| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  *  arch/mips/kernel/kprobes.c | 
 |  * | 
 |  *  Copyright 2006 Sony Corp. | 
 |  *  Copyright 2010 Cavium Networks | 
 |  * | 
 |  *  Some portions copied from the powerpc version. | 
 |  * | 
 |  *   Copyright (C) IBM Corporation, 2002, 2004 | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or modify | 
 |  *  it under the terms of the GNU General Public License as published by | 
 |  *  the Free Software Foundation; version 2 of the License. | 
 |  * | 
 |  *  This program is distributed in the hope that it will be useful, | 
 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  *  GNU General Public License for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License | 
 |  *  along with this program; if not, write to the Free Software | 
 |  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 |  */ | 
 |  | 
 | #include <linux/kprobes.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/ptrace.h> | 
 | #include <asm/break.h> | 
 | #include <asm/inst.h> | 
 |  | 
 | static const union mips_instruction breakpoint_insn = { | 
 | 	.b_format = { | 
 | 		.opcode = spec_op, | 
 | 		.code = BRK_KPROBE_BP, | 
 | 		.func = break_op | 
 | 	} | 
 | }; | 
 |  | 
 | static const union mips_instruction breakpoint2_insn = { | 
 | 	.b_format = { | 
 | 		.opcode = spec_op, | 
 | 		.code = BRK_KPROBE_SSTEPBP, | 
 | 		.func = break_op | 
 | 	} | 
 | }; | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe); | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | static int __kprobes insn_has_delayslot(union mips_instruction insn) | 
 | { | 
 | 	switch (insn.i_format.opcode) { | 
 |  | 
 | 		/* | 
 | 		 * This group contains: | 
 | 		 * jr and jalr are in r_format format. | 
 | 		 */ | 
 | 	case spec_op: | 
 | 		switch (insn.r_format.func) { | 
 | 		case jr_op: | 
 | 		case jalr_op: | 
 | 			break; | 
 | 		default: | 
 | 			goto insn_ok; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This group contains: | 
 | 		 * bltz_op, bgez_op, bltzl_op, bgezl_op, | 
 | 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. | 
 | 		 */ | 
 | 	case bcond_op: | 
 |  | 
 | 		/* | 
 | 		 * These are unconditional and in j_format. | 
 | 		 */ | 
 | 	case jal_op: | 
 | 	case j_op: | 
 |  | 
 | 		/* | 
 | 		 * These are conditional and in i_format. | 
 | 		 */ | 
 | 	case beq_op: | 
 | 	case beql_op: | 
 | 	case bne_op: | 
 | 	case bnel_op: | 
 | 	case blez_op: | 
 | 	case blezl_op: | 
 | 	case bgtz_op: | 
 | 	case bgtzl_op: | 
 |  | 
 | 		/* | 
 | 		 * These are the FPA/cp1 branch instructions. | 
 | 		 */ | 
 | 	case cop1_op: | 
 |  | 
 | #ifdef CONFIG_CPU_CAVIUM_OCTEON | 
 | 	case lwc2_op: /* This is bbit0 on Octeon */ | 
 | 	case ldc2_op: /* This is bbit032 on Octeon */ | 
 | 	case swc2_op: /* This is bbit1 on Octeon */ | 
 | 	case sdc2_op: /* This is bbit132 on Octeon */ | 
 | #endif | 
 | 		return 1; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | insn_ok: | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	union mips_instruction insn; | 
 | 	union mips_instruction prev_insn; | 
 | 	int ret = 0; | 
 |  | 
 | 	prev_insn = p->addr[-1]; | 
 | 	insn = p->addr[0]; | 
 |  | 
 | 	if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) { | 
 | 		pr_notice("Kprobes for branch and jump instructions are not supported\n"); | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* insn: must be on special executable page on mips. */ | 
 | 	p->ainsn.insn = get_insn_slot(); | 
 | 	if (!p->ainsn.insn) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In the kprobe->ainsn.insn[] array we store the original | 
 | 	 * instruction at index zero and a break trap instruction at | 
 | 	 * index one. | 
 | 	 */ | 
 |  | 
 | 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); | 
 | 	p->ainsn.insn[1] = breakpoint2_insn; | 
 | 	p->opcode = *p->addr; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = breakpoint_insn; | 
 | 	flush_insn_slot(p); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = p->opcode; | 
 | 	flush_insn_slot(p); | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	free_insn_slot(p->ainsn.insn, 0); | 
 | } | 
 |  | 
 | static void save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; | 
 | 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; | 
 | 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; | 
 | } | 
 |  | 
 | static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; | 
 | 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; | 
 | 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; | 
 | } | 
 |  | 
 | static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 			       struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = p; | 
 | 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); | 
 | 	kcb->kprobe_saved_epc = regs->cp0_epc; | 
 | } | 
 |  | 
 | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	regs->cp0_status &= ~ST0_IE; | 
 |  | 
 | 	/* single step inline if the instruction is a break */ | 
 | 	if (p->opcode.word == breakpoint_insn.word || | 
 | 	    p->opcode.word == breakpoint2_insn.word) | 
 | 		regs->cp0_epc = (unsigned long)p->addr; | 
 | 	else | 
 | 		regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; | 
 | } | 
 |  | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	int ret = 0; | 
 | 	kprobe_opcode_t *addr; | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	addr = (kprobe_opcode_t *) regs->cp0_epc; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* Check we're not actually recursing */ | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | 
 | 			    p->ainsn.insn->word == breakpoint_insn.word) { | 
 | 				regs->cp0_status &= ~ST0_IE; | 
 | 				regs->cp0_status |= kcb->kprobe_saved_SR; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* | 
 | 			 * We have reentered the kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			prepare_singlestep(p, regs); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			return 1; | 
 | 		} else { | 
 | 			if (addr->word != breakpoint_insn.word) { | 
 | 				/* | 
 | 				 * The breakpoint instruction was removed by | 
 | 				 * another cpu right after we hit, no further | 
 | 				 * handling of this interrupt is appropriate | 
 | 				 */ | 
 | 				ret = 1; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			p = __get_cpu_var(current_kprobe); | 
 | 			if (p->break_handler && p->break_handler(p, regs)) | 
 | 				goto ss_probe; | 
 | 		} | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) { | 
 | 		if (addr->word != breakpoint_insn.word) { | 
 | 			/* | 
 | 			 * The breakpoint instruction was removed right | 
 | 			 * after we hit it.  Another cpu has removed | 
 | 			 * either a probepoint or a debugger breakpoint | 
 | 			 * at this address.  In either case, no further | 
 | 			 * handling of this interrupt is appropriate. | 
 | 			 */ | 
 | 			ret = 1; | 
 | 		} | 
 | 		/* Not one of ours: let kernel handle it */ | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	set_current_kprobe(p, regs, kcb); | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 |  | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) { | 
 | 		/* handler has already set things up, so skip ss setup */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | ss_probe: | 
 | 	prepare_singlestep(p, regs); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction whose first byte has been replaced by the "break 0" | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is p->ainsn.insn. | 
 |  * | 
 |  * This function prepares to return from the post-single-step | 
 |  * breakpoint trap. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, | 
 | 				       struct pt_regs *regs, | 
 | 				       struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	unsigned long orig_epc = kcb->kprobe_saved_epc; | 
 | 	regs->cp0_epc = orig_epc + 4; | 
 | } | 
 |  | 
 | static inline int post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs, kcb); | 
 |  | 
 | 	regs->cp0_status |= kcb->kprobe_saved_SR; | 
 |  | 
 | 	/* Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 		return 1; | 
 |  | 
 | 	if (kcb->kprobe_status & KPROBE_HIT_SS) { | 
 | 		resume_execution(cur, regs, kcb); | 
 | 		regs->cp0_status |= kcb->kprobe_old_SR; | 
 |  | 
 | 		reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine for handling exceptions. | 
 |  */ | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 |  | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_BREAK: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_SSTEPBP: | 
 | 		if (post_kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 |  | 
 | 	case DIE_PAGE_FAULT: | 
 | 		/* kprobe_running() needs smp_processor_id() */ | 
 | 		preempt_disable(); | 
 |  | 
 | 		if (kprobe_running() | 
 | 		    && kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		preempt_enable(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	kcb->jprobe_saved_regs = *regs; | 
 | 	kcb->jprobe_saved_sp = regs->regs[29]; | 
 |  | 
 | 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, | 
 | 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
 |  | 
 | 	regs->cp0_epc = (unsigned long)(jp->entry); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Defined in the inline asm below. */ | 
 | void jprobe_return_end(void); | 
 |  | 
 | void __kprobes jprobe_return(void) | 
 | { | 
 | 	/* Assembler quirk necessitates this '0,code' business.  */ | 
 | 	asm volatile( | 
 | 		"break 0,%0\n\t" | 
 | 		".globl jprobe_return_end\n" | 
 | 		"jprobe_return_end:\n" | 
 | 		: : "n" (BRK_KPROBE_BP) : "memory"); | 
 | } | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (regs->cp0_epc >= (unsigned long)jprobe_return && | 
 | 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) { | 
 | 		*regs = kcb->jprobe_saved_regs; | 
 | 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, | 
 | 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
 | 		preempt_enable_no_resched(); | 
 |  | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Function return probe trampoline: | 
 |  *	- init_kprobes() establishes a probepoint here | 
 |  *	- When the probed function returns, this probe causes the | 
 |  *	  handlers to fire | 
 |  */ | 
 | static void __used kretprobe_trampoline_holder(void) | 
 | { | 
 | 	asm volatile( | 
 | 		".set push\n\t" | 
 | 		/* Keep the assembler from reordering and placing JR here. */ | 
 | 		".set noreorder\n\t" | 
 | 		"nop\n\t" | 
 | 		".global kretprobe_trampoline\n" | 
 | 		"kretprobe_trampoline:\n\t" | 
 | 		"nop\n\t" | 
 | 		".set pop" | 
 | 		: : : "memory"); | 
 | } | 
 |  | 
 | void kretprobe_trampoline(void); | 
 |  | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; | 
 |  | 
 | 	/* Replace the return addr with trampoline addr */ | 
 | 	regs->regs[31] = (unsigned long)kretprobe_trampoline; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the probe at kretprobe trampoline is hit | 
 |  */ | 
 | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
 | 						struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *node, *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	kretprobe_hash_lock(current, &head, &flags); | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more than one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *       function, the first instance's ret_addr will point to the | 
 | 	 *       real return address, and all the rest will point to | 
 | 	 *       kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler) | 
 | 			ri->rp->handler(ri, regs); | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 | 	instruction_pointer(regs) = orig_ret_address; | 
 |  | 
 | 	reset_current_kprobe(); | 
 | 	kretprobe_hash_unlock(current, &flags); | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	/* | 
 | 	 * By returning a non-zero value, we are telling | 
 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 	 * to run (and have re-enabled preemption) | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kprobe trampoline_p = { | 
 | 	.addr = (kprobe_opcode_t *)kretprobe_trampoline, | 
 | 	.pre_handler = trampoline_probe_handler | 
 | }; | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return register_kprobe(&trampoline_p); | 
 | } |