| #ifndef _ASM_GENERIC_PGTABLE_H | 
 | #define _ASM_GENERIC_PGTABLE_H | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_ESTABLISH | 
 | /* | 
 |  * Establish a new mapping: | 
 |  *  - flush the old one | 
 |  *  - update the page tables | 
 |  *  - inform the TLB about the new one | 
 |  * | 
 |  * We hold the mm semaphore for reading, and the pte lock. | 
 |  * | 
 |  * Note: the old pte is known to not be writable, so we don't need to | 
 |  * worry about dirty bits etc getting lost. | 
 |  */ | 
 | #define ptep_establish(__vma, __address, __ptep, __entry)		\ | 
 | do {				  					\ | 
 | 	set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry);	\ | 
 | 	flush_tlb_page(__vma, __address);				\ | 
 | } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
 | /* | 
 |  * Largely same as above, but only sets the access flags (dirty, | 
 |  * accessed, and writable). Furthermore, we know it always gets set | 
 |  * to a "more permissive" setting, which allows most architectures | 
 |  * to optimize this. | 
 |  */ | 
 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | 
 | do {				  					  \ | 
 | 	set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry);	  \ | 
 | 	flush_tlb_page(__vma, __address);				  \ | 
 | } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
 | #define ptep_test_and_clear_young(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	pte_t __pte = *(__ptep);					\ | 
 | 	int r = 1;							\ | 
 | 	if (!pte_young(__pte))						\ | 
 | 		r = 0;							\ | 
 | 	else								\ | 
 | 		set_pte_at((__vma)->vm_mm, (__address),			\ | 
 | 			   (__ptep), pte_mkold(__pte));			\ | 
 | 	r;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | 
 | #define ptep_clear_flush_young(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	int __young;							\ | 
 | 	__young = ptep_test_and_clear_young(__vma, __address, __ptep);	\ | 
 | 	if (__young)							\ | 
 | 		flush_tlb_page(__vma, __address);			\ | 
 | 	__young;							\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | 
 | #define ptep_test_and_clear_dirty(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	pte_t __pte = *__ptep;						\ | 
 | 	int r = 1;							\ | 
 | 	if (!pte_dirty(__pte))						\ | 
 | 		r = 0;							\ | 
 | 	else								\ | 
 | 		set_pte_at((__vma)->vm_mm, (__address), (__ptep),	\ | 
 | 			   pte_mkclean(__pte));				\ | 
 | 	r;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH | 
 | #define ptep_clear_flush_dirty(__vma, __address, __ptep)		\ | 
 | ({									\ | 
 | 	int __dirty;							\ | 
 | 	__dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep);	\ | 
 | 	if (__dirty)							\ | 
 | 		flush_tlb_page(__vma, __address);			\ | 
 | 	__dirty;							\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
 | #define ptep_get_and_clear(__mm, __address, __ptep)			\ | 
 | ({									\ | 
 | 	pte_t __pte = *(__ptep);					\ | 
 | 	pte_clear((__mm), (__address), (__ptep));			\ | 
 | 	__pte;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL | 
 | #define ptep_get_and_clear_full(__mm, __address, __ptep, __full)	\ | 
 | ({									\ | 
 | 	pte_t __pte;							\ | 
 | 	__pte = ptep_get_and_clear((__mm), (__address), (__ptep));	\ | 
 | 	__pte;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Some architectures may be able to avoid expensive synchronization | 
 |  * primitives when modifications are made to PTE's which are already | 
 |  * not present, or in the process of an address space destruction. | 
 |  */ | 
 | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL | 
 | #define pte_clear_not_present_full(__mm, __address, __ptep, __full)	\ | 
 | do {									\ | 
 | 	pte_clear((__mm), (__address), (__ptep));			\ | 
 | } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH | 
 | #define ptep_clear_flush(__vma, __address, __ptep)			\ | 
 | ({									\ | 
 | 	pte_t __pte;							\ | 
 | 	__pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep);	\ | 
 | 	flush_tlb_page(__vma, __address);				\ | 
 | 	__pte;								\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT | 
 | struct mm_struct; | 
 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) | 
 | { | 
 | 	pte_t old_pte = *ptep; | 
 | 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); | 
 | } | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PTE_SAME | 
 | #define pte_same(A,B)	(pte_val(A) == pte_val(B)) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY | 
 | #define page_test_and_clear_dirty(page) (0) | 
 | #define pte_maybe_dirty(pte)		pte_dirty(pte) | 
 | #else | 
 | #define pte_maybe_dirty(pte)		(1) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG | 
 | #define page_test_and_clear_young(page) (0) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_PGD_OFFSET_GATE | 
 | #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE | 
 | #define lazy_mmu_prot_update(pte)	do { } while (0) | 
 | #endif | 
 |  | 
 | #ifndef __HAVE_ARCH_MOVE_PTE | 
 | #define move_pte(pte, prot, old_addr, new_addr)	(pte) | 
 | #endif | 
 |  | 
 | /* | 
 |  * A facility to provide lazy MMU batching.  This allows PTE updates and | 
 |  * page invalidations to be delayed until a call to leave lazy MMU mode | 
 |  * is issued.  Some architectures may benefit from doing this, and it is | 
 |  * beneficial for both shadow and direct mode hypervisors, which may batch | 
 |  * the PTE updates which happen during this window.  Note that using this | 
 |  * interface requires that read hazards be removed from the code.  A read | 
 |  * hazard could result in the direct mode hypervisor case, since the actual | 
 |  * write to the page tables may not yet have taken place, so reads though | 
 |  * a raw PTE pointer after it has been modified are not guaranteed to be | 
 |  * up to date.  This mode can only be entered and left under the protection of | 
 |  * the page table locks for all page tables which may be modified.  In the UP | 
 |  * case, this is required so that preemption is disabled, and in the SMP case, | 
 |  * it must synchronize the delayed page table writes properly on other CPUs. | 
 |  */ | 
 | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE | 
 | #define arch_enter_lazy_mmu_mode()	do {} while (0) | 
 | #define arch_leave_lazy_mmu_mode()	do {} while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * A facility to provide batching of the reload of page tables with the | 
 |  * actual context switch code for paravirtualized guests.  By convention, | 
 |  * only one of the lazy modes (CPU, MMU) should be active at any given | 
 |  * time, entry should never be nested, and entry and exits should always | 
 |  * be paired.  This is for sanity of maintaining and reasoning about the | 
 |  * kernel code. | 
 |  */ | 
 | #ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE | 
 | #define arch_enter_lazy_cpu_mode()	do {} while (0) | 
 | #define arch_leave_lazy_cpu_mode()	do {} while (0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * When walking page tables, get the address of the next boundary, | 
 |  * or the end address of the range if that comes earlier.  Although no | 
 |  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. | 
 |  */ | 
 |  | 
 | #define pgd_addr_end(addr, end)						\ | 
 | ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\ | 
 | 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
 | }) | 
 |  | 
 | #ifndef pud_addr_end | 
 | #define pud_addr_end(addr, end)						\ | 
 | ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\ | 
 | 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
 | }) | 
 | #endif | 
 |  | 
 | #ifndef pmd_addr_end | 
 | #define pmd_addr_end(addr, end)						\ | 
 | ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\ | 
 | 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
 | }) | 
 | #endif | 
 |  | 
 | /* | 
 |  * When walking page tables, we usually want to skip any p?d_none entries; | 
 |  * and any p?d_bad entries - reporting the error before resetting to none. | 
 |  * Do the tests inline, but report and clear the bad entry in mm/memory.c. | 
 |  */ | 
 | void pgd_clear_bad(pgd_t *); | 
 | void pud_clear_bad(pud_t *); | 
 | void pmd_clear_bad(pmd_t *); | 
 |  | 
 | static inline int pgd_none_or_clear_bad(pgd_t *pgd) | 
 | { | 
 | 	if (pgd_none(*pgd)) | 
 | 		return 1; | 
 | 	if (unlikely(pgd_bad(*pgd))) { | 
 | 		pgd_clear_bad(pgd); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int pud_none_or_clear_bad(pud_t *pud) | 
 | { | 
 | 	if (pud_none(*pud)) | 
 | 		return 1; | 
 | 	if (unlikely(pud_bad(*pud))) { | 
 | 		pud_clear_bad(pud); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int pmd_none_or_clear_bad(pmd_t *pmd) | 
 | { | 
 | 	if (pmd_none(*pmd)) | 
 | 		return 1; | 
 | 	if (unlikely(pmd_bad(*pmd))) { | 
 | 		pmd_clear_bad(pmd); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif /* !__ASSEMBLY__ */ | 
 |  | 
 | #endif /* _ASM_GENERIC_PGTABLE_H */ |