| /* | 
 |  *  linux/arch/alpha/kernel/process.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the architecture-dependent parts of process handling. | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/user.h> | 
 | #include <linux/a.out.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/time.h> | 
 | #include <linux/major.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/vt.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/elfcore.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/console.h> | 
 |  | 
 | #include <asm/reg.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/hwrpb.h> | 
 | #include <asm/fpu.h> | 
 |  | 
 | #include "proto.h" | 
 | #include "pci_impl.h" | 
 |  | 
 | /* | 
 |  * Power off function, if any | 
 |  */ | 
 | void (*pm_power_off)(void) = machine_power_off; | 
 | EXPORT_SYMBOL(pm_power_off); | 
 |  | 
 | void | 
 | cpu_idle(void) | 
 | { | 
 | 	set_thread_flag(TIF_POLLING_NRFLAG); | 
 |  | 
 | 	while (1) { | 
 | 		/* FIXME -- EV6 and LCA45 know how to power down | 
 | 		   the CPU.  */ | 
 |  | 
 | 		while (!need_resched()) | 
 | 			cpu_relax(); | 
 | 		schedule(); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | struct halt_info { | 
 | 	int mode; | 
 | 	char *restart_cmd; | 
 | }; | 
 |  | 
 | static void | 
 | common_shutdown_1(void *generic_ptr) | 
 | { | 
 | 	struct halt_info *how = (struct halt_info *)generic_ptr; | 
 | 	struct percpu_struct *cpup; | 
 | 	unsigned long *pflags, flags; | 
 | 	int cpuid = smp_processor_id(); | 
 |  | 
 | 	/* No point in taking interrupts anymore. */ | 
 | 	local_irq_disable(); | 
 |  | 
 | 	cpup = (struct percpu_struct *) | 
 | 			((unsigned long)hwrpb + hwrpb->processor_offset | 
 | 			 + hwrpb->processor_size * cpuid); | 
 | 	pflags = &cpup->flags; | 
 | 	flags = *pflags; | 
 |  | 
 | 	/* Clear reason to "default"; clear "bootstrap in progress". */ | 
 | 	flags &= ~0x00ff0001UL; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* Secondaries halt here. */ | 
 | 	if (cpuid != boot_cpuid) { | 
 | 		flags |= 0x00040000UL; /* "remain halted" */ | 
 | 		*pflags = flags; | 
 | 		cpu_clear(cpuid, cpu_present_map); | 
 | 		halt(); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (how->mode == LINUX_REBOOT_CMD_RESTART) { | 
 | 		if (!how->restart_cmd) { | 
 | 			flags |= 0x00020000UL; /* "cold bootstrap" */ | 
 | 		} else { | 
 | 			/* For SRM, we could probably set environment | 
 | 			   variables to get this to work.  We'd have to | 
 | 			   delay this until after srm_paging_stop unless | 
 | 			   we ever got srm_fixup working. | 
 |  | 
 | 			   At the moment, SRM will use the last boot device, | 
 | 			   but the file and flags will be the defaults, when | 
 | 			   doing a "warm" bootstrap.  */ | 
 | 			flags |= 0x00030000UL; /* "warm bootstrap" */ | 
 | 		} | 
 | 	} else { | 
 | 		flags |= 0x00040000UL; /* "remain halted" */ | 
 | 	} | 
 | 	*pflags = flags; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* Wait for the secondaries to halt. */ | 
 | 	cpu_clear(boot_cpuid, cpu_present_map); | 
 | 	while (cpus_weight(cpu_present_map)) | 
 | 		barrier(); | 
 | #endif | 
 |  | 
 | 	/* If booted from SRM, reset some of the original environment. */ | 
 | 	if (alpha_using_srm) { | 
 | #ifdef CONFIG_DUMMY_CONSOLE | 
 | 		/* If we've gotten here after SysRq-b, leave interrupt | 
 | 		   context before taking over the console. */ | 
 | 		if (in_interrupt()) | 
 | 			irq_exit(); | 
 | 		/* This has the effect of resetting the VGA video origin.  */ | 
 | 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1); | 
 | #endif | 
 | 		pci_restore_srm_config(); | 
 | 		set_hae(srm_hae); | 
 | 	} | 
 |  | 
 | 	if (alpha_mv.kill_arch) | 
 | 		alpha_mv.kill_arch(how->mode); | 
 |  | 
 | 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) { | 
 | 		/* Unfortunately, since MILO doesn't currently understand | 
 | 		   the hwrpb bits above, we can't reliably halt the  | 
 | 		   processor and keep it halted.  So just loop.  */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (alpha_using_srm) | 
 | 		srm_paging_stop(); | 
 |  | 
 | 	halt(); | 
 | } | 
 |  | 
 | static void | 
 | common_shutdown(int mode, char *restart_cmd) | 
 | { | 
 | 	struct halt_info args; | 
 | 	args.mode = mode; | 
 | 	args.restart_cmd = restart_cmd; | 
 | 	on_each_cpu(common_shutdown_1, &args, 1, 0); | 
 | } | 
 |  | 
 | void | 
 | machine_restart(char *restart_cmd) | 
 | { | 
 | 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd); | 
 | } | 
 |  | 
 |  | 
 | void | 
 | machine_halt(void) | 
 | { | 
 | 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL); | 
 | } | 
 |  | 
 |  | 
 | void | 
 | machine_power_off(void) | 
 | { | 
 | 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL); | 
 | } | 
 |  | 
 |  | 
 | /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever | 
 |    saved in the context it's used.  */ | 
 |  | 
 | void | 
 | show_regs(struct pt_regs *regs) | 
 | { | 
 | 	dik_show_regs(regs, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Re-start a thread when doing execve() | 
 |  */ | 
 | void | 
 | start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) | 
 | { | 
 | 	set_fs(USER_DS); | 
 | 	regs->pc = pc; | 
 | 	regs->ps = 8; | 
 | 	wrusp(sp); | 
 | } | 
 | EXPORT_SYMBOL(start_thread); | 
 |  | 
 | /* | 
 |  * Free current thread data structures etc.. | 
 |  */ | 
 | void | 
 | exit_thread(void) | 
 | { | 
 | } | 
 |  | 
 | void | 
 | flush_thread(void) | 
 | { | 
 | 	/* Arrange for each exec'ed process to start off with a clean slate | 
 | 	   with respect to the FPU.  This is all exceptions disabled.  */ | 
 | 	current_thread_info()->ieee_state = 0; | 
 | 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0)); | 
 |  | 
 | 	/* Clean slate for TLS.  */ | 
 | 	current_thread_info()->pcb.unique = 0; | 
 | } | 
 |  | 
 | void | 
 | release_thread(struct task_struct *dead_task) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * "alpha_clone()".. By the time we get here, the | 
 |  * non-volatile registers have also been saved on the | 
 |  * stack. We do some ugly pointer stuff here.. (see | 
 |  * also copy_thread) | 
 |  * | 
 |  * Notice that "fork()" is implemented in terms of clone, | 
 |  * with parameters (SIGCHLD, 0). | 
 |  */ | 
 | int | 
 | alpha_clone(unsigned long clone_flags, unsigned long usp, | 
 | 	    int __user *parent_tid, int __user *child_tid, | 
 | 	    unsigned long tls_value, struct pt_regs *regs) | 
 | { | 
 | 	if (!usp) | 
 | 		usp = rdusp(); | 
 |  | 
 | 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid); | 
 | } | 
 |  | 
 | int | 
 | alpha_vfork(struct pt_regs *regs) | 
 | { | 
 | 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), | 
 | 		       regs, 0, NULL, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Copy an alpha thread.. | 
 |  * | 
 |  * Note the "stack_offset" stuff: when returning to kernel mode, we need | 
 |  * to have some extra stack-space for the kernel stack that still exists | 
 |  * after the "ret_from_fork".  When returning to user mode, we only want | 
 |  * the space needed by the syscall stack frame (ie "struct pt_regs"). | 
 |  * Use the passed "regs" pointer to determine how much space we need | 
 |  * for a kernel fork(). | 
 |  */ | 
 |  | 
 | int | 
 | copy_thread(int nr, unsigned long clone_flags, unsigned long usp, | 
 | 	    unsigned long unused, | 
 | 	    struct task_struct * p, struct pt_regs * regs) | 
 | { | 
 | 	extern void ret_from_fork(void); | 
 |  | 
 | 	struct thread_info *childti = task_thread_info(p); | 
 | 	struct pt_regs * childregs; | 
 | 	struct switch_stack * childstack, *stack; | 
 | 	unsigned long stack_offset, settls; | 
 |  | 
 | 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs); | 
 | 	if (!(regs->ps & 8)) | 
 | 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs; | 
 | 	childregs = (struct pt_regs *) | 
 | 	  (stack_offset + PAGE_SIZE + task_stack_page(p)); | 
 | 		 | 
 | 	*childregs = *regs; | 
 | 	settls = regs->r20; | 
 | 	childregs->r0 = 0; | 
 | 	childregs->r19 = 0; | 
 | 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */ | 
 | 	regs->r20 = 0; | 
 | 	stack = ((struct switch_stack *) regs) - 1; | 
 | 	childstack = ((struct switch_stack *) childregs) - 1; | 
 | 	*childstack = *stack; | 
 | 	childstack->r26 = (unsigned long) ret_from_fork; | 
 | 	childti->pcb.usp = usp; | 
 | 	childti->pcb.ksp = (unsigned long) childstack; | 
 | 	childti->pcb.flags = 1;	/* set FEN, clear everything else */ | 
 |  | 
 | 	/* Set a new TLS for the child thread?  Peek back into the | 
 | 	   syscall arguments that we saved on syscall entry.  Oops, | 
 | 	   except we'd have clobbered it with the parent/child set | 
 | 	   of r20.  Read the saved copy.  */ | 
 | 	/* Note: if CLONE_SETTLS is not set, then we must inherit the | 
 | 	   value from the parent, which will have been set by the block | 
 | 	   copy in dup_task_struct.  This is non-intuitive, but is | 
 | 	   required for proper operation in the case of a threaded | 
 | 	   application calling fork.  */ | 
 | 	if (clone_flags & CLONE_SETTLS) | 
 | 		childti->pcb.unique = settls; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Fill in the user structure for an ECOFF core dump. | 
 |  */ | 
 | void | 
 | dump_thread(struct pt_regs * pt, struct user * dump) | 
 | { | 
 | 	/* switch stack follows right below pt_regs: */ | 
 | 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1; | 
 |  | 
 | 	dump->magic = CMAGIC; | 
 | 	dump->start_code  = current->mm->start_code; | 
 | 	dump->start_data  = current->mm->start_data; | 
 | 	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1); | 
 | 	dump->u_tsize = ((current->mm->end_code - dump->start_code) | 
 | 			 >> PAGE_SHIFT); | 
 | 	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data) | 
 | 			 >> PAGE_SHIFT); | 
 | 	dump->u_ssize = (current->mm->start_stack - dump->start_stack | 
 | 			 + PAGE_SIZE-1) >> PAGE_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * We store the registers in an order/format that is | 
 | 	 * compatible with DEC Unix/OSF/1 as this makes life easier | 
 | 	 * for gdb. | 
 | 	 */ | 
 | 	dump->regs[EF_V0]  = pt->r0; | 
 | 	dump->regs[EF_T0]  = pt->r1; | 
 | 	dump->regs[EF_T1]  = pt->r2; | 
 | 	dump->regs[EF_T2]  = pt->r3; | 
 | 	dump->regs[EF_T3]  = pt->r4; | 
 | 	dump->regs[EF_T4]  = pt->r5; | 
 | 	dump->regs[EF_T5]  = pt->r6; | 
 | 	dump->regs[EF_T6]  = pt->r7; | 
 | 	dump->regs[EF_T7]  = pt->r8; | 
 | 	dump->regs[EF_S0]  = sw->r9; | 
 | 	dump->regs[EF_S1]  = sw->r10; | 
 | 	dump->regs[EF_S2]  = sw->r11; | 
 | 	dump->regs[EF_S3]  = sw->r12; | 
 | 	dump->regs[EF_S4]  = sw->r13; | 
 | 	dump->regs[EF_S5]  = sw->r14; | 
 | 	dump->regs[EF_S6]  = sw->r15; | 
 | 	dump->regs[EF_A3]  = pt->r19; | 
 | 	dump->regs[EF_A4]  = pt->r20; | 
 | 	dump->regs[EF_A5]  = pt->r21; | 
 | 	dump->regs[EF_T8]  = pt->r22; | 
 | 	dump->regs[EF_T9]  = pt->r23; | 
 | 	dump->regs[EF_T10] = pt->r24; | 
 | 	dump->regs[EF_T11] = pt->r25; | 
 | 	dump->regs[EF_RA]  = pt->r26; | 
 | 	dump->regs[EF_T12] = pt->r27; | 
 | 	dump->regs[EF_AT]  = pt->r28; | 
 | 	dump->regs[EF_SP]  = rdusp(); | 
 | 	dump->regs[EF_PS]  = pt->ps; | 
 | 	dump->regs[EF_PC]  = pt->pc; | 
 | 	dump->regs[EF_GP]  = pt->gp; | 
 | 	dump->regs[EF_A0]  = pt->r16; | 
 | 	dump->regs[EF_A1]  = pt->r17; | 
 | 	dump->regs[EF_A2]  = pt->r18; | 
 | 	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8); | 
 | } | 
 | EXPORT_SYMBOL(dump_thread); | 
 |  | 
 | /* | 
 |  * Fill in the user structure for a ELF core dump. | 
 |  */ | 
 | void | 
 | dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti) | 
 | { | 
 | 	/* switch stack follows right below pt_regs: */ | 
 | 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1; | 
 |  | 
 | 	dest[ 0] = pt->r0; | 
 | 	dest[ 1] = pt->r1; | 
 | 	dest[ 2] = pt->r2; | 
 | 	dest[ 3] = pt->r3; | 
 | 	dest[ 4] = pt->r4; | 
 | 	dest[ 5] = pt->r5; | 
 | 	dest[ 6] = pt->r6; | 
 | 	dest[ 7] = pt->r7; | 
 | 	dest[ 8] = pt->r8; | 
 | 	dest[ 9] = sw->r9; | 
 | 	dest[10] = sw->r10; | 
 | 	dest[11] = sw->r11; | 
 | 	dest[12] = sw->r12; | 
 | 	dest[13] = sw->r13; | 
 | 	dest[14] = sw->r14; | 
 | 	dest[15] = sw->r15; | 
 | 	dest[16] = pt->r16; | 
 | 	dest[17] = pt->r17; | 
 | 	dest[18] = pt->r18; | 
 | 	dest[19] = pt->r19; | 
 | 	dest[20] = pt->r20; | 
 | 	dest[21] = pt->r21; | 
 | 	dest[22] = pt->r22; | 
 | 	dest[23] = pt->r23; | 
 | 	dest[24] = pt->r24; | 
 | 	dest[25] = pt->r25; | 
 | 	dest[26] = pt->r26; | 
 | 	dest[27] = pt->r27; | 
 | 	dest[28] = pt->r28; | 
 | 	dest[29] = pt->gp; | 
 | 	dest[30] = rdusp(); | 
 | 	dest[31] = pt->pc; | 
 |  | 
 | 	/* Once upon a time this was the PS value.  Which is stupid | 
 | 	   since that is always 8 for usermode.  Usurped for the more | 
 | 	   useful value of the thread's UNIQUE field.  */ | 
 | 	dest[32] = ti->pcb.unique; | 
 | } | 
 | EXPORT_SYMBOL(dump_elf_thread); | 
 |  | 
 | int | 
 | dump_elf_task(elf_greg_t *dest, struct task_struct *task) | 
 | { | 
 | 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task)); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(dump_elf_task); | 
 |  | 
 | int | 
 | dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task) | 
 | { | 
 | 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1; | 
 | 	memcpy(dest, sw->fp, 32 * 8); | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(dump_elf_task_fp); | 
 |  | 
 | /* | 
 |  * sys_execve() executes a new program. | 
 |  */ | 
 | asmlinkage int | 
 | do_sys_execve(char __user *ufilename, char __user * __user *argv, | 
 | 	      char __user * __user *envp, struct pt_regs *regs) | 
 | { | 
 | 	int error; | 
 | 	char *filename; | 
 |  | 
 | 	filename = getname(ufilename); | 
 | 	error = PTR_ERR(filename); | 
 | 	if (IS_ERR(filename)) | 
 | 		goto out; | 
 | 	error = do_execve(filename, argv, envp, regs); | 
 | 	putname(filename); | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Return saved PC of a blocked thread.  This assumes the frame | 
 |  * pointer is the 6th saved long on the kernel stack and that the | 
 |  * saved return address is the first long in the frame.  This all | 
 |  * holds provided the thread blocked through a call to schedule() ($15 | 
 |  * is the frame pointer in schedule() and $15 is saved at offset 48 by | 
 |  * entry.S:do_switch_stack). | 
 |  * | 
 |  * Under heavy swap load I've seen this lose in an ugly way.  So do | 
 |  * some extra sanity checking on the ranges we expect these pointers | 
 |  * to be in so that we can fail gracefully.  This is just for ps after | 
 |  * all.  -- r~ | 
 |  */ | 
 |  | 
 | unsigned long | 
 | thread_saved_pc(struct task_struct *t) | 
 | { | 
 | 	unsigned long base = (unsigned long)task_stack_page(t); | 
 | 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp; | 
 |  | 
 | 	if (sp > base && sp+6*8 < base + 16*1024) { | 
 | 		fp = ((unsigned long*)sp)[6]; | 
 | 		if (fp > sp && fp < base + 16*1024) | 
 | 			return *(unsigned long *)fp; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long | 
 | get_wchan(struct task_struct *p) | 
 | { | 
 | 	unsigned long schedule_frame; | 
 | 	unsigned long pc; | 
 | 	if (!p || p == current || p->state == TASK_RUNNING) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * This one depends on the frame size of schedule().  Do a | 
 | 	 * "disass schedule" in gdb to find the frame size.  Also, the | 
 | 	 * code assumes that sleep_on() follows immediately after | 
 | 	 * interruptible_sleep_on() and that add_timer() follows | 
 | 	 * immediately after interruptible_sleep().  Ugly, isn't it? | 
 | 	 * Maybe adding a wchan field to task_struct would be better, | 
 | 	 * after all... | 
 | 	 */ | 
 |  | 
 | 	pc = thread_saved_pc(p); | 
 | 	if (in_sched_functions(pc)) { | 
 | 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6]; | 
 | 		return ((unsigned long *)schedule_frame)[12]; | 
 | 	} | 
 | 	return pc; | 
 | } |