|  | /** | 
|  | * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2001-2004 Anton Altaparmakov | 
|  | * Copyright (c) 2002 Richard Russon | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/buffer_head.h> | 
|  |  | 
|  | #include "attrib.h" | 
|  | #include "debug.h" | 
|  | #include "layout.h" | 
|  | #include "mft.h" | 
|  | #include "ntfs.h" | 
|  | #include "types.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode | 
|  | * @ni:		ntfs inode for which to map (part of) a runlist | 
|  | * @vcn:	map runlist part containing this vcn | 
|  | * | 
|  | * Map the part of a runlist containing the @vcn of the ntfs inode @ni. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Locking: - The runlist must be unlocked on entry and is unlocked on return. | 
|  | *	    - This function takes the lock for writing and modifies the runlist. | 
|  | */ | 
|  | int ntfs_map_runlist(ntfs_inode *ni, VCN vcn) | 
|  | { | 
|  | ntfs_inode *base_ni; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *mrec; | 
|  | int err = 0; | 
|  |  | 
|  | ntfs_debug("Mapping runlist part containing vcn 0x%llx.", | 
|  | (unsigned long long)vcn); | 
|  |  | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  |  | 
|  | mrec = map_mft_record(base_ni); | 
|  | if (IS_ERR(mrec)) | 
|  | return PTR_ERR(mrec); | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, vcn, NULL, 0, ctx); | 
|  | if (unlikely(err)) | 
|  | goto put_err_out; | 
|  |  | 
|  | down_write(&ni->runlist.lock); | 
|  | /* Make sure someone else didn't do the work while we were sleeping. */ | 
|  | if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <= | 
|  | LCN_RL_NOT_MAPPED)) { | 
|  | runlist_element *rl; | 
|  |  | 
|  | rl = ntfs_mapping_pairs_decompress(ni->vol, ctx->attr, | 
|  | ni->runlist.rl); | 
|  | if (IS_ERR(rl)) | 
|  | err = PTR_ERR(rl); | 
|  | else | 
|  | ni->runlist.rl = rl; | 
|  | } | 
|  | up_write(&ni->runlist.lock); | 
|  |  | 
|  | put_err_out: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | err_out: | 
|  | unmap_mft_record(base_ni); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_find_vcn - find a vcn in the runlist described by an ntfs inode | 
|  | * @ni:		ntfs inode describing the runlist to search | 
|  | * @vcn:	vcn to find | 
|  | * @need_write:	if false, lock for reading and if true, lock for writing | 
|  | * | 
|  | * Find the virtual cluster number @vcn in the runlist described by the ntfs | 
|  | * inode @ni and return the address of the runlist element containing the @vcn. | 
|  | * The runlist is left locked and the caller has to unlock it.  If @need_write | 
|  | * is true, the runlist is locked for writing and if @need_write is false, the | 
|  | * runlist is locked for reading.  In the error case, the runlist is not left | 
|  | * locked. | 
|  | * | 
|  | * Note you need to distinguish between the lcn of the returned runlist element | 
|  | * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on | 
|  | * read and allocate clusters on write. | 
|  | * | 
|  | * Return the runlist element containing the @vcn on success and | 
|  | * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR() | 
|  | * to decide if the return is success or failure and PTR_ERR() to get to the | 
|  | * error code if IS_ERR() is true. | 
|  | * | 
|  | * The possible error return codes are: | 
|  | *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds. | 
|  | *	-ENOMEM - Not enough memory to map runlist. | 
|  | *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc). | 
|  | * | 
|  | * Locking: - The runlist must be unlocked on entry. | 
|  | *	    - On failing return, the runlist is unlocked. | 
|  | *	    - On successful return, the runlist is locked.  If @need_write us | 
|  | *	      true, it is locked for writing.  Otherwise is is locked for | 
|  | *	      reading. | 
|  | */ | 
|  | runlist_element *ntfs_find_vcn(ntfs_inode *ni, const VCN vcn, | 
|  | const BOOL need_write) | 
|  | { | 
|  | runlist_element *rl; | 
|  | int err = 0; | 
|  | BOOL is_retry = FALSE; | 
|  |  | 
|  | ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, lock for %sing.", | 
|  | ni->mft_no, (unsigned long long)vcn, | 
|  | !need_write ? "read" : "writ"); | 
|  | BUG_ON(!ni); | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | BUG_ON(vcn < 0); | 
|  | lock_retry_remap: | 
|  | if (!need_write) | 
|  | down_read(&ni->runlist.lock); | 
|  | else | 
|  | down_write(&ni->runlist.lock); | 
|  | rl = ni->runlist.rl; | 
|  | if (likely(rl && vcn >= rl[0].vcn)) { | 
|  | while (likely(rl->length)) { | 
|  | if (likely(vcn < rl[1].vcn)) { | 
|  | if (likely(rl->lcn >= LCN_HOLE)) { | 
|  | ntfs_debug("Done."); | 
|  | return rl; | 
|  | } | 
|  | break; | 
|  | } | 
|  | rl++; | 
|  | } | 
|  | if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) { | 
|  | if (likely(rl->lcn == LCN_ENOENT)) | 
|  | err = -ENOENT; | 
|  | else | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | if (!need_write) | 
|  | up_read(&ni->runlist.lock); | 
|  | else | 
|  | up_write(&ni->runlist.lock); | 
|  | if (!err && !is_retry) { | 
|  | /* | 
|  | * The @vcn is in an unmapped region, map the runlist and | 
|  | * retry. | 
|  | */ | 
|  | err = ntfs_map_runlist(ni, vcn); | 
|  | if (likely(!err)) { | 
|  | is_retry = TRUE; | 
|  | goto lock_retry_remap; | 
|  | } | 
|  | /* | 
|  | * -EINVAL and -ENOENT coming from a failed mapping attempt are | 
|  | * equivalent to i/o errors for us as they should not happen in | 
|  | * our code paths. | 
|  | */ | 
|  | if (err == -EINVAL || err == -ENOENT) | 
|  | err = -EIO; | 
|  | } else if (!err) | 
|  | err = -EIO; | 
|  | ntfs_error(ni->vol->sb, "Failed with error code %i.", err); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_find - find (next) attribute in mft record | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * You should not need to call this function directly.  Use ntfs_attr_lookup() | 
|  | * instead. | 
|  | * | 
|  | * ntfs_attr_find() takes a search context @ctx as parameter and searches the | 
|  | * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an | 
|  | * attribute of @type, optionally @name and @val. | 
|  | * | 
|  | * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will | 
|  | * point to the found attribute. | 
|  | * | 
|  | * If the attribute is not found, ntfs_attr_find() returns -ENOENT and | 
|  | * @ctx->attr will point to the attribute before which the attribute being | 
|  | * searched for would need to be inserted if such an action were to be desired. | 
|  | * | 
|  | * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is | 
|  | * undefined and in particular do not rely on it not changing. | 
|  | * | 
|  | * If @ctx->is_first is TRUE, the search begins with @ctx->attr itself.  If it | 
|  | * is FALSE, the search begins after @ctx->attr. | 
|  | * | 
|  | * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and | 
|  | * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record | 
|  | * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at | 
|  | * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case | 
|  | * sensitive.  When @name is present, @name_len is the @name length in Unicode | 
|  | * characters. | 
|  | * | 
|  | * If @name is not present (NULL), we assume that the unnamed attribute is | 
|  | * being searched for. | 
|  | * | 
|  | * Finally, the resident attribute value @val is looked for, if present.  If | 
|  | * @val is not present (NULL), @val_len is ignored. | 
|  | * | 
|  | * ntfs_attr_find() only searches the specified mft record and it ignores the | 
|  | * presence of an attribute list attribute (unless it is the one being searched | 
|  | * for, obviously).  If you need to take attribute lists into consideration, | 
|  | * use ntfs_attr_lookup() instead (see below).  This also means that you cannot | 
|  | * use ntfs_attr_find() to search for extent records of non-resident | 
|  | * attributes, as extents with lowest_vcn != 0 are usually described by the | 
|  | * attribute list attribute only. - Note that it is possible that the first | 
|  | * extent is only in the attribute list while the last extent is in the base | 
|  | * mft record, so do not rely on being able to find the first extent in the | 
|  | * base mft record. | 
|  | * | 
|  | * Warning: Never use @val when looking for attribute types which can be | 
|  | *	    non-resident as this most likely will result in a crash! | 
|  | */ | 
|  | static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name, | 
|  | const u32 name_len, const IGNORE_CASE_BOOL ic, | 
|  | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ATTR_RECORD *a; | 
|  | ntfs_volume *vol = ctx->ntfs_ino->vol; | 
|  | ntfschar *upcase = vol->upcase; | 
|  | u32 upcase_len = vol->upcase_len; | 
|  |  | 
|  | /* | 
|  | * Iterate over attributes in mft record starting at @ctx->attr, or the | 
|  | * attribute following that, if @ctx->is_first is TRUE. | 
|  | */ | 
|  | if (ctx->is_first) { | 
|  | a = ctx->attr; | 
|  | ctx->is_first = FALSE; | 
|  | } else | 
|  | a = (ATTR_RECORD*)((u8*)ctx->attr + | 
|  | le32_to_cpu(ctx->attr->length)); | 
|  | for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) { | 
|  | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + | 
|  | le32_to_cpu(ctx->mrec->bytes_allocated)) | 
|  | break; | 
|  | ctx->attr = a; | 
|  | if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) || | 
|  | a->type == AT_END)) | 
|  | return -ENOENT; | 
|  | if (unlikely(!a->length)) | 
|  | break; | 
|  | if (a->type != type) | 
|  | continue; | 
|  | /* | 
|  | * If @name is present, compare the two names.  If @name is | 
|  | * missing, assume we want an unnamed attribute. | 
|  | */ | 
|  | if (!name) { | 
|  | /* The search failed if the found attribute is named. */ | 
|  | if (a->name_length) | 
|  | return -ENOENT; | 
|  | } else if (!ntfs_are_names_equal(name, name_len, | 
|  | (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)), | 
|  | a->name_length, ic, upcase, upcase_len)) { | 
|  | register int rc; | 
|  |  | 
|  | rc = ntfs_collate_names(name, name_len, | 
|  | (ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), | 
|  | a->name_length, 1, IGNORE_CASE, | 
|  | upcase, upcase_len); | 
|  | /* | 
|  | * If @name collates before a->name, there is no | 
|  | * matching attribute. | 
|  | */ | 
|  | if (rc == -1) | 
|  | return -ENOENT; | 
|  | /* If the strings are not equal, continue search. */ | 
|  | if (rc) | 
|  | continue; | 
|  | rc = ntfs_collate_names(name, name_len, | 
|  | (ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), | 
|  | a->name_length, 1, CASE_SENSITIVE, | 
|  | upcase, upcase_len); | 
|  | if (rc == -1) | 
|  | return -ENOENT; | 
|  | if (rc) | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The names match or @name not present and attribute is | 
|  | * unnamed.  If no @val specified, we have found the attribute | 
|  | * and are done. | 
|  | */ | 
|  | if (!val) | 
|  | return 0; | 
|  | /* @val is present; compare values. */ | 
|  | else { | 
|  | register int rc; | 
|  |  | 
|  | rc = memcmp(val, (u8*)a + le16_to_cpu( | 
|  | a->data.resident.value_offset), | 
|  | min_t(u32, val_len, le32_to_cpu( | 
|  | a->data.resident.value_length))); | 
|  | /* | 
|  | * If @val collates before the current attribute's | 
|  | * value, there is no matching attribute. | 
|  | */ | 
|  | if (!rc) { | 
|  | register u32 avl; | 
|  |  | 
|  | avl = le32_to_cpu( | 
|  | a->data.resident.value_length); | 
|  | if (val_len == avl) | 
|  | return 0; | 
|  | if (val_len < avl) | 
|  | return -ENOENT; | 
|  | } else if (rc < 0) | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  | ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk."); | 
|  | NVolSetErrors(vol); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * load_attribute_list - load an attribute list into memory | 
|  | * @vol:		ntfs volume from which to read | 
|  | * @runlist:		runlist of the attribute list | 
|  | * @al_start:		destination buffer | 
|  | * @size:		size of the destination buffer in bytes | 
|  | * @initialized_size:	initialized size of the attribute list | 
|  | * | 
|  | * Walk the runlist @runlist and load all clusters from it copying them into | 
|  | * the linear buffer @al. The maximum number of bytes copied to @al is @size | 
|  | * bytes. Note, @size does not need to be a multiple of the cluster size. If | 
|  | * @initialized_size is less than @size, the region in @al between | 
|  | * @initialized_size and @size will be zeroed and not read from disk. | 
|  | * | 
|  | * Return 0 on success or -errno on error. | 
|  | */ | 
|  | int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start, | 
|  | const s64 size, const s64 initialized_size) | 
|  | { | 
|  | LCN lcn; | 
|  | u8 *al = al_start; | 
|  | u8 *al_end = al + initialized_size; | 
|  | runlist_element *rl; | 
|  | struct buffer_head *bh; | 
|  | struct super_block *sb; | 
|  | unsigned long block_size; | 
|  | unsigned long block, max_block; | 
|  | int err = 0; | 
|  | unsigned char block_size_bits; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 || | 
|  | initialized_size > size) | 
|  | return -EINVAL; | 
|  | if (!initialized_size) { | 
|  | memset(al, 0, size); | 
|  | return 0; | 
|  | } | 
|  | sb = vol->sb; | 
|  | block_size = sb->s_blocksize; | 
|  | block_size_bits = sb->s_blocksize_bits; | 
|  | down_read(&runlist->lock); | 
|  | rl = runlist->rl; | 
|  | /* Read all clusters specified by the runlist one run at a time. */ | 
|  | while (rl->length) { | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn); | 
|  | ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.", | 
|  | (unsigned long long)rl->vcn, | 
|  | (unsigned long long)lcn); | 
|  | /* The attribute list cannot be sparse. */ | 
|  | if (lcn < 0) { | 
|  | ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot " | 
|  | "read attribute list."); | 
|  | goto err_out; | 
|  | } | 
|  | block = lcn << vol->cluster_size_bits >> block_size_bits; | 
|  | /* Read the run from device in chunks of block_size bytes. */ | 
|  | max_block = block + (rl->length << vol->cluster_size_bits >> | 
|  | block_size_bits); | 
|  | ntfs_debug("max_block = 0x%lx.", max_block); | 
|  | do { | 
|  | ntfs_debug("Reading block = 0x%lx.", block); | 
|  | bh = sb_bread(sb, block); | 
|  | if (!bh) { | 
|  | ntfs_error(sb, "sb_bread() failed. Cannot " | 
|  | "read attribute list."); | 
|  | goto err_out; | 
|  | } | 
|  | if (al + block_size >= al_end) | 
|  | goto do_final; | 
|  | memcpy(al, bh->b_data, block_size); | 
|  | brelse(bh); | 
|  | al += block_size; | 
|  | } while (++block < max_block); | 
|  | rl++; | 
|  | } | 
|  | if (initialized_size < size) { | 
|  | initialize: | 
|  | memset(al_start + initialized_size, 0, size - initialized_size); | 
|  | } | 
|  | done: | 
|  | up_read(&runlist->lock); | 
|  | return err; | 
|  | do_final: | 
|  | if (al < al_end) { | 
|  | /* | 
|  | * Partial block. | 
|  | * | 
|  | * Note: The attribute list can be smaller than its allocation | 
|  | * by multiple clusters.  This has been encountered by at least | 
|  | * two people running Windows XP, thus we cannot do any | 
|  | * truncation sanity checking here. (AIA) | 
|  | */ | 
|  | memcpy(al, bh->b_data, al_end - al); | 
|  | brelse(bh); | 
|  | if (initialized_size < size) | 
|  | goto initialize; | 
|  | goto done; | 
|  | } | 
|  | brelse(bh); | 
|  | /* Real overflow! */ | 
|  | ntfs_error(sb, "Attribute list buffer overflow. Read attribute list " | 
|  | "is truncated."); | 
|  | err_out: | 
|  | err = -EIO; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_external_attr_find - find an attribute in the attribute list of an inode | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * You should not need to call this function directly.  Use ntfs_attr_lookup() | 
|  | * instead. | 
|  | * | 
|  | * Find an attribute by searching the attribute list for the corresponding | 
|  | * attribute list entry.  Having found the entry, map the mft record if the | 
|  | * attribute is in a different mft record/inode, ntfs_attr_find() the attribute | 
|  | * in there and return it. | 
|  | * | 
|  | * On first search @ctx->ntfs_ino must be the base mft record and @ctx must | 
|  | * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent | 
|  | * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is | 
|  | * then the base inode). | 
|  | * | 
|  | * After finishing with the attribute/mft record you need to call | 
|  | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any | 
|  | * mapped inodes, etc). | 
|  | * | 
|  | * If the attribute is found, ntfs_external_attr_find() returns 0 and | 
|  | * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the | 
|  | * mft record in which @ctx->attr is located and @ctx->al_entry will point to | 
|  | * the attribute list entry for the attribute. | 
|  | * | 
|  | * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and | 
|  | * @ctx->attr will point to the attribute in the base mft record before which | 
|  | * the attribute being searched for would need to be inserted if such an action | 
|  | * were to be desired.  @ctx->mrec will point to the mft record in which | 
|  | * @ctx->attr is located and @ctx->al_entry will point to the attribute list | 
|  | * entry of the attribute before which the attribute being searched for would | 
|  | * need to be inserted if such an action were to be desired. | 
|  | * | 
|  | * Thus to insert the not found attribute, one wants to add the attribute to | 
|  | * @ctx->mrec (the base mft record) and if there is not enough space, the | 
|  | * attribute should be placed in a newly allocated extent mft record.  The | 
|  | * attribute list entry for the inserted attribute should be inserted in the | 
|  | * attribute list attribute at @ctx->al_entry. | 
|  | * | 
|  | * On actual error, ntfs_external_attr_find() returns -EIO.  In this case | 
|  | * @ctx->attr is undefined and in particular do not rely on it not changing. | 
|  | */ | 
|  | static int ntfs_external_attr_find(const ATTR_TYPE type, | 
|  | const ntfschar *name, const u32 name_len, | 
|  | const IGNORE_CASE_BOOL ic, const VCN lowest_vcn, | 
|  | const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ntfs_inode *base_ni, *ni; | 
|  | ntfs_volume *vol; | 
|  | ATTR_LIST_ENTRY *al_entry, *next_al_entry; | 
|  | u8 *al_start, *al_end; | 
|  | ATTR_RECORD *a; | 
|  | ntfschar *al_name; | 
|  | u32 al_name_len; | 
|  | int err = 0; | 
|  | static const char *es = " Unmount and run chkdsk."; | 
|  |  | 
|  | ni = ctx->ntfs_ino; | 
|  | base_ni = ctx->base_ntfs_ino; | 
|  | ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type); | 
|  | if (!base_ni) { | 
|  | /* First call happens with the base mft record. */ | 
|  | base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino; | 
|  | ctx->base_mrec = ctx->mrec; | 
|  | } | 
|  | if (ni == base_ni) | 
|  | ctx->base_attr = ctx->attr; | 
|  | if (type == AT_END) | 
|  | goto not_found; | 
|  | vol = base_ni->vol; | 
|  | al_start = base_ni->attr_list; | 
|  | al_end = al_start + base_ni->attr_list_size; | 
|  | if (!ctx->al_entry) | 
|  | ctx->al_entry = (ATTR_LIST_ENTRY*)al_start; | 
|  | /* | 
|  | * Iterate over entries in attribute list starting at @ctx->al_entry, | 
|  | * or the entry following that, if @ctx->is_first is TRUE. | 
|  | */ | 
|  | if (ctx->is_first) { | 
|  | al_entry = ctx->al_entry; | 
|  | ctx->is_first = FALSE; | 
|  | } else | 
|  | al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry + | 
|  | le16_to_cpu(ctx->al_entry->length)); | 
|  | for (;; al_entry = next_al_entry) { | 
|  | /* Out of bounds check. */ | 
|  | if ((u8*)al_entry < base_ni->attr_list || | 
|  | (u8*)al_entry > al_end) | 
|  | break;	/* Inode is corrupt. */ | 
|  | ctx->al_entry = al_entry; | 
|  | /* Catch the end of the attribute list. */ | 
|  | if ((u8*)al_entry == al_end) | 
|  | goto not_found; | 
|  | if (!al_entry->length) | 
|  | break; | 
|  | if ((u8*)al_entry + 6 > al_end || (u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length) > al_end) | 
|  | break; | 
|  | next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry + | 
|  | le16_to_cpu(al_entry->length)); | 
|  | if (le32_to_cpu(al_entry->type) > le32_to_cpu(type)) | 
|  | goto not_found; | 
|  | if (type != al_entry->type) | 
|  | continue; | 
|  | /* | 
|  | * If @name is present, compare the two names.  If @name is | 
|  | * missing, assume we want an unnamed attribute. | 
|  | */ | 
|  | al_name_len = al_entry->name_length; | 
|  | al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset); | 
|  | if (!name) { | 
|  | if (al_name_len) | 
|  | goto not_found; | 
|  | } else if (!ntfs_are_names_equal(al_name, al_name_len, name, | 
|  | name_len, ic, vol->upcase, vol->upcase_len)) { | 
|  | register int rc; | 
|  |  | 
|  | rc = ntfs_collate_names(name, name_len, al_name, | 
|  | al_name_len, 1, IGNORE_CASE, | 
|  | vol->upcase, vol->upcase_len); | 
|  | /* | 
|  | * If @name collates before al_name, there is no | 
|  | * matching attribute. | 
|  | */ | 
|  | if (rc == -1) | 
|  | goto not_found; | 
|  | /* If the strings are not equal, continue search. */ | 
|  | if (rc) | 
|  | continue; | 
|  | /* | 
|  | * FIXME: Reverse engineering showed 0, IGNORE_CASE but | 
|  | * that is inconsistent with ntfs_attr_find().  The | 
|  | * subsequent rc checks were also different.  Perhaps I | 
|  | * made a mistake in one of the two.  Need to recheck | 
|  | * which is correct or at least see what is going on... | 
|  | * (AIA) | 
|  | */ | 
|  | rc = ntfs_collate_names(name, name_len, al_name, | 
|  | al_name_len, 1, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len); | 
|  | if (rc == -1) | 
|  | goto not_found; | 
|  | if (rc) | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The names match or @name not present and attribute is | 
|  | * unnamed.  Now check @lowest_vcn.  Continue search if the | 
|  | * next attribute list entry still fits @lowest_vcn.  Otherwise | 
|  | * we have reached the right one or the search has failed. | 
|  | */ | 
|  | if (lowest_vcn && (u8*)next_al_entry >= al_start	    && | 
|  | (u8*)next_al_entry + 6 < al_end		    && | 
|  | (u8*)next_al_entry + le16_to_cpu( | 
|  | next_al_entry->length) <= al_end    && | 
|  | sle64_to_cpu(next_al_entry->lowest_vcn) <= | 
|  | lowest_vcn			    && | 
|  | next_al_entry->type == al_entry->type	    && | 
|  | next_al_entry->name_length == al_name_len   && | 
|  | ntfs_are_names_equal((ntfschar*)((u8*) | 
|  | next_al_entry + | 
|  | next_al_entry->name_offset), | 
|  | next_al_entry->name_length, | 
|  | al_name, al_name_len, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len)) | 
|  | continue; | 
|  | if (MREF_LE(al_entry->mft_reference) == ni->mft_no) { | 
|  | if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) { | 
|  | ntfs_error(vol->sb, "Found stale mft " | 
|  | "reference in attribute list " | 
|  | "of base inode 0x%lx.%s", | 
|  | base_ni->mft_no, es); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | } else { /* Mft references do not match. */ | 
|  | /* If there is a mapped record unmap it first. */ | 
|  | if (ni != base_ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | /* Do we want the base record back? */ | 
|  | if (MREF_LE(al_entry->mft_reference) == | 
|  | base_ni->mft_no) { | 
|  | ni = ctx->ntfs_ino = base_ni; | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | } else { | 
|  | /* We want an extent record. */ | 
|  | ctx->mrec = map_extent_mft_record(base_ni, | 
|  | le64_to_cpu( | 
|  | al_entry->mft_reference), &ni); | 
|  | if (IS_ERR(ctx->mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map " | 
|  | "extent mft record " | 
|  | "0x%lx of base inode " | 
|  | "0x%lx.%s", | 
|  | MREF_LE(al_entry-> | 
|  | mft_reference), | 
|  | base_ni->mft_no, es); | 
|  | err = PTR_ERR(ctx->mrec); | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | /* Cause @ctx to be sanitized below. */ | 
|  | ni = NULL; | 
|  | break; | 
|  | } | 
|  | ctx->ntfs_ino = ni; | 
|  | } | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | } | 
|  | /* | 
|  | * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the | 
|  | * mft record containing the attribute represented by the | 
|  | * current al_entry. | 
|  | */ | 
|  | /* | 
|  | * We could call into ntfs_attr_find() to find the right | 
|  | * attribute in this mft record but this would be less | 
|  | * efficient and not quite accurate as ntfs_attr_find() ignores | 
|  | * the attribute instance numbers for example which become | 
|  | * important when one plays with attribute lists.  Also, | 
|  | * because a proper match has been found in the attribute list | 
|  | * entry above, the comparison can now be optimized.  So it is | 
|  | * worth re-implementing a simplified ntfs_attr_find() here. | 
|  | */ | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * Use a manual loop so we can still use break and continue | 
|  | * with the same meanings as above. | 
|  | */ | 
|  | do_next_attr_loop: | 
|  | if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec + | 
|  | le32_to_cpu(ctx->mrec->bytes_allocated)) | 
|  | break; | 
|  | if (a->type == AT_END) | 
|  | continue; | 
|  | if (!a->length) | 
|  | break; | 
|  | if (al_entry->instance != a->instance) | 
|  | goto do_next_attr; | 
|  | /* | 
|  | * If the type and/or the name are mismatched between the | 
|  | * attribute list entry and the attribute record, there is | 
|  | * corruption so we break and return error EIO. | 
|  | */ | 
|  | if (al_entry->type != a->type) | 
|  | break; | 
|  | if (!ntfs_are_names_equal((ntfschar*)((u8*)a + | 
|  | le16_to_cpu(a->name_offset)), a->name_length, | 
|  | al_name, al_name_len, CASE_SENSITIVE, | 
|  | vol->upcase, vol->upcase_len)) | 
|  | break; | 
|  | ctx->attr = a; | 
|  | /* | 
|  | * If no @val specified or @val specified and it matches, we | 
|  | * have found it! | 
|  | */ | 
|  | if (!val || (!a->non_resident && le32_to_cpu( | 
|  | a->data.resident.value_length) == val_len && | 
|  | !memcmp((u8*)a + | 
|  | le16_to_cpu(a->data.resident.value_offset), | 
|  | val, val_len))) { | 
|  | ntfs_debug("Done, found."); | 
|  | return 0; | 
|  | } | 
|  | do_next_attr: | 
|  | /* Proceed to the next attribute in the current mft record. */ | 
|  | a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length)); | 
|  | goto do_next_attr_loop; | 
|  | } | 
|  | if (!err) { | 
|  | ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt " | 
|  | "attribute list attribute.%s", base_ni->mft_no, | 
|  | es); | 
|  | err = -EIO; | 
|  | } | 
|  | if (ni != base_ni) { | 
|  | if (ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | ctx->ntfs_ino = base_ni; | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | ctx->attr = ctx->base_attr; | 
|  | } | 
|  | if (err != -ENOMEM) | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | not_found: | 
|  | /* | 
|  | * If we were looking for AT_END, we reset the search context @ctx and | 
|  | * use ntfs_attr_find() to seek to the end of the base mft record. | 
|  | */ | 
|  | if (type == AT_END) { | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | } | 
|  | /* | 
|  | * The attribute was not found.  Before we return, we want to ensure | 
|  | * @ctx->mrec and @ctx->attr indicate the position at which the | 
|  | * attribute should be inserted in the base mft record.  Since we also | 
|  | * want to preserve @ctx->al_entry we cannot reinitialize the search | 
|  | * context using ntfs_attr_reinit_search_ctx() as this would set | 
|  | * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see | 
|  | * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve | 
|  | * @ctx->al_entry as the remaining fields (base_*) are identical to | 
|  | * their non base_ counterparts and we cannot set @ctx->base_attr | 
|  | * correctly yet as we do not know what @ctx->attr will be set to by | 
|  | * the call to ntfs_attr_find() below. | 
|  | */ | 
|  | if (ni != base_ni) | 
|  | unmap_extent_mft_record(ni); | 
|  | ctx->mrec = ctx->base_mrec; | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | ctx->is_first = TRUE; | 
|  | ctx->ntfs_ino = base_ni; | 
|  | ctx->base_ntfs_ino = NULL; | 
|  | ctx->base_mrec = NULL; | 
|  | ctx->base_attr = NULL; | 
|  | /* | 
|  | * In case there are multiple matches in the base mft record, need to | 
|  | * keep enumerating until we get an attribute not found response (or | 
|  | * another error), otherwise we would keep returning the same attribute | 
|  | * over and over again and all programs using us for enumeration would | 
|  | * lock up in a tight loop. | 
|  | */ | 
|  | do { | 
|  | err = ntfs_attr_find(type, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | } while (!err); | 
|  | ntfs_debug("Done, not found."); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_lookup - find an attribute in an ntfs inode | 
|  | * @type:	attribute type to find | 
|  | * @name:	attribute name to find (optional, i.e. NULL means don't care) | 
|  | * @name_len:	attribute name length (only needed if @name present) | 
|  | * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present) | 
|  | * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only) | 
|  | * @val:	attribute value to find (optional, resident attributes only) | 
|  | * @val_len:	attribute value length | 
|  | * @ctx:	search context with mft record and attribute to search from | 
|  | * | 
|  | * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must | 
|  | * be the base mft record and @ctx must have been obtained from a call to | 
|  | * ntfs_attr_get_search_ctx(). | 
|  | * | 
|  | * This function transparently handles attribute lists and @ctx is used to | 
|  | * continue searches where they were left off at. | 
|  | * | 
|  | * After finishing with the attribute/mft record you need to call | 
|  | * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any | 
|  | * mapped inodes, etc). | 
|  | * | 
|  | * Return 0 if the search was successful and -errno if not. | 
|  | * | 
|  | * When 0, @ctx->attr is the found attribute and it is in mft record | 
|  | * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is | 
|  | * the attribute list entry of the found attribute. | 
|  | * | 
|  | * When -ENOENT, @ctx->attr is the attribute which collates just after the | 
|  | * attribute being searched for, i.e. if one wants to add the attribute to the | 
|  | * mft record this is the correct place to insert it into.  If an attribute | 
|  | * list attribute is present, @ctx->al_entry is the attribute list entry which | 
|  | * collates just after the attribute list entry of the attribute being searched | 
|  | * for, i.e. if one wants to add the attribute to the mft record this is the | 
|  | * correct place to insert its attribute list entry into. | 
|  | * | 
|  | * When -errno != -ENOENT, an error occured during the lookup.  @ctx->attr is | 
|  | * then undefined and in particular you should not rely on it not changing. | 
|  | */ | 
|  | int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name, | 
|  | const u32 name_len, const IGNORE_CASE_BOOL ic, | 
|  | const VCN lowest_vcn, const u8 *val, const u32 val_len, | 
|  | ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | ntfs_inode *base_ni; | 
|  |  | 
|  | ntfs_debug("Entering."); | 
|  | if (ctx->base_ntfs_ino) | 
|  | base_ni = ctx->base_ntfs_ino; | 
|  | else | 
|  | base_ni = ctx->ntfs_ino; | 
|  | /* Sanity check, just for debugging really. */ | 
|  | BUG_ON(!base_ni); | 
|  | if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST) | 
|  | return ntfs_attr_find(type, name, name_len, ic, val, val_len, | 
|  | ctx); | 
|  | return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn, | 
|  | val, val_len, ctx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_init_search_ctx - initialize an attribute search context | 
|  | * @ctx:	attribute search context to initialize | 
|  | * @ni:		ntfs inode with which to initialize the search context | 
|  | * @mrec:	mft record with which to initialize the search context | 
|  | * | 
|  | * Initialize the attribute search context @ctx with @ni and @mrec. | 
|  | */ | 
|  | static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx, | 
|  | ntfs_inode *ni, MFT_RECORD *mrec) | 
|  | { | 
|  | ctx->mrec = mrec; | 
|  | /* Sanity checks are performed elsewhere. */ | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)mrec + le16_to_cpu(mrec->attrs_offset)); | 
|  | ctx->is_first = TRUE; | 
|  | ctx->ntfs_ino = ni; | 
|  | ctx->al_entry = NULL; | 
|  | ctx->base_ntfs_ino = NULL; | 
|  | ctx->base_mrec = NULL; | 
|  | ctx->base_attr = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context | 
|  | * @ctx:	attribute search context to reinitialize | 
|  | * | 
|  | * Reinitialize the attribute search context @ctx, unmapping an associated | 
|  | * extent mft record if present, and initialize the search context again. | 
|  | * | 
|  | * This is used when a search for a new attribute is being started to reset | 
|  | * the search context to the beginning. | 
|  | */ | 
|  | void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | if (likely(!ctx->base_ntfs_ino)) { | 
|  | /* No attribute list. */ | 
|  | ctx->is_first = TRUE; | 
|  | /* Sanity checks are performed elsewhere. */ | 
|  | ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec + | 
|  | le16_to_cpu(ctx->mrec->attrs_offset)); | 
|  | /* | 
|  | * This needs resetting due to ntfs_external_attr_find() which | 
|  | * can leave it set despite having zeroed ctx->base_ntfs_ino. | 
|  | */ | 
|  | ctx->al_entry = NULL; | 
|  | return; | 
|  | } /* Attribute list. */ | 
|  | if (ctx->ntfs_ino != ctx->base_ntfs_ino) | 
|  | unmap_extent_mft_record(ctx->ntfs_ino); | 
|  | ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context | 
|  | * @ni:		ntfs inode with which to initialize the search context | 
|  | * @mrec:	mft record with which to initialize the search context | 
|  | * | 
|  | * Allocate a new attribute search context, initialize it with @ni and @mrec, | 
|  | * and return it. Return NULL if allocation failed. | 
|  | */ | 
|  | ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec) | 
|  | { | 
|  | ntfs_attr_search_ctx *ctx; | 
|  |  | 
|  | ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, SLAB_NOFS); | 
|  | if (ctx) | 
|  | ntfs_attr_init_search_ctx(ctx, ni, mrec); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_put_search_ctx - release an attribute search context | 
|  | * @ctx:	attribute search context to free | 
|  | * | 
|  | * Release the attribute search context @ctx, unmapping an associated extent | 
|  | * mft record if present. | 
|  | */ | 
|  | void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx) | 
|  | { | 
|  | if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino) | 
|  | unmap_extent_mft_record(ctx->ntfs_ino); | 
|  | kmem_cache_free(ntfs_attr_ctx_cache, ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to find | 
|  | * | 
|  | * Search for the attribute definition record corresponding to the attribute | 
|  | * @type in the $AttrDef system file. | 
|  | * | 
|  | * Return the attribute type definition record if found and NULL if not found. | 
|  | */ | 
|  | static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol, | 
|  | const ATTR_TYPE type) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | BUG_ON(!vol->attrdef); | 
|  | BUG_ON(!type); | 
|  | for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef < | 
|  | vol->attrdef_size && ad->type; ++ad) { | 
|  | /* We have not found it yet, carry on searching. */ | 
|  | if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type))) | 
|  | continue; | 
|  | /* We found the attribute; return it. */ | 
|  | if (likely(ad->type == type)) | 
|  | return ad; | 
|  | /* We have gone too far already.  No point in continuing. */ | 
|  | break; | 
|  | } | 
|  | /* Attribute not found. */ | 
|  | ntfs_debug("Attribute type 0x%x not found in $AttrDef.", | 
|  | le32_to_cpu(type)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_size_bounds_check - check a size of an attribute type for validity | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * @size:	size which to check | 
|  | * | 
|  | * Check whether the @size in bytes is valid for an attribute of @type on the | 
|  | * ntfs volume @vol.  This information is obtained from $AttrDef system file. | 
|  | * | 
|  | * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not | 
|  | * listed in $AttrDef. | 
|  | */ | 
|  | int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type, | 
|  | const s64 size) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | BUG_ON(size < 0); | 
|  | /* | 
|  | * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not | 
|  | * listed in $AttrDef. | 
|  | */ | 
|  | if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024)) | 
|  | return -ERANGE; | 
|  | /* Get the $AttrDef entry for the attribute @type. */ | 
|  | ad = ntfs_attr_find_in_attrdef(vol, type); | 
|  | if (unlikely(!ad)) | 
|  | return -ENOENT; | 
|  | /* Do the bounds check. */ | 
|  | if (((sle64_to_cpu(ad->min_size) > 0) && | 
|  | size < sle64_to_cpu(ad->min_size)) || | 
|  | ((sle64_to_cpu(ad->max_size) > 0) && size > | 
|  | sle64_to_cpu(ad->max_size))) | 
|  | return -ERANGE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * | 
|  | * Check whether the attribute of @type on the ntfs volume @vol is allowed to | 
|  | * be non-resident.  This information is obtained from $AttrDef system file. | 
|  | * | 
|  | * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, or | 
|  | * -ENOENT if the attribute is not listed in $AttrDef. | 
|  | */ | 
|  | int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type) | 
|  | { | 
|  | ATTR_DEF *ad; | 
|  |  | 
|  | /* | 
|  | * $DATA is always allowed to be non-resident even if $AttrDef does not | 
|  | * specify this in the flags of the $DATA attribute definition record. | 
|  | */ | 
|  | if (type == AT_DATA) | 
|  | return 0; | 
|  | /* Find the attribute definition record in $AttrDef. */ | 
|  | ad = ntfs_attr_find_in_attrdef(vol, type); | 
|  | if (unlikely(!ad)) | 
|  | return -ENOENT; | 
|  | /* Check the flags and return the result. */ | 
|  | if (ad->flags & CAN_BE_NON_RESIDENT) | 
|  | return 0; | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_can_be_resident - check if an attribute can be resident | 
|  | * @vol:	ntfs volume to which the attribute belongs | 
|  | * @type:	attribute type which to check | 
|  | * | 
|  | * Check whether the attribute of @type on the ntfs volume @vol is allowed to | 
|  | * be resident.  This information is derived from our ntfs knowledge and may | 
|  | * not be completely accurate, especially when user defined attributes are | 
|  | * present.  Basically we allow everything to be resident except for index | 
|  | * allocation and $EA attributes. | 
|  | * | 
|  | * Return 0 if the attribute is allowed to be non-resident and -EPERM if not. | 
|  | * | 
|  | * Warning: In the system file $MFT the attribute $Bitmap must be non-resident | 
|  | *	    otherwise windows will not boot (blue screen of death)!  We cannot | 
|  | *	    check for this here as we do not know which inode's $Bitmap is | 
|  | *	    being asked about so the caller needs to special case this. | 
|  | */ | 
|  | int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type) | 
|  | { | 
|  | if (type != AT_INDEX_ALLOCATION && type != AT_EA) | 
|  | return 0; | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_record_resize - resize an attribute record | 
|  | * @m:		mft record containing attribute record | 
|  | * @a:		attribute record to resize | 
|  | * @new_size:	new size in bytes to which to resize the attribute record @a | 
|  | * | 
|  | * Resize the attribute record @a, i.e. the resident part of the attribute, in | 
|  | * the mft record @m to @new_size bytes. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  The following error codes are | 
|  | * defined: | 
|  | *	-ENOSPC	- Not enough space in the mft record @m to perform the resize. | 
|  | * | 
|  | * Note: On error, no modifications have been performed whatsoever. | 
|  | * | 
|  | * Warning: If you make a record smaller without having copied all the data you | 
|  | *	    are interested in the data may be overwritten. | 
|  | */ | 
|  | int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size) | 
|  | { | 
|  | ntfs_debug("Entering for new_size %u.", new_size); | 
|  | /* Align to 8 bytes if it is not already done. */ | 
|  | if (new_size & 7) | 
|  | new_size = (new_size + 7) & ~7; | 
|  | /* If the actual attribute length has changed, move things around. */ | 
|  | if (new_size != le32_to_cpu(a->length)) { | 
|  | u32 new_muse = le32_to_cpu(m->bytes_in_use) - | 
|  | le32_to_cpu(a->length) + new_size; | 
|  | /* Not enough space in this mft record. */ | 
|  | if (new_muse > le32_to_cpu(m->bytes_allocated)) | 
|  | return -ENOSPC; | 
|  | /* Move attributes following @a to their new location. */ | 
|  | memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length), | 
|  | le32_to_cpu(m->bytes_in_use) - ((u8*)a - | 
|  | (u8*)m) - le32_to_cpu(a->length)); | 
|  | /* Adjust @m to reflect the change in used space. */ | 
|  | m->bytes_in_use = cpu_to_le32(new_muse); | 
|  | /* Adjust @a to reflect the new size. */ | 
|  | if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length)) | 
|  | a->length = cpu_to_le32(new_size); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_set - fill (a part of) an attribute with a byte | 
|  | * @ni:		ntfs inode describing the attribute to fill | 
|  | * @ofs:	offset inside the attribute at which to start to fill | 
|  | * @cnt:	number of bytes to fill | 
|  | * @val:	the unsigned 8-bit value with which to fill the attribute | 
|  | * | 
|  | * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at | 
|  | * byte offset @ofs inside the attribute with the constant byte @val. | 
|  | * | 
|  | * This function is effectively like memset() applied to an ntfs attribute. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  An error code of -ESPIPE means | 
|  | * that @ofs + @cnt were outside the end of the attribute and no write was | 
|  | * performed. | 
|  | */ | 
|  | int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val) | 
|  | { | 
|  | ntfs_volume *vol = ni->vol; | 
|  | struct address_space *mapping; | 
|  | struct page *page; | 
|  | u8 *kaddr; | 
|  | pgoff_t idx, end; | 
|  | unsigned int start_ofs, end_ofs, size; | 
|  |  | 
|  | ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.", | 
|  | (long long)ofs, (long long)cnt, val); | 
|  | BUG_ON(ofs < 0); | 
|  | BUG_ON(cnt < 0); | 
|  | if (!cnt) | 
|  | goto done; | 
|  | mapping = VFS_I(ni)->i_mapping; | 
|  | /* Work out the starting index and page offset. */ | 
|  | idx = ofs >> PAGE_CACHE_SHIFT; | 
|  | start_ofs = ofs & ~PAGE_CACHE_MASK; | 
|  | /* Work out the ending index and page offset. */ | 
|  | end = ofs + cnt; | 
|  | end_ofs = end & ~PAGE_CACHE_MASK; | 
|  | /* If the end is outside the inode size return -ESPIPE. */ | 
|  | if (unlikely(end > VFS_I(ni)->i_size)) { | 
|  | ntfs_error(vol->sb, "Request exceeds end of attribute."); | 
|  | return -ESPIPE; | 
|  | } | 
|  | end >>= PAGE_CACHE_SHIFT; | 
|  | /* If there is a first partial page, need to do it the slow way. */ | 
|  | if (start_ofs) { | 
|  | page = read_cache_page(mapping, idx, | 
|  | (filler_t*)mapping->a_ops->readpage, NULL); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to read first partial " | 
|  | "page (sync error, index 0x%lx).", idx); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | wait_on_page_locked(page); | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | ntfs_error(vol->sb, "Failed to read first partial page " | 
|  | "(async error, index 0x%lx).", idx); | 
|  | page_cache_release(page); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | /* | 
|  | * If the last page is the same as the first page, need to | 
|  | * limit the write to the end offset. | 
|  | */ | 
|  | size = PAGE_CACHE_SIZE; | 
|  | if (idx == end) | 
|  | size = end_ofs; | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr + start_ofs, val, size - start_ofs); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_page_dirty(page); | 
|  | page_cache_release(page); | 
|  | if (idx == end) | 
|  | goto done; | 
|  | idx++; | 
|  | } | 
|  | /* Do the whole pages the fast way. */ | 
|  | for (; idx < end; idx++) { | 
|  | /* Find or create the current page.  (The page is locked.) */ | 
|  | page = grab_cache_page(mapping, idx); | 
|  | if (unlikely(!page)) { | 
|  | ntfs_error(vol->sb, "Insufficient memory to grab " | 
|  | "page (index 0x%lx).", idx); | 
|  | return -ENOMEM; | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr, val, PAGE_CACHE_SIZE); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | /* | 
|  | * If the page has buffers, mark them uptodate since buffer | 
|  | * state and not page state is definitive in 2.6 kernels. | 
|  | */ | 
|  | if (page_has_buffers(page)) { | 
|  | struct buffer_head *bh, *head; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | set_buffer_uptodate(bh); | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } | 
|  | /* Now that buffers are uptodate, set the page uptodate, too. */ | 
|  | SetPageUptodate(page); | 
|  | /* | 
|  | * Set the page and all its buffers dirty and mark the inode | 
|  | * dirty, too.  The VM will write the page later on. | 
|  | */ | 
|  | set_page_dirty(page); | 
|  | /* Finally unlock and release the page. */ | 
|  | unlock_page(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | /* If there is a last partial page, need to do it the slow way. */ | 
|  | if (end_ofs) { | 
|  | page = read_cache_page(mapping, idx, | 
|  | (filler_t*)mapping->a_ops->readpage, NULL); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to read last partial page " | 
|  | "(sync error, index 0x%lx).", idx); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | wait_on_page_locked(page); | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | ntfs_error(vol->sb, "Failed to read last partial page " | 
|  | "(async error, index 0x%lx).", idx); | 
|  | page_cache_release(page); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr, val, end_ofs); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | set_page_dirty(page); | 
|  | page_cache_release(page); | 
|  | } | 
|  | done: | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } |