
 | ktime_t ktime_get(void) | 
 | { | 
 | 	struct timespec now; | 
 |  | 
 | 	ktime_get_ts(&now); | 
 |  | 
 | 	return timespec_to_ktime(now); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get); | 
 |  | 
 | /** | 
 |  * ktime_get_real - get the real (wall-) time in ktime_t format | 
 |  * | 
 |  * returns the time in ktime_t format | 
 |  */ | 
 | ktime_t ktime_get_real(void) | 
 | { | 
 | 	struct timespec now; | 
 |  | 
 | 	getnstimeofday(&now); | 
 |  | 
 | 	return timespec_to_ktime(now); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ktime_get_real); | 
 |  | 
 | /* | 
 |  * The timer bases: | 
 |  * | 
 |  * Note: If we want to add new timer bases, we have to skip the two | 
 |  * clock ids captured by the cpu-timers. We do this by holding empty | 
 |  * entries rather than doing math adjustment of the clock ids. | 
 |  * This ensures that we capture erroneous accesses to these clock ids | 
 |  * rather than moving them into the range of valid clock id's. | 
 |  */ | 
 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | 
 | { | 
 |  | 
 | 	.clock_base = | 
 | 	{ | 
 | 		{ | 
 | 			.index = CLOCK_REALTIME, | 
 | 			.get_time = &ktime_get_real, | 
 | 			.resolution = KTIME_LOW_RES, | 
 | 		}, | 
 | 		{ | 
 | 			.index = CLOCK_MONOTONIC, | 
 | 			.get_time = &ktime_get, | 
 | 			.resolution = KTIME_LOW_RES, | 
 | 		}, | 
 | 	} | 
 | }; | 
 |  | 
 | /** | 
 |  * ktime_get_ts - get the monotonic clock in timespec format | 
 |  * @ts:		pointer to timespec variable | 
 |  * | 
 |  * The function calculates the monotonic clock from the realtime | 
 |  * clock and the wall_to_monotonic offset and stores the result | 
 |  * in normalized timespec format in the variable pointed to by @ts. | 
 |  */ | 
 | void ktime_get_ts(struct timespec *ts) | 
 | { | 
 | 	struct timespec tomono; | 
 | 	unsigned long seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 | 		getnstimeofday(ts); | 
 | 		tomono = wall_to_monotonic; | 
 |  | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | 
 | 				ts->tv_nsec + tomono.tv_nsec); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_ts); | 
 |  | 
 | /* | 
 |  * Get the coarse grained time at the softirq based on xtime and | 
 |  * wall_to_monotonic. | 
 |  */ | 
 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) | 
 | { | 
 | 	ktime_t xtim, tomono; | 
 | 	struct timespec xts, tom; | 
 | 	unsigned long seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 | 		xts = current_kernel_time(); | 
 | 		tom = wall_to_monotonic; | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	xtim = timespec_to_ktime(xts); | 
 | 	tomono = timespec_to_ktime(tom); | 
 | 	base->clock_base[CLOCK_REALTIME].softirq_time = xtim; | 
 | 	base->clock_base[CLOCK_MONOTONIC].softirq_time = | 
 | 		ktime_add(xtim, tomono); | 
 | } | 
 |  | 
 | /* | 
 |  * Functions and macros which are different for UP/SMP systems are kept in a | 
 |  * single place | 
 |  */ | 
 | #ifdef CONFIG_SMP | 
 |  | 
 | /* | 
 |  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock | 
 |  * means that all timers which are tied to this base via timer->base are | 
 |  * locked, and the base itself is locked too. | 
 |  * | 
 |  * So __run_timers/migrate_timers can safely modify all timers which could | 
 |  * be found on the lists/queues. | 
 |  * | 
 |  * When the timer's base is locked, and the timer removed from list, it is | 
 |  * possible to set timer->base = NULL and drop the lock: the timer remains | 
 |  * locked. | 
 |  */ | 
 | static | 
 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, | 
 | 					     unsigned long *flags) | 
 | { | 
 | 	struct hrtimer_clock_base *base; | 
 |  | 
 | 	for (;;) { | 
 | 		base = timer->base; | 
 | 		if (likely(base != NULL)) { | 
 | 			spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
 | 			if (likely(base == timer->base)) | 
 | 				return base; | 
 | 			/* The timer has migrated to another CPU: */ | 
 | 			spin_unlock_irqrestore(&base->cpu_base->lock, *flags); | 
 | 		} | 
 | 		cpu_relax(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Switch the timer base to the current CPU when possible. | 
 |  */ | 
 | static inline struct hrtimer_clock_base * | 
 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base) | 
 | { | 
 | 	struct hrtimer_clock_base *new_base; | 
 | 	struct hrtimer_cpu_base *new_cpu_base; | 
 |  | 
 | 	new_cpu_base = &__get_cpu_var(hrtimer_bases); | 
 | 	new_base = &new_cpu_base->clock_base[base->index]; | 
 |  | 
 | 	if (base != new_base) { | 
 | 		/* | 
 | 		 * We are trying to schedule the timer on the local CPU. | 
 | 		 * However we can't change timer's base while it is running, | 
 | 		 * so we keep it on the same CPU. No hassle vs. reprogramming | 
 | 		 * the event source in the high resolution case. The softirq | 
 | 		 * code will take care of this when the timer function has | 
 | 		 * completed. There is no conflict as we hold the lock until | 
 | 		 * the timer is enqueued. | 
 | 		 */ | 
 | 		if (unlikely(hrtimer_callback_running(timer))) | 
 | 			return base; | 
 |  | 
 | 		/* See the comment in lock_timer_base() */ | 
 | 		timer->base = NULL; | 
 | 		spin_unlock(&base->cpu_base->lock); | 
 | 		spin_lock(&new_base->cpu_base->lock); | 
 | 		timer->base = new_base; | 
 | 	} | 
 | 	return new_base; | 
 | } | 
 |  | 
 | #else /* CONFIG_SMP */ | 
 |  | 
 | static inline struct hrtimer_clock_base * | 
 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
 | { | 
 | 	struct hrtimer_clock_base *base = timer->base; | 
 |  | 
 | 	spin_lock_irqsave(&base->cpu_base->lock, *flags); | 
 |  | 
 | 	return base; | 
 | } | 
 |  | 
 | # define switch_hrtimer_base(t, b)	(b) | 
 |  | 
 | #endif	/* !CONFIG_SMP */ | 
 |  | 
 | /* | 
 |  * Functions for the union type storage format of ktime_t which are | 
 |  * too large for inlining: | 
 |  */ | 
 | #if BITS_PER_LONG < 64 | 
 | # ifndef CONFIG_KTIME_SCALAR | 
 | /** | 
 |  * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable | 
 |  * @kt:		addend | 
 |  * @nsec:	the scalar nsec value to add | 
 |  * | 
 |  * Returns the sum of kt and nsec in ktime_t format | 
 |  */ | 
 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) | 
 | { | 
 | 	ktime_t tmp; | 
 |  | 
 | 	if (likely(nsec < NSEC_PER_SEC)) { | 
 | 		tmp.tv64 = nsec; | 
 | 	} else { | 
 | 		unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
 |  | 
 | 		tmp = ktime_set((long)nsec, rem); | 
 | 	} | 
 |  | 
 | 	return ktime_add(kt, tmp); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ktime_add_ns); | 
 |  | 
 | /** | 
 |  * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable | 
 |  * @kt:		minuend | 
 |  * @nsec:	the scalar nsec value to subtract | 
 |  * | 
 |  * Returns the subtraction of @nsec from @kt in ktime_t format | 
 |  */ | 
 | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) | 
 | { | 
 | 	ktime_t tmp; | 
 |  | 
 | 	if (likely(nsec < NSEC_PER_SEC)) { | 
 | 		tmp.tv64 = nsec; | 
 | 	} else { | 
 | 		unsigned long rem = do_div(nsec, NSEC_PER_SEC); | 
 |  | 
 | 		tmp = ktime_set((long)nsec, rem); | 
 | 	} | 
 |  | 
 | 	return ktime_sub(kt, tmp); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ktime_sub_ns); | 
 | # endif /* !CONFIG_KTIME_SCALAR */ | 
 |  | 
 | /* | 
 |  * Divide a ktime value by a nanosecond value | 
 |  */ | 
 | u64 ktime_divns(const ktime_t kt, s64 div) | 
 | { | 
 | 	u64 dclc; | 
 | 	int sft = 0; | 
 |  | 
 | 	dclc = ktime_to_ns(kt); | 
 | 	/* Make sure the divisor is less than 2^32: */ | 
 | 	while (div >> 32) { | 
 | 		sft++; | 
 | 		div >>= 1; | 
 | 	} | 
 | 	dclc >>= sft; | 
 | 	do_div(dclc, (unsigned long) div); | 
 |  | 
 | 	return dclc; | 
 | } | 
 | #endif /* BITS_PER_LONG >= 64 */ | 
 |  | 
 | /* | 
 |  * Add two ktime values and do a safety check for overflow: | 
 |  */ | 
 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) | 
 | { | 
 | 	ktime_t res = ktime_add(lhs, rhs); | 
 |  | 
 | 	/* | 
 | 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can | 
 | 	 * return to user space in a timespec: | 
 | 	 */ | 
 | 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) | 
 | 		res = ktime_set(KTIME_SEC_MAX, 0); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS | 
 |  | 
 | static struct debug_obj_descr hrtimer_debug_descr; | 
 |  | 
 | /* | 
 |  * fixup_init is called when: | 
 |  * - an active object is initialized | 
 |  */ | 
 | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) | 
 | { | 
 | 	struct hrtimer *timer = addr; | 
 |  | 
 | 	switch (state) { | 
 | 	case ODEBUG_STATE_ACTIVE: | 
 | 		hrtimer_cancel(timer); | 
 | 		debug_object_init(timer, &hrtimer_debug_descr); | 
 | 		return 1; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fixup_activate is called when: | 
 |  * - an active object is activated | 
 |  * - an unknown object is activated (might be a statically initialized object) | 
 |  */ | 
 | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) | 
 | { | 
 | 	switch (state) { | 
 |  | 
 | 	case ODEBUG_STATE_NOTAVAILABLE: | 
 | 		WARN_ON_ONCE(1); | 
 | 		return 0; | 
 |  | 
 | 	case ODEBUG_STATE_ACTIVE: | 
 | 		WARN_ON(1); | 
 |  | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fixup_free is called when: | 
 |  * - an active object is freed | 
 |  */ | 
 | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) | 
 | { | 
 | 	struct hrtimer *timer = addr; | 
 |  | 
 | 	switch (state) { | 
 | 	case ODEBUG_STATE_ACTIVE: | 
 | 		hrtimer_cancel(timer); | 
 | 		debug_object_free(timer, &hrtimer_debug_descr); | 
 | 		return 1; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | static struct debug_obj_descr hrtimer_debug_descr = { | 
 | 	.name		= "hrtimer", | 
 | 	.fixup_init	= hrtimer_fixup_init, | 
 | 	.fixup_activate	= hrtimer_fixup_activate, | 
 | 	.fixup_free	= hrtimer_fixup_free, | 
 | }; | 
 |  | 
 | static inline void debug_hrtimer_init(struct hrtimer *timer) | 
 | { | 
 | 	debug_object_init(timer, &hrtimer_debug_descr); | 
 | } | 
 |  | 
 | static inline void debug_hrtimer_activate(struct hrtimer *timer) | 
 | { | 
 | 	debug_object_activate(timer, &hrtimer_debug_descr); | 
 | } | 
 |  | 
 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) | 
 | { | 
 | 	debug_object_deactivate(timer, &hrtimer_debug_descr); | 
 | } | 
 |  | 
 | static inline void debug_hrtimer_free(struct hrtimer *timer) | 
 | { | 
 | 	debug_object_free(timer, &hrtimer_debug_descr); | 
 | } | 
 |  | 
 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
 | 			   enum hrtimer_mode mode); | 
 |  | 
 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, | 
 | 			   enum hrtimer_mode mode) | 
 | { | 
 | 	debug_object_init_on_stack(timer, &hrtimer_debug_descr); | 
 | 	__hrtimer_init(timer, clock_id, mode); | 
 | } | 
 |  | 
 | void destroy_hrtimer_on_stack(struct hrtimer *timer) | 
 | { | 
 | 	debug_object_free(timer, &hrtimer_debug_descr); | 
 | } | 
 |  | 
 | #else | 
 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } | 
 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | 
 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 
 | #endif | 
 |  | 
 | /* High resolution timer related functions */ | 
 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 |  | 
 | /* | 
 |  * High resolution timer enabled ? | 
 |  */ | 
 | static int hrtimer_hres_enabled __read_mostly  = 1; | 
 |  | 
 | /* | 
 |  * Enable / Disable high resolution mode | 
 |  */ | 
 | static int __init setup_hrtimer_hres(char *str) | 
 | { | 
 | 	if (!strcmp(str, "off")) | 
 | 		hrtimer_hres_enabled = 0; | 
 | 	else if (!strcmp(str, "on")) | 
 | 		hrtimer_hres_enabled = 1; | 
 | 	else | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("highres=", setup_hrtimer_hres); | 
 |  | 
 | /* | 
 |  * hrtimer_high_res_enabled - query, if the highres mode is enabled | 
 |  */ | 
 | static inline int hrtimer_is_hres_enabled(void) | 
 | { | 
 | 	return hrtimer_hres_enabled; | 
 | } | 
 |  | 
 | /* | 
 |  * Is the high resolution mode active ? | 
 |  */ | 
 | static inline int hrtimer_hres_active(void) | 
 | { | 
 | 	return __get_cpu_var(hrtimer_bases).hres_active; | 
 | } | 
 |  | 
 | /* | 
 |  * Reprogram the event source with checking both queues for the | 
 |  * next event | 
 |  * Called with interrupts disabled and base->lock held | 
 |  */ | 
 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 
 | { | 
 | 	int i; | 
 | 	struct hrtimer_clock_base *base = cpu_base->clock_base; | 
 | 	ktime_t expires; | 
 |  | 
 | 	cpu_base->expires_next.tv64 = KTIME_MAX; | 
 |  | 
 | 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
 | 		struct hrtimer *timer; | 
 |  | 
 | 		if (!base->first) | 
 | 			continue; | 
 | 		timer = rb_entry(base->first, struct hrtimer, node); | 
 | 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
 | 		if (expires.tv64 < cpu_base->expires_next.tv64) | 
 | 			cpu_base->expires_next = expires; | 
 | 	} | 
 |  | 
 | 	if (cpu_base->expires_next.tv64 != KTIME_MAX) | 
 | 		tick_program_event(cpu_base->expires_next, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Shared reprogramming for clock_realtime and clock_monotonic | 
 |  * | 
 |  * When a timer is enqueued and expires earlier than the already enqueued | 
 |  * timers, we have to check, whether it expires earlier than the timer for | 
 |  * which the clock event device was armed. | 
 |  * | 
 |  * Called with interrupts disabled and base->cpu_base.lock held | 
 |  */ | 
 | static int hrtimer_reprogram(struct hrtimer *timer, | 
 | 			     struct hrtimer_clock_base *base) | 
 | { | 
 | 	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; | 
 | 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); | 
 | 	int res; | 
 |  | 
 | 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); | 
 |  | 
 | 	/* | 
 | 	 * When the callback is running, we do not reprogram the clock event | 
 | 	 * device. The timer callback is either running on a different CPU or | 
 | 	 * the callback is executed in the hrtimer_interrupt context. The | 
 | 	 * reprogramming is handled either by the softirq, which called the | 
 | 	 * callback or at the end of the hrtimer_interrupt. | 
 | 	 */ | 
 | 	if (hrtimer_callback_running(timer)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * CLOCK_REALTIME timer might be requested with an absolute | 
 | 	 * expiry time which is less than base->offset. Nothing wrong | 
 | 	 * about that, just avoid to call into the tick code, which | 
 | 	 * has now objections against negative expiry values. | 
 | 	 */ | 
 | 	if (expires.tv64 < 0) | 
 | 		return -ETIME; | 
 |  | 
 | 	if (expires.tv64 >= expires_next->tv64) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Clockevents returns -ETIME, when the event was in the past. | 
 | 	 */ | 
 | 	res = tick_program_event(expires, 0); | 
 | 	if (!IS_ERR_VALUE(res)) | 
 | 		*expires_next = expires; | 
 | 	return res; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Retrigger next event is called after clock was set | 
 |  * | 
 |  * Called with interrupts disabled via on_each_cpu() | 
 |  */ | 
 | static void retrigger_next_event(void *arg) | 
 | { | 
 | 	struct hrtimer_cpu_base *base; | 
 | 	struct timespec realtime_offset; | 
 | 	unsigned long seq; | 
 |  | 
 | 	if (!hrtimer_hres_active()) | 
 | 		return; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 | 		set_normalized_timespec(&realtime_offset, | 
 | 					-wall_to_monotonic.tv_sec, | 
 | 					-wall_to_monotonic.tv_nsec); | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	base = &__get_cpu_var(hrtimer_bases); | 
 |  | 
 | 	/* Adjust CLOCK_REALTIME offset */ | 
 | 	spin_lock(&base->lock); | 
 | 	base->clock_base[CLOCK_REALTIME].offset = | 
 | 		timespec_to_ktime(realtime_offset); | 
 |  | 
 | 	hrtimer_force_reprogram(base); | 
 | 	spin_unlock(&base->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Clock realtime was set | 
 |  * | 
 |  * Change the offset of the realtime clock vs. the monotonic | 
 |  * clock. | 
 |  * | 
 |  * We might have to reprogram the high resolution timer interrupt. On | 
 |  * SMP we call the architecture specific code to retrigger _all_ high | 
 |  * resolution timer interrupts. On UP we just disable interrupts and | 
 |  * call the high resolution interrupt code. | 
 |  */ | 
 | void clock_was_set(void) | 
 | { | 
 | 	/* Retrigger the CPU local events everywhere */ | 
 | 	on_each_cpu(retrigger_next_event, NULL, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * During resume we might have to reprogram the high resolution timer | 
 |  * interrupt (on the local CPU): | 
 |  */ | 
 | void hres_timers_resume(void) | 
 | { | 
 | 	WARN_ONCE(!irqs_disabled(), | 
 | 		  KERN_INFO "hres_timers_resume() called with IRQs enabled!"); | 
 |  | 
 | 	retrigger_next_event(NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the high resolution related parts of cpu_base | 
 |  */ | 
 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) | 
 | { | 
 | 	base->expires_next.tv64 = KTIME_MAX; | 
 | 	base->hres_active = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the high resolution related parts of a hrtimer | 
 |  */ | 
 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * When High resolution timers are active, try to reprogram. Note, that in case | 
 |  * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry | 
 |  * check happens. The timer gets enqueued into the rbtree. The reprogramming | 
 |  * and expiry check is done in the hrtimer_interrupt or in the softirq. | 
 |  */ | 
 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
 | 					    struct hrtimer_clock_base *base) | 
 | { | 
 | 	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { | 
 | 		spin_unlock(&base->cpu_base->lock); | 
 | 		raise_softirq_irqoff(HRTIMER_SOFTIRQ); | 
 | 		spin_lock(&base->cpu_base->lock); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Switch to high resolution mode | 
 |  */ | 
 | static int hrtimer_switch_to_hres(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (base->hres_active) | 
 | 		return 1; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	if (tick_init_highres()) { | 
 | 		local_irq_restore(flags); | 
 | 		printk(KERN_WARNING "Could not switch to high resolution " | 
 | 				    "mode on CPU %d\n", cpu); | 
 | 		return 0; | 
 | 	} | 
 | 	base->hres_active = 1; | 
 | 	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; | 
 | 	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; | 
 |  | 
 | 	tick_setup_sched_timer(); | 
 |  | 
 | 	/* "Retrigger" the interrupt to get things going */ | 
 | 	retrigger_next_event(NULL); | 
 | 	local_irq_restore(flags); | 
 | 	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n", | 
 | 	       smp_processor_id()); | 
 | 	return 1; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static inline int hrtimer_hres_active(void) { return 0; } | 
 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 
 | static inline int hrtimer_switch_to_hres(void) { return 0; } | 
 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 
 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 
 | 					    struct hrtimer_clock_base *base) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } | 
 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } | 
 |  | 
 | #endif /* CONFIG_HIGH_RES_TIMERS */ | 
 |  | 
 | #ifdef CONFIG_TIMER_STATS | 
 | void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr) | 
 | { | 
 | 	if (timer->start_site) | 
 | 		return; | 
 |  | 
 | 	timer->start_site = addr; | 
 | 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); | 
 | 	timer->start_pid = current->pid; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Counterpart to lock_hrtimer_base above: | 
 |  */ | 
 | static inline | 
 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) | 
 | { | 
 | 	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); | 
 | } | 
 |  | 
 | /** | 
 |  * hrtimer_forward - forward the timer expiry | 
 |  * @timer:	hrtimer to forward | 
 |  * @now:	forward past this time | 
 |  * @interval:	the interval to forward | 
 |  * | 
 |  * Forward the timer expiry so it will expire in the future. | 
 |  * Returns the number of overruns. | 
 |  */ | 
 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) | 
 | { | 
 | 	u64 orun = 1; | 
 | 	ktime_t delta; | 
 |  | 
 | 	delta = ktime_sub(now, hrtimer_get_expires(timer)); | 
 |  | 
 | 	if (delta.tv64 < 0) | 
 | 		return 0; | 
 |  | 
 | 	if (interval.tv64 < timer->base->resolution.tv64) | 
 | 		interval.tv64 = timer->base->resolution.tv64; | 
 |  | 
 | 	if (unlikely(delta.tv64 >= interval.tv64)) { | 
 | 		s64 incr = ktime_to_ns(interval); | 
 |  | 
 | 		orun = ktime_divns(delta, incr); | 
 | 		hrtimer_add_expires_ns(timer, incr * orun); | 
 | 		if (hrtimer_get_expires_tv64(timer) > now.tv64) | 
 | 			return orun; | 
 | 		/* | 
 | 		 * This (and the ktime_add() below) is the | 
 | 		 * correction for exact: | 
 | 		 */ | 
 | 		orun++; | 
 | 	} | 
 | 	hrtimer_add_expires(timer, interval); | 
 |  | 
 | 	return orun; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_forward); | 
 |  | 
 | /* | 
 |  * enqueue_hrtimer - internal function to (re)start a timer | 
 |  * | 
 |  * The timer is inserted in expiry order. Insertion into the | 
 |  * red black tree is O(log(n)). Must hold the base lock. | 
 |  * | 
 |  * Returns 1 when the new timer is the leftmost timer in the tree. | 
 |  */ | 
 | static int enqueue_hrtimer(struct hrtimer *timer, | 
 | 			   struct hrtimer_clock_base *base) | 
 | { | 
 | 	struct rb_node **link = &base->active.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct hrtimer *entry; | 
 | 	int leftmost = 1; | 
 |  | 
 | 	debug_hrtimer_activate(timer); | 
 |  | 
 | 	/* | 
 | 	 * Find the right place in the rbtree: | 
 | 	 */ | 
 | 	while (*link) { | 
 | 		parent = *link; | 
 | 		entry = rb_entry(parent, struct hrtimer, node); | 
 | 		/* | 
 | 		 * We dont care about collisions. Nodes with | 
 | 		 * the same expiry time stay together. | 
 | 		 */ | 
 | 		if (hrtimer_get_expires_tv64(timer) < | 
 | 				hrtimer_get_expires_tv64(entry)) { | 
 | 			link = &(*link)->rb_left; | 
 | 		} else { | 
 | 			link = &(*link)->rb_right; | 
 | 			leftmost = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Insert the timer to the rbtree and check whether it | 
 | 	 * replaces the first pending timer | 
 | 	 */ | 
 | 	if (leftmost) | 
 | 		base->first = &timer->node; | 
 |  | 
 | 	rb_link_node(&timer->node, parent, link); | 
 | 	rb_insert_color(&timer->node, &base->active); | 
 | 	/* | 
 | 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the | 
 | 	 * state of a possibly running callback. | 
 | 	 */ | 
 | 	timer->state |= HRTIMER_STATE_ENQUEUED; | 
 |  | 
 | 	return leftmost; | 
 | } | 
 |  | 
 | /* | 
 |  * __remove_hrtimer - internal function to remove a timer | 
 |  * | 
 |  * Caller must hold the base lock. | 
 |  * | 
 |  * High resolution timer mode reprograms the clock event device when the | 
 |  * timer is the one which expires next. The caller can disable this by setting | 
 |  * reprogram to zero. This is useful, when the context does a reprogramming | 
 |  * anyway (e.g. timer interrupt) | 
 |  */ | 
 | static void __remove_hrtimer(struct hrtimer *timer, | 
 | 			     struct hrtimer_clock_base *base, | 
 | 			     unsigned long newstate, int reprogram) | 
 | { | 
 | 	if (timer->state & HRTIMER_STATE_ENQUEUED) { | 
 | 		/* | 
 | 		 * Remove the timer from the rbtree and replace the | 
 | 		 * first entry pointer if necessary. | 
 | 		 */ | 
 | 		if (base->first == &timer->node) { | 
 | 			base->first = rb_next(&timer->node); | 
 | 			/* Reprogram the clock event device. if enabled */ | 
 | 			if (reprogram && hrtimer_hres_active()) | 
 | 				hrtimer_force_reprogram(base->cpu_base); | 
 | 		} | 
 | 		rb_erase(&timer->node, &base->active); | 
 | 	} | 
 | 	timer->state = newstate; | 
 | } | 
 |  | 
 | /* | 
 |  * remove hrtimer, called with base lock held | 
 |  */ | 
 | static inline int | 
 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | 
 | { | 
 | 	if (hrtimer_is_queued(timer)) { | 
 | 		int reprogram; | 
 |  | 
 | 		/* | 
 | 		 * Remove the timer and force reprogramming when high | 
 | 		 * resolution mode is active and the timer is on the current | 
 | 		 * CPU. If we remove a timer on another CPU, reprogramming is | 
 | 		 * skipped. The interrupt event on this CPU is fired and | 
 | 		 * reprogramming happens in the interrupt handler. This is a | 
 | 		 * rare case and less expensive than a smp call. | 
 | 		 */ | 
 | 		debug_hrtimer_deactivate(timer); | 
 | 		timer_stats_hrtimer_clear_start_info(timer); | 
 | 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 
 | 		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 
 | 				 reprogram); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU | 
 |  * @timer:	the timer to be added | 
 |  * @tim:	expiry time | 
 |  * @delta_ns:	"slack" range for the timer | 
 |  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | 
 |  * | 
 |  * Returns: | 
 |  *  0 on success | 
 |  *  1 when the timer was active | 
 |  */ | 
 | int | 
 | hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, | 
 | 			const enum hrtimer_mode mode) | 
 | { | 
 | 	struct hrtimer_clock_base *base, *new_base; | 
 | 	unsigned long flags; | 
 | 	int ret, leftmost; | 
 |  | 
 | 	base = lock_hrtimer_base(timer, &flags); | 
 |  | 
 | 	/* Remove an active timer from the queue: */ | 
 | 	ret = remove_hrtimer(timer, base); | 
 |  | 
 | 	/* Switch the timer base, if necessary: */ | 
 | 	new_base = switch_hrtimer_base(timer, base); | 
 |  | 
 | 	if (mode == HRTIMER_MODE_REL) { | 
 | 		tim = ktime_add_safe(tim, new_base->get_time()); | 
 | 		/* | 
 | 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures | 
 | 		 * to signal that they simply return xtime in | 
 | 		 * do_gettimeoffset(). In this case we want to round up by | 
 | 		 * resolution when starting a relative timer, to avoid short | 
 | 		 * timeouts. This will go away with the GTOD framework. | 
 | 		 */ | 
 | #ifdef CONFIG_TIME_LOW_RES | 
 | 		tim = ktime_add_safe(tim, base->resolution); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	hrtimer_set_expires_range_ns(timer, tim, delta_ns); | 
 |  | 
 | 	timer_stats_hrtimer_set_start_info(timer); | 
 |  | 
 | 	leftmost = enqueue_hrtimer(timer, new_base); | 
 |  | 
 | 	/* | 
 | 	 * Only allow reprogramming if the new base is on this CPU. | 
 | 	 * (it might still be on another CPU if the timer was pending) | 
 | 	 * | 
 | 	 * XXX send_remote_softirq() ? | 
 | 	 */ | 
 | 	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) | 
 | 		hrtimer_enqueue_reprogram(timer, new_base); | 
 |  | 
 | 	unlock_hrtimer_base(timer, &flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); | 
 |  | 
 | /** | 
 |  * hrtimer_start - (re)start an hrtimer on the current CPU | 
 |  * @timer:	the timer to be added | 
 |  * @tim:	expiry time | 
 |  * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) | 
 |  * | 
 |  * Returns: | 
 |  *  0 on success | 
 |  *  1 when the timer was active | 
 |  */ | 
 | int | 
 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) | 
 | { | 
 | 	return hrtimer_start_range_ns(timer, tim, 0, mode); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_start); | 
 |  | 
 |  | 
 | /** | 
 |  * hrtimer_try_to_cancel - try to deactivate a timer | 
 |  * @timer:	hrtimer to stop | 
 |  * | 
 |  * Returns: | 
 |  *  0 when the timer was not active | 
 |  *  1 when the timer was active | 
 |  * -1 when the timer is currently excuting the callback function and | 
 |  *    cannot be stopped | 
 |  */ | 
 | int hrtimer_try_to_cancel(struct hrtimer *timer) | 
 | { | 
 | 	struct hrtimer_clock_base *base; | 
 | 	unsigned long flags; | 
 | 	int ret = -1; | 
 |  | 
 | 	base = lock_hrtimer_base(timer, &flags); | 
 |  | 
 | 	if (!hrtimer_callback_running(timer)) | 
 | 		ret = remove_hrtimer(timer, base); | 
 |  | 
 | 	unlock_hrtimer_base(timer, &flags); | 
 |  | 
 | 	return ret; | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); | 
 |  | 
 | /** | 
 |  * hrtimer_cancel - cancel a timer and wait for the handler to finish. | 
 |  * @timer:	the timer to be cancelled | 
 |  * | 
 |  * Returns: | 
 |  *  0 when the timer was not active | 
 |  *  1 when the timer was active | 
 |  */ | 
 | int hrtimer_cancel(struct hrtimer *timer) | 
 | { | 
 | 	for (;;) { | 
 | 		int ret = hrtimer_try_to_cancel(timer); | 
 |  | 
 | 		if (ret >= 0) | 
 | 			return ret; | 
 | 		cpu_relax(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_cancel); | 
 |  | 
 | /** | 
 |  * hrtimer_get_remaining - get remaining time for the timer | 
 |  * @timer:	the timer to read | 
 |  */ | 
 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) | 
 | { | 
 | 	struct hrtimer_clock_base *base; | 
 | 	unsigned long flags; | 
 | 	ktime_t rem; | 
 |  | 
 | 	base = lock_hrtimer_base(timer, &flags); | 
 | 	rem = hrtimer_expires_remaining(timer); | 
 | 	unlock_hrtimer_base(timer, &flags); | 
 |  | 
 | 	return rem; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); | 
 |  | 
 | #ifdef CONFIG_NO_HZ | 
 | /** | 
 |  * hrtimer_get_next_event - get the time until next expiry event | 
 |  * | 
 |  * Returns the delta to the next expiry event or KTIME_MAX if no timer | 
 |  * is pending. | 
 |  */ | 
 | ktime_t hrtimer_get_next_event(void) | 
 | { | 
 | 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
 | 	struct hrtimer_clock_base *base = cpu_base->clock_base; | 
 | 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&cpu_base->lock, flags); | 
 |  | 
 | 	if (!hrtimer_hres_active()) { | 
 | 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 
 | 			struct hrtimer *timer; | 
 |  | 
 | 			if (!base->first) | 
 | 				continue; | 
 |  | 
 | 			timer = rb_entry(base->first, struct hrtimer, node); | 
 | 			delta.tv64 = hrtimer_get_expires_tv64(timer); | 
 | 			delta = ktime_sub(delta, base->get_time()); | 
 | 			if (delta.tv64 < mindelta.tv64) | 
 | 				mindelta.tv64 = delta.tv64; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&cpu_base->lock, flags); | 
 |  | 
 | 	if (mindelta.tv64 < 0) | 
 | 		mindelta.tv64 = 0; | 
 | 	return mindelta; | 
 | } | 
 | #endif | 
 |  | 
 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
 | 			   enum hrtimer_mode mode) | 
 | { | 
 | 	struct hrtimer_cpu_base *cpu_base; | 
 |  | 
 | 	memset(timer, 0, sizeof(struct hrtimer)); | 
 |  | 
 | 	cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
 |  | 
 | 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) | 
 | 		clock_id = CLOCK_MONOTONIC; | 
 |  | 
 | 	timer->base = &cpu_base->clock_base[clock_id]; | 
 | 	INIT_LIST_HEAD(&timer->cb_entry); | 
 | 	hrtimer_init_timer_hres(timer); | 
 |  | 
 | #ifdef CONFIG_TIMER_STATS | 
 | 	timer->start_site = NULL; | 
 | 	timer->start_pid = -1; | 
 | 	memset(timer->start_comm, 0, TASK_COMM_LEN); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * hrtimer_init - initialize a timer to the given clock | 
 |  * @timer:	the timer to be initialized | 
 |  * @clock_id:	the clock to be used | 
 |  * @mode:	timer mode abs/rel | 
 |  */ | 
 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 
 | 		  enum hrtimer_mode mode) | 
 | { | 
 | 	debug_hrtimer_init(timer); | 
 | 	__hrtimer_init(timer, clock_id, mode); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_init); | 
 |  | 
 | /** | 
 |  * hrtimer_get_res - get the timer resolution for a clock | 
 |  * @which_clock: which clock to query | 
 |  * @tp:		 pointer to timespec variable to store the resolution | 
 |  * | 
 |  * Store the resolution of the clock selected by @which_clock in the | 
 |  * variable pointed to by @tp. | 
 |  */ | 
 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | 
 | { | 
 | 	struct hrtimer_cpu_base *cpu_base; | 
 |  | 
 | 	cpu_base = &__raw_get_cpu_var(hrtimer_bases); | 
 | 	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 
 |  | 
 | static void __run_hrtimer(struct hrtimer *timer) | 
 | { | 
 | 	struct hrtimer_clock_base *base = timer->base; | 
 | 	struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 
 | 	enum hrtimer_restart (*fn)(struct hrtimer *); | 
 | 	int restart; | 
 |  | 
 | 	WARN_ON(!irqs_disabled()); | 
 |  | 
 | 	debug_hrtimer_deactivate(timer); | 
 | 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 
 | 	timer_stats_account_hrtimer(timer); | 
 | 	fn = timer->function; | 
 |  | 
 | 	/* | 
 | 	 * Because we run timers from hardirq context, there is no chance | 
 | 	 * they get migrated to another cpu, therefore its safe to unlock | 
 | 	 * the timer base. | 
 | 	 */ | 
 | 	spin_unlock(&cpu_base->lock); | 
 | 	restart = fn(timer); | 
 | 	spin_lock(&cpu_base->lock); | 
 |  | 
 | 	/* | 
 | 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and | 
 | 	 * we do not reprogramm the event hardware. Happens either in | 
 | 	 * hrtimer_start_range_ns() or in hrtimer_interrupt() | 
 | 	 */ | 
 | 	if (restart != HRTIMER_NORESTART) { | 
 | 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); | 
 | 		enqueue_hrtimer(timer, base); | 
 | 	} | 
 | 	timer->state &= ~HRTIMER_STATE_CALLBACK; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 |  | 
 | /* | 
 |  * High resolution timer interrupt | 
 |  * Called with interrupts disabled | 
 |  */ | 
 | void hrtimer_interrupt(struct clock_event_device *dev) | 
 | { | 
 | 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
 | 	struct hrtimer_clock_base *base; | 
 | 	ktime_t expires_next, now; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(!cpu_base->hres_active); | 
 | 	cpu_base->nr_events++; | 
 | 	dev->next_event.tv64 = KTIME_MAX; | 
 |  | 
 |  retry: | 
 | 	now = ktime_get(); | 
 |  | 
 | 	expires_next.tv64 = KTIME_MAX; | 
 |  | 
 | 	base = cpu_base->clock_base; | 
 |  | 
 | 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
 | 		ktime_t basenow; | 
 | 		struct rb_node *node; | 
 |  | 
 | 		spin_lock(&cpu_base->lock); | 
 |  | 
 | 		basenow = ktime_add(now, base->offset); | 
 |  | 
 | 		while ((node = base->first)) { | 
 | 			struct hrtimer *timer; | 
 |  | 
 | 			timer = rb_entry(node, struct hrtimer, node); | 
 |  | 
 | 			/* | 
 | 			 * The immediate goal for using the softexpires is | 
 | 			 * minimizing wakeups, not running timers at the | 
 | 			 * earliest interrupt after their soft expiration. | 
 | 			 * This allows us to avoid using a Priority Search | 
 | 			 * Tree, which can answer a stabbing querry for | 
 | 			 * overlapping intervals and instead use the simple | 
 | 			 * BST we already have. | 
 | 			 * We don't add extra wakeups by delaying timers that | 
 | 			 * are right-of a not yet expired timer, because that | 
 | 			 * timer will have to trigger a wakeup anyway. | 
 | 			 */ | 
 |  | 
 | 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { | 
 | 				ktime_t expires; | 
 |  | 
 | 				expires = ktime_sub(hrtimer_get_expires(timer), | 
 | 						    base->offset); | 
 | 				if (expires.tv64 < expires_next.tv64) | 
 | 					expires_next = expires; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			__run_hrtimer(timer); | 
 | 		} | 
 | 		spin_unlock(&cpu_base->lock); | 
 | 		base++; | 
 | 	} | 
 |  | 
 | 	cpu_base->expires_next = expires_next; | 
 |  | 
 | 	/* Reprogramming necessary ? */ | 
 | 	if (expires_next.tv64 != KTIME_MAX) { | 
 | 		if (tick_program_event(expires_next, 0)) | 
 | 			goto retry; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * local version of hrtimer_peek_ahead_timers() called with interrupts | 
 |  * disabled. | 
 |  */ | 
 | static void __hrtimer_peek_ahead_timers(void) | 
 | { | 
 | 	struct tick_device *td; | 
 |  | 
 | 	if (!hrtimer_hres_active()) | 
 | 		return; | 
 |  | 
 | 	td = &__get_cpu_var(tick_cpu_device); | 
 | 	if (td && td->evtdev) | 
 | 		hrtimer_interrupt(td->evtdev); | 
 | } | 
 |  | 
 | /** | 
 |  * hrtimer_peek_ahead_timers -- run soft-expired timers now | 
 |  * | 
 |  * hrtimer_peek_ahead_timers will peek at the timer queue of | 
 |  * the current cpu and check if there are any timers for which | 
 |  * the soft expires time has passed. If any such timers exist, | 
 |  * they are run immediately and then removed from the timer queue. | 
 |  * | 
 |  */ | 
 | void hrtimer_peek_ahead_timers(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__hrtimer_peek_ahead_timers(); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void run_hrtimer_softirq(struct softirq_action *h) | 
 | { | 
 | 	hrtimer_peek_ahead_timers(); | 
 | } | 
 |  | 
 | #else /* CONFIG_HIGH_RES_TIMERS */ | 
 |  | 
 | static inline void __hrtimer_peek_ahead_timers(void) { } | 
 |  | 
 | #endif	/* !CONFIG_HIGH_RES_TIMERS */ | 
 |  | 
 | /* | 
 |  * Called from timer softirq every jiffy, expire hrtimers: | 
 |  * | 
 |  * For HRT its the fall back code to run the softirq in the timer | 
 |  * softirq context in case the hrtimer initialization failed or has | 
 |  * not been done yet. | 
 |  */ | 
 | void hrtimer_run_pending(void) | 
 | { | 
 | 	if (hrtimer_hres_active()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * This _is_ ugly: We have to check in the softirq context, | 
 | 	 * whether we can switch to highres and / or nohz mode. The | 
 | 	 * clocksource switch happens in the timer interrupt with | 
 | 	 * xtime_lock held. Notification from there only sets the | 
 | 	 * check bit in the tick_oneshot code, otherwise we might | 
 | 	 * deadlock vs. xtime_lock. | 
 | 	 */ | 
 | 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) | 
 | 		hrtimer_switch_to_hres(); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from hardirq context every jiffy | 
 |  */ | 
 | void hrtimer_run_queues(void) | 
 | { | 
 | 	struct rb_node *node; | 
 | 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); | 
 | 	struct hrtimer_clock_base *base; | 
 | 	int index, gettime = 1; | 
 |  | 
 | 	if (hrtimer_hres_active()) | 
 | 		return; | 
 |  | 
 | 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { | 
 | 		base = &cpu_base->clock_base[index]; | 
 |  | 
 | 		if (!base->first) | 
 | 			continue; | 
 |  | 
 | 		if (gettime) { | 
 | 			hrtimer_get_softirq_time(cpu_base); | 
 | 			gettime = 0; | 
 | 		} | 
 |  | 
 | 		spin_lock(&cpu_base->lock); | 
 |  | 
 | 		while ((node = base->first)) { | 
 | 			struct hrtimer *timer; | 
 |  | 
 | 			timer = rb_entry(node, struct hrtimer, node); | 
 | 			if (base->softirq_time.tv64 <= | 
 | 					hrtimer_get_expires_tv64(timer)) | 
 | 				break; | 
 |  | 
 | 			__run_hrtimer(timer); | 
 | 		} | 
 | 		spin_unlock(&cpu_base->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Sleep related functions: | 
 |  */ | 
 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) | 
 | { | 
 | 	struct hrtimer_sleeper *t = | 
 | 		container_of(timer, struct hrtimer_sleeper, timer); | 
 | 	struct task_struct *task = t->task; | 
 |  | 
 | 	t->task = NULL; | 
 | 	if (task) | 
 | 		wake_up_process(task); | 
 |  | 
 | 	return HRTIMER_NORESTART; | 
 | } | 
 |  | 
 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) | 
 | { | 
 | 	sl->timer.function = hrtimer_wakeup; | 
 | 	sl->task = task; | 
 | } | 
 |  | 
 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) | 
 | { | 
 | 	hrtimer_init_sleeper(t, current); | 
 |  | 
 | 	do { | 
 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 		hrtimer_start_expires(&t->timer, mode); | 
 | 		if (!hrtimer_active(&t->timer)) | 
 | 			t->task = NULL; | 
 |  | 
 | 		if (likely(t->task)) | 
 | 			schedule(); | 
 |  | 
 | 		hrtimer_cancel(&t->timer); | 
 | 		mode = HRTIMER_MODE_ABS; | 
 |  | 
 | 	} while (t->task && !signal_pending(current)); | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	return t->task == NULL; | 
 | } | 
 |  | 
 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) | 
 | { | 
 | 	struct timespec rmt; | 
 | 	ktime_t rem; | 
 |  | 
 | 	rem = hrtimer_expires_remaining(timer); | 
 | 	if (rem.tv64 <= 0) | 
 | 		return 0; | 
 | 	rmt = ktime_to_timespec(rem); | 
 |  | 
 | 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) | 
 | { | 
 | 	struct hrtimer_sleeper t; | 
 | 	struct timespec __user  *rmtp; | 
 | 	int ret = 0; | 
 |  | 
 | 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, | 
 | 				HRTIMER_MODE_ABS); | 
 | 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); | 
 |  | 
 | 	if (do_nanosleep(&t, HRTIMER_MODE_ABS)) | 
 | 		goto out; | 
 |  | 
 | 	rmtp = restart->nanosleep.rmtp; | 
 | 	if (rmtp) { | 
 | 		ret = update_rmtp(&t.timer, rmtp); | 
 | 		if (ret <= 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* The other values in restart are already filled in */ | 
 | 	ret = -ERESTART_RESTARTBLOCK; | 
 | out: | 
 | 	destroy_hrtimer_on_stack(&t.timer); | 
 | 	return ret; | 
 | } | 
 |  | 
 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, | 
 | 		       const enum hrtimer_mode mode, const clockid_t clockid) | 
 | { | 
 | 	struct restart_block *restart; | 
 | 	struct hrtimer_sleeper t; | 
 | 	int ret = 0; | 
 | 	unsigned long slack; | 
 |  | 
 | 	slack = current->timer_slack_ns; | 
 | 	if (rt_task(current)) | 
 | 		slack = 0; | 
 |  | 
 | 	hrtimer_init_on_stack(&t.timer, clockid, mode); | 
 | 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); | 
 | 	if (do_nanosleep(&t, mode)) | 
 | 		goto out; | 
 |  | 
 | 	/* Absolute timers do not update the rmtp value and restart: */ | 
 | 	if (mode == HRTIMER_MODE_ABS) { | 
 | 		ret = -ERESTARTNOHAND; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (rmtp) { | 
 | 		ret = update_rmtp(&t.timer, rmtp); | 
 | 		if (ret <= 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	restart = ¤t_thread_info()->restart_block; | 
 | 	restart->fn = hrtimer_nanosleep_restart; | 
 | 	restart->nanosleep.index = t.timer.base->index; | 
 | 	restart->nanosleep.rmtp = rmtp; | 
 | 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); | 
 |  | 
 | 	ret = -ERESTART_RESTARTBLOCK; | 
 | out: | 
 | 	destroy_hrtimer_on_stack(&t.timer); | 
 | 	return ret; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, | 
 | 		struct timespec __user *, rmtp) | 
 | { | 
 | 	struct timespec tu; | 
 |  | 
 | 	if (copy_from_user(&tu, rqtp, sizeof(tu))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (!timespec_valid(&tu)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); | 
 | } | 
 |  | 
 | /* | 
 |  * Functions related to boot-time initialization: | 
 |  */ | 
 | static void __cpuinit init_hrtimers_cpu(int cpu) | 
 | { | 
 | 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); | 
 | 	int i; | 
 |  | 
 | 	spin_lock_init(&cpu_base->lock); | 
 |  | 
 | 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) | 
 | 		cpu_base->clock_base[i].cpu_base = cpu_base; | 
 |  | 
 | 	hrtimer_init_hres(cpu_base); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 |  | 
 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | 
 | 				struct hrtimer_clock_base *new_base) | 
 | { | 
 | 	struct hrtimer *timer; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	while ((node = rb_first(&old_base->active))) { | 
 | 		timer = rb_entry(node, struct hrtimer, node); | 
 | 		BUG_ON(hrtimer_callback_running(timer)); | 
 | 		debug_hrtimer_deactivate(timer); | 
 |  | 
 | 		/* | 
 | 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 
 | 		 * timer could be seen as !active and just vanish away | 
 | 		 * under us on another CPU | 
 | 		 */ | 
 | 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); | 
 | 		timer->base = new_base; | 
 | 		/* | 
 | 		 * Enqueue the timers on the new cpu. This does not | 
 | 		 * reprogram the event device in case the timer | 
 | 		 * expires before the earliest on this CPU, but we run | 
 | 		 * hrtimer_interrupt after we migrated everything to | 
 | 		 * sort out already expired timers and reprogram the | 
 | 		 * event device. | 
 | 		 */ | 
 | 		enqueue_hrtimer(timer, new_base); | 
 |  | 
 | 		/* Clear the migration state bit */ | 
 | 		timer->state &= ~HRTIMER_STATE_MIGRATE; | 
 | 	} | 
 | } | 
 |  | 
 | static void migrate_hrtimers(int scpu) | 
 | { | 
 | 	struct hrtimer_cpu_base *old_base, *new_base; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(cpu_online(scpu)); | 
 | 	tick_cancel_sched_timer(scpu); | 
 |  | 
 | 	local_irq_disable(); | 
 | 	old_base = &per_cpu(hrtimer_bases, scpu); | 
 | 	new_base = &__get_cpu_var(hrtimer_bases); | 
 | 	/* | 
 | 	 * The caller is globally serialized and nobody else | 
 | 	 * takes two locks at once, deadlock is not possible. | 
 | 	 */ | 
 | 	spin_lock(&new_base->lock); | 
 | 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); | 
 |  | 
 | 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { | 
 | 		migrate_hrtimer_list(&old_base->clock_base[i], | 
 | 				     &new_base->clock_base[i]); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&old_base->lock); | 
 | 	spin_unlock(&new_base->lock); | 
 |  | 
 | 	/* Check, if we got expired work to do */ | 
 | 	__hrtimer_peek_ahead_timers(); | 
 | 	local_irq_enable(); | 
 | } | 
 |  | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, | 
 | 					unsigned long action, void *hcpu) | 
 | { | 
 | 	int scpu = (long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 |  | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		init_hrtimers_cpu(scpu); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 	{ | 
 | 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); | 
 | 		migrate_hrtimers(scpu); | 
 | 		break; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata hrtimers_nb = { | 
 | 	.notifier_call = hrtimer_cpu_notify, | 
 | }; | 
 |  | 
 | void __init hrtimers_init(void) | 
 | { | 
 | 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, | 
 | 			  (void *)(long)smp_processor_id()); | 
 | 	register_cpu_notifier(&hrtimers_nb); | 
 | #ifdef CONFIG_HIGH_RES_TIMERS | 
 | 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * schedule_hrtimeout_range - sleep until timeout | 
 |  * @expires:	timeout value (ktime_t) | 
 |  * @delta:	slack in expires timeout (ktime_t) | 
 |  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 
 |  * | 
 |  * Make the current task sleep until the given expiry time has | 
 |  * elapsed. The routine will return immediately unless | 
 |  * the current task state has been set (see set_current_state()). | 
 |  * | 
 |  * The @delta argument gives the kernel the freedom to schedule the | 
 |  * actual wakeup to a time that is both power and performance friendly. | 
 |  * The kernel give the normal best effort behavior for "@expires+@delta", | 
 |  * but may decide to fire the timer earlier, but no earlier than @expires. | 
 |  * | 
 |  * You can set the task state as follows - | 
 |  * | 
 |  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | 
 |  * pass before the routine returns. | 
 |  * | 
 |  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
 |  * delivered to the current task. | 
 |  * | 
 |  * The current task state is guaranteed to be TASK_RUNNING when this | 
 |  * routine returns. | 
 |  * | 
 |  * Returns 0 when the timer has expired otherwise -EINTR | 
 |  */ | 
 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, | 
 | 			       const enum hrtimer_mode mode) | 
 | { | 
 | 	struct hrtimer_sleeper t; | 
 |  | 
 | 	/* | 
 | 	 * Optimize when a zero timeout value is given. It does not | 
 | 	 * matter whether this is an absolute or a relative time. | 
 | 	 */ | 
 | 	if (expires && !expires->tv64) { | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A NULL parameter means "inifinte" | 
 | 	 */ | 
 | 	if (!expires) { | 
 | 		schedule(); | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		return -EINTR; | 
 | 	} | 
 |  | 
 | 	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode); | 
 | 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta); | 
 |  | 
 | 	hrtimer_init_sleeper(&t, current); | 
 |  | 
 | 	hrtimer_start_expires(&t.timer, mode); | 
 | 	if (!hrtimer_active(&t.timer)) | 
 | 		t.task = NULL; | 
 |  | 
 | 	if (likely(t.task)) | 
 | 		schedule(); | 
 |  | 
 | 	hrtimer_cancel(&t.timer); | 
 | 	destroy_hrtimer_on_stack(&t.timer); | 
 |  | 
 | 	__set_current_state(TASK_RUNNING); | 
 |  | 
 | 	return !t.task ? 0 : -EINTR; | 
 | } | 
 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); | 
 |  | 
 | /** | 
 |  * schedule_hrtimeout - sleep until timeout | 
 |  * @expires:	timeout value (ktime_t) | 
 |  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL | 
 |  * | 
 |  * Make the current task sleep until the given expiry time has | 
 |  * elapsed. The routine will return immediately unless | 
 |  * the current task state has been set (see set_current_state()). | 
 |  * | 
 |  * You can set the task state as follows - | 
 |  * | 
 |  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to | 
 |  * pass before the routine returns. | 
 |  * | 
 |  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is | 
 |  * delivered to the current task. | 
 |  * | 
 |  * The current task state is guaranteed to be TASK_RUNNING when this | 
 |  * routine returns. | 
 |  * | 
 |  * Returns 0 when the timer has expired otherwise -EINTR | 
 |  */ | 
 | int __sched schedule_hrtimeout(ktime_t *expires, | 
 | 			       const enum hrtimer_mode mode) | 
 | { | 
 | 	return schedule_hrtimeout_range(expires, 0, mode); | 
 | } | 
 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |