|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		The User Datagram Protocol (UDP). | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Alan Cox, <alan@lxorguk.ukuu.org.uk> | 
|  | *		Hirokazu Takahashi, <taka@valinux.co.jp> | 
|  | * | 
|  | * Fixes: | 
|  | *		Alan Cox	:	verify_area() calls | 
|  | *		Alan Cox	: 	stopped close while in use off icmp | 
|  | *					messages. Not a fix but a botch that | 
|  | *					for udp at least is 'valid'. | 
|  | *		Alan Cox	:	Fixed icmp handling properly | 
|  | *		Alan Cox	: 	Correct error for oversized datagrams | 
|  | *		Alan Cox	:	Tidied select() semantics. | 
|  | *		Alan Cox	:	udp_err() fixed properly, also now | 
|  | *					select and read wake correctly on errors | 
|  | *		Alan Cox	:	udp_send verify_area moved to avoid mem leak | 
|  | *		Alan Cox	:	UDP can count its memory | 
|  | *		Alan Cox	:	send to an unknown connection causes | 
|  | *					an ECONNREFUSED off the icmp, but | 
|  | *					does NOT close. | 
|  | *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog! | 
|  | *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK | 
|  | *					bug no longer crashes it. | 
|  | *		Fred Van Kempen	: 	Net2e support for sk->broadcast. | 
|  | *		Alan Cox	:	Uses skb_free_datagram | 
|  | *		Alan Cox	:	Added get/set sockopt support. | 
|  | *		Alan Cox	:	Broadcasting without option set returns EACCES. | 
|  | *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks. | 
|  | *		Alan Cox	:	Use ip_tos and ip_ttl | 
|  | *		Alan Cox	:	SNMP Mibs | 
|  | *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support. | 
|  | *		Matt Dillon	:	UDP length checks. | 
|  | *		Alan Cox	:	Smarter af_inet used properly. | 
|  | *		Alan Cox	:	Use new kernel side addressing. | 
|  | *		Alan Cox	:	Incorrect return on truncated datagram receive. | 
|  | *	Arnt Gulbrandsen 	:	New udp_send and stuff | 
|  | *		Alan Cox	:	Cache last socket | 
|  | *		Alan Cox	:	Route cache | 
|  | *		Jon Peatfield	:	Minor efficiency fix to sendto(). | 
|  | *		Mike Shaver	:	RFC1122 checks. | 
|  | *		Alan Cox	:	Nonblocking error fix. | 
|  | *	Willy Konynenberg	:	Transparent proxying support. | 
|  | *		Mike McLagan	:	Routing by source | 
|  | *		David S. Miller	:	New socket lookup architecture. | 
|  | *					Last socket cache retained as it | 
|  | *					does have a high hit rate. | 
|  | *		Olaf Kirch	:	Don't linearise iovec on sendmsg. | 
|  | *		Andi Kleen	:	Some cleanups, cache destination entry | 
|  | *					for connect. | 
|  | *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma. | 
|  | *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(), | 
|  | *					return ENOTCONN for unconnected sockets (POSIX) | 
|  | *		Janos Farkas	:	don't deliver multi/broadcasts to a different | 
|  | *					bound-to-device socket | 
|  | *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP | 
|  | *					datagrams. | 
|  | *	Hirokazu Takahashi	:	sendfile() on UDP works now. | 
|  | *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file | 
|  | *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which | 
|  | *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind | 
|  | *					a single port at the same time. | 
|  | *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support | 
|  | *	James Chapman		:	Add L2TP encapsulation type. | 
|  | * | 
|  | * | 
|  | *		This program is free software; you can redistribute it and/or | 
|  | *		modify it under the terms of the GNU General Public License | 
|  | *		as published by the Free Software Foundation; either version | 
|  | *		2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/ioctls.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/igmp.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/tcp_states.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/icmp.h> | 
|  | #include <net/route.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/xfrm.h> | 
|  | #include "udp_impl.h" | 
|  |  | 
|  | struct udp_table udp_table __read_mostly; | 
|  | EXPORT_SYMBOL(udp_table); | 
|  |  | 
|  | int sysctl_udp_mem[3] __read_mostly; | 
|  | EXPORT_SYMBOL(sysctl_udp_mem); | 
|  |  | 
|  | int sysctl_udp_rmem_min __read_mostly; | 
|  | EXPORT_SYMBOL(sysctl_udp_rmem_min); | 
|  |  | 
|  | int sysctl_udp_wmem_min __read_mostly; | 
|  | EXPORT_SYMBOL(sysctl_udp_wmem_min); | 
|  |  | 
|  | atomic_t udp_memory_allocated; | 
|  | EXPORT_SYMBOL(udp_memory_allocated); | 
|  |  | 
|  | #define MAX_UDP_PORTS 65536 | 
|  | #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN) | 
|  |  | 
|  | static int udp_lib_lport_inuse(struct net *net, __u16 num, | 
|  | const struct udp_hslot *hslot, | 
|  | unsigned long *bitmap, | 
|  | struct sock *sk, | 
|  | int (*saddr_comp)(const struct sock *sk1, | 
|  | const struct sock *sk2), | 
|  | unsigned int log) | 
|  | { | 
|  | struct sock *sk2; | 
|  | struct hlist_nulls_node *node; | 
|  |  | 
|  | sk_nulls_for_each(sk2, node, &hslot->head) | 
|  | if (net_eq(sock_net(sk2), net) && | 
|  | sk2 != sk && | 
|  | (bitmap || udp_sk(sk2)->udp_port_hash == num) && | 
|  | (!sk2->sk_reuse || !sk->sk_reuse) && | 
|  | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || | 
|  | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && | 
|  | (*saddr_comp)(sk, sk2)) { | 
|  | if (bitmap) | 
|  | __set_bit(udp_sk(sk2)->udp_port_hash >> log, | 
|  | bitmap); | 
|  | else | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: we still hold spinlock of primary hash chain, so no other writer | 
|  | * can insert/delete a socket with local_port == num | 
|  | */ | 
|  | static int udp_lib_lport_inuse2(struct net *net, __u16 num, | 
|  | struct udp_hslot *hslot2, | 
|  | struct sock *sk, | 
|  | int (*saddr_comp)(const struct sock *sk1, | 
|  | const struct sock *sk2)) | 
|  | { | 
|  | struct sock *sk2; | 
|  | struct hlist_nulls_node *node; | 
|  | int res = 0; | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | udp_portaddr_for_each_entry(sk2, node, &hslot2->head) | 
|  | if (net_eq(sock_net(sk2), net) && | 
|  | sk2 != sk && | 
|  | (udp_sk(sk2)->udp_port_hash == num) && | 
|  | (!sk2->sk_reuse || !sk->sk_reuse) && | 
|  | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || | 
|  | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && | 
|  | (*saddr_comp)(sk, sk2)) { | 
|  | res = 1; | 
|  | break; | 
|  | } | 
|  | spin_unlock(&hslot2->lock); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6 | 
|  | * | 
|  | *  @sk:          socket struct in question | 
|  | *  @snum:        port number to look up | 
|  | *  @saddr_comp:  AF-dependent comparison of bound local IP addresses | 
|  | *  @hash2_nulladdr: AF-dependant hash value in secondary hash chains, | 
|  | *                   with NULL address | 
|  | */ | 
|  | int udp_lib_get_port(struct sock *sk, unsigned short snum, | 
|  | int (*saddr_comp)(const struct sock *sk1, | 
|  | const struct sock *sk2), | 
|  | unsigned int hash2_nulladdr) | 
|  | { | 
|  | struct udp_hslot *hslot, *hslot2; | 
|  | struct udp_table *udptable = sk->sk_prot->h.udp_table; | 
|  | int    error = 1; | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | if (!snum) { | 
|  | int low, high, remaining; | 
|  | unsigned rand; | 
|  | unsigned short first, last; | 
|  | DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); | 
|  |  | 
|  | inet_get_local_port_range(&low, &high); | 
|  | remaining = (high - low) + 1; | 
|  |  | 
|  | rand = net_random(); | 
|  | first = (((u64)rand * remaining) >> 32) + low; | 
|  | /* | 
|  | * force rand to be an odd multiple of UDP_HTABLE_SIZE | 
|  | */ | 
|  | rand = (rand | 1) * (udptable->mask + 1); | 
|  | last = first + udptable->mask + 1; | 
|  | do { | 
|  | hslot = udp_hashslot(udptable, net, first); | 
|  | bitmap_zero(bitmap, PORTS_PER_CHAIN); | 
|  | spin_lock_bh(&hslot->lock); | 
|  | udp_lib_lport_inuse(net, snum, hslot, bitmap, sk, | 
|  | saddr_comp, udptable->log); | 
|  |  | 
|  | snum = first; | 
|  | /* | 
|  | * Iterate on all possible values of snum for this hash. | 
|  | * Using steps of an odd multiple of UDP_HTABLE_SIZE | 
|  | * give us randomization and full range coverage. | 
|  | */ | 
|  | do { | 
|  | if (low <= snum && snum <= high && | 
|  | !test_bit(snum >> udptable->log, bitmap) && | 
|  | !inet_is_reserved_local_port(snum)) | 
|  | goto found; | 
|  | snum += rand; | 
|  | } while (snum != first); | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } while (++first != last); | 
|  | goto fail; | 
|  | } else { | 
|  | hslot = udp_hashslot(udptable, net, snum); | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (hslot->count > 10) { | 
|  | int exist; | 
|  | unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; | 
|  |  | 
|  | slot2          &= udptable->mask; | 
|  | hash2_nulladdr &= udptable->mask; | 
|  |  | 
|  | hslot2 = udp_hashslot2(udptable, slot2); | 
|  | if (hslot->count < hslot2->count) | 
|  | goto scan_primary_hash; | 
|  |  | 
|  | exist = udp_lib_lport_inuse2(net, snum, hslot2, | 
|  | sk, saddr_comp); | 
|  | if (!exist && (hash2_nulladdr != slot2)) { | 
|  | hslot2 = udp_hashslot2(udptable, hash2_nulladdr); | 
|  | exist = udp_lib_lport_inuse2(net, snum, hslot2, | 
|  | sk, saddr_comp); | 
|  | } | 
|  | if (exist) | 
|  | goto fail_unlock; | 
|  | else | 
|  | goto found; | 
|  | } | 
|  | scan_primary_hash: | 
|  | if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, | 
|  | saddr_comp, 0)) | 
|  | goto fail_unlock; | 
|  | } | 
|  | found: | 
|  | inet_sk(sk)->inet_num = snum; | 
|  | udp_sk(sk)->udp_port_hash = snum; | 
|  | udp_sk(sk)->udp_portaddr_hash ^= snum; | 
|  | if (sk_unhashed(sk)) { | 
|  | sk_nulls_add_node_rcu(sk, &hslot->head); | 
|  | hslot->count++; | 
|  | sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); | 
|  |  | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | spin_lock(&hslot2->lock); | 
|  | hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, | 
|  | &hslot2->head); | 
|  | hslot2->count++; | 
|  | spin_unlock(&hslot2->lock); | 
|  | } | 
|  | error = 0; | 
|  | fail_unlock: | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | fail: | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_lib_get_port); | 
|  |  | 
|  | static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2) | 
|  | { | 
|  | struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2); | 
|  |  | 
|  | return 	(!ipv6_only_sock(sk2)  && | 
|  | (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr || | 
|  | inet1->inet_rcv_saddr == inet2->inet_rcv_saddr)); | 
|  | } | 
|  |  | 
|  | static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr, | 
|  | unsigned int port) | 
|  | { | 
|  | return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port; | 
|  | } | 
|  |  | 
|  | int udp_v4_get_port(struct sock *sk, unsigned short snum) | 
|  | { | 
|  | unsigned int hash2_nulladdr = | 
|  | udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum); | 
|  | unsigned int hash2_partial = | 
|  | udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0); | 
|  |  | 
|  | /* precompute partial secondary hash */ | 
|  | udp_sk(sk)->udp_portaddr_hash = hash2_partial; | 
|  | return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr); | 
|  | } | 
|  |  | 
|  | static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr, | 
|  | unsigned short hnum, | 
|  | __be16 sport, __be32 daddr, __be16 dport, int dif) | 
|  | { | 
|  | int score = -1; | 
|  |  | 
|  | if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum && | 
|  | !ipv6_only_sock(sk)) { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | score = (sk->sk_family == PF_INET ? 1 : 0); | 
|  | if (inet->inet_rcv_saddr) { | 
|  | if (inet->inet_rcv_saddr != daddr) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | if (inet->inet_daddr) { | 
|  | if (inet->inet_daddr != saddr) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | if (inet->inet_dport) { | 
|  | if (inet->inet_dport != sport) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | if (sk->sk_bound_dev_if) { | 
|  | if (sk->sk_bound_dev_if != dif) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | } | 
|  | return score; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num) | 
|  | */ | 
|  | #define SCORE2_MAX (1 + 2 + 2 + 2) | 
|  | static inline int compute_score2(struct sock *sk, struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, int dif) | 
|  | { | 
|  | int score = -1; | 
|  |  | 
|  | if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  |  | 
|  | if (inet->inet_rcv_saddr != daddr) | 
|  | return -1; | 
|  | if (inet->inet_num != hnum) | 
|  | return -1; | 
|  |  | 
|  | score = (sk->sk_family == PF_INET ? 1 : 0); | 
|  | if (inet->inet_daddr) { | 
|  | if (inet->inet_daddr != saddr) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | if (inet->inet_dport) { | 
|  | if (inet->inet_dport != sport) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | if (sk->sk_bound_dev_if) { | 
|  | if (sk->sk_bound_dev_if != dif) | 
|  | return -1; | 
|  | score += 2; | 
|  | } | 
|  | } | 
|  | return score; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* called with read_rcu_lock() */ | 
|  | static struct sock *udp4_lib_lookup2(struct net *net, | 
|  | __be32 saddr, __be16 sport, | 
|  | __be32 daddr, unsigned int hnum, int dif, | 
|  | struct udp_hslot *hslot2, unsigned int slot2) | 
|  | { | 
|  | struct sock *sk, *result; | 
|  | struct hlist_nulls_node *node; | 
|  | int score, badness; | 
|  |  | 
|  | begin: | 
|  | result = NULL; | 
|  | badness = -1; | 
|  | udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) { | 
|  | score = compute_score2(sk, net, saddr, sport, | 
|  | daddr, hnum, dif); | 
|  | if (score > badness) { | 
|  | result = sk; | 
|  | badness = score; | 
|  | if (score == SCORE2_MAX) | 
|  | goto exact_match; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * if the nulls value we got at the end of this lookup is | 
|  | * not the expected one, we must restart lookup. | 
|  | * We probably met an item that was moved to another chain. | 
|  | */ | 
|  | if (get_nulls_value(node) != slot2) | 
|  | goto begin; | 
|  |  | 
|  | if (result) { | 
|  | exact_match: | 
|  | if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) | 
|  | result = NULL; | 
|  | else if (unlikely(compute_score2(result, net, saddr, sport, | 
|  | daddr, hnum, dif) < badness)) { | 
|  | sock_put(result); | 
|  | goto begin; | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* UDP is nearly always wildcards out the wazoo, it makes no sense to try | 
|  | * harder than this. -DaveM | 
|  | */ | 
|  | static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, | 
|  | __be16 sport, __be32 daddr, __be16 dport, | 
|  | int dif, struct udp_table *udptable) | 
|  | { | 
|  | struct sock *sk, *result; | 
|  | struct hlist_nulls_node *node; | 
|  | unsigned short hnum = ntohs(dport); | 
|  | unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask); | 
|  | struct udp_hslot *hslot2, *hslot = &udptable->hash[slot]; | 
|  | int score, badness; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | if (hslot->count > 10) { | 
|  | hash2 = udp4_portaddr_hash(net, daddr, hnum); | 
|  | slot2 = hash2 & udptable->mask; | 
|  | hslot2 = &udptable->hash2[slot2]; | 
|  | if (hslot->count < hslot2->count) | 
|  | goto begin; | 
|  |  | 
|  | result = udp4_lib_lookup2(net, saddr, sport, | 
|  | daddr, hnum, dif, | 
|  | hslot2, slot2); | 
|  | if (!result) { | 
|  | hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum); | 
|  | slot2 = hash2 & udptable->mask; | 
|  | hslot2 = &udptable->hash2[slot2]; | 
|  | if (hslot->count < hslot2->count) | 
|  | goto begin; | 
|  |  | 
|  | result = udp4_lib_lookup2(net, saddr, sport, | 
|  | htonl(INADDR_ANY), hnum, dif, | 
|  | hslot2, slot2); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return result; | 
|  | } | 
|  | begin: | 
|  | result = NULL; | 
|  | badness = -1; | 
|  | sk_nulls_for_each_rcu(sk, node, &hslot->head) { | 
|  | score = compute_score(sk, net, saddr, hnum, sport, | 
|  | daddr, dport, dif); | 
|  | if (score > badness) { | 
|  | result = sk; | 
|  | badness = score; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * if the nulls value we got at the end of this lookup is | 
|  | * not the expected one, we must restart lookup. | 
|  | * We probably met an item that was moved to another chain. | 
|  | */ | 
|  | if (get_nulls_value(node) != slot) | 
|  | goto begin; | 
|  |  | 
|  | if (result) { | 
|  | if (unlikely(!atomic_inc_not_zero(&result->sk_refcnt))) | 
|  | result = NULL; | 
|  | else if (unlikely(compute_score(result, net, saddr, hnum, sport, | 
|  | daddr, dport, dif) < badness)) { | 
|  | sock_put(result); | 
|  | goto begin; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, | 
|  | __be16 sport, __be16 dport, | 
|  | struct udp_table *udptable) | 
|  | { | 
|  | struct sock *sk; | 
|  | const struct iphdr *iph = ip_hdr(skb); | 
|  |  | 
|  | if (unlikely(sk = skb_steal_sock(skb))) | 
|  | return sk; | 
|  | else | 
|  | return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport, | 
|  | iph->daddr, dport, inet_iif(skb), | 
|  | udptable); | 
|  | } | 
|  |  | 
|  | struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, | 
|  | __be32 daddr, __be16 dport, int dif) | 
|  | { | 
|  | return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(udp4_lib_lookup); | 
|  |  | 
|  | static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk, | 
|  | __be16 loc_port, __be32 loc_addr, | 
|  | __be16 rmt_port, __be32 rmt_addr, | 
|  | int dif) | 
|  | { | 
|  | struct hlist_nulls_node *node; | 
|  | struct sock *s = sk; | 
|  | unsigned short hnum = ntohs(loc_port); | 
|  |  | 
|  | sk_nulls_for_each_from(s, node) { | 
|  | struct inet_sock *inet = inet_sk(s); | 
|  |  | 
|  | if (!net_eq(sock_net(s), net) || | 
|  | udp_sk(s)->udp_port_hash != hnum || | 
|  | (inet->inet_daddr && inet->inet_daddr != rmt_addr) || | 
|  | (inet->inet_dport != rmt_port && inet->inet_dport) || | 
|  | (inet->inet_rcv_saddr && | 
|  | inet->inet_rcv_saddr != loc_addr) || | 
|  | ipv6_only_sock(s) || | 
|  | (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) | 
|  | continue; | 
|  | if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) | 
|  | continue; | 
|  | goto found; | 
|  | } | 
|  | s = NULL; | 
|  | found: | 
|  | return s; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called by the ICMP module when it gets some | 
|  | * sort of error condition.  If err < 0 then the socket should | 
|  | * be closed and the error returned to the user.  If err > 0 | 
|  | * it's just the icmp type << 8 | icmp code. | 
|  | * Header points to the ip header of the error packet. We move | 
|  | * on past this. Then (as it used to claim before adjustment) | 
|  | * header points to the first 8 bytes of the udp header.  We need | 
|  | * to find the appropriate port. | 
|  | */ | 
|  |  | 
|  | void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) | 
|  | { | 
|  | struct inet_sock *inet; | 
|  | struct iphdr *iph = (struct iphdr *)skb->data; | 
|  | struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); | 
|  | const int type = icmp_hdr(skb)->type; | 
|  | const int code = icmp_hdr(skb)->code; | 
|  | struct sock *sk; | 
|  | int harderr; | 
|  | int err; | 
|  | struct net *net = dev_net(skb->dev); | 
|  |  | 
|  | sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, | 
|  | iph->saddr, uh->source, skb->dev->ifindex, udptable); | 
|  | if (sk == NULL) { | 
|  | ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS); | 
|  | return;	/* No socket for error */ | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | harderr = 0; | 
|  | inet = inet_sk(sk); | 
|  |  | 
|  | switch (type) { | 
|  | default: | 
|  | case ICMP_TIME_EXCEEDED: | 
|  | err = EHOSTUNREACH; | 
|  | break; | 
|  | case ICMP_SOURCE_QUENCH: | 
|  | goto out; | 
|  | case ICMP_PARAMETERPROB: | 
|  | err = EPROTO; | 
|  | harderr = 1; | 
|  | break; | 
|  | case ICMP_DEST_UNREACH: | 
|  | if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ | 
|  | if (inet->pmtudisc != IP_PMTUDISC_DONT) { | 
|  | err = EMSGSIZE; | 
|  | harderr = 1; | 
|  | break; | 
|  | } | 
|  | goto out; | 
|  | } | 
|  | err = EHOSTUNREACH; | 
|  | if (code <= NR_ICMP_UNREACH) { | 
|  | harderr = icmp_err_convert[code].fatal; | 
|  | err = icmp_err_convert[code].errno; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *      RFC1122: OK.  Passes ICMP errors back to application, as per | 
|  | *	4.1.3.3. | 
|  | */ | 
|  | if (!inet->recverr) { | 
|  | if (!harderr || sk->sk_state != TCP_ESTABLISHED) | 
|  | goto out; | 
|  | } else | 
|  | ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1)); | 
|  |  | 
|  | sk->sk_err = err; | 
|  | sk->sk_error_report(sk); | 
|  | out: | 
|  | sock_put(sk); | 
|  | } | 
|  |  | 
|  | void udp_err(struct sk_buff *skb, u32 info) | 
|  | { | 
|  | __udp4_lib_err(skb, info, &udp_table); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Throw away all pending data and cancel the corking. Socket is locked. | 
|  | */ | 
|  | void udp_flush_pending_frames(struct sock *sk) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  |  | 
|  | if (up->pending) { | 
|  | up->len = 0; | 
|  | up->pending = 0; | 
|  | ip_flush_pending_frames(sk); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(udp_flush_pending_frames); | 
|  |  | 
|  | /** | 
|  | * 	udp4_hwcsum_outgoing  -  handle outgoing HW checksumming | 
|  | * 	@sk: 	socket we are sending on | 
|  | * 	@skb: 	sk_buff containing the filled-in UDP header | 
|  | * 	        (checksum field must be zeroed out) | 
|  | */ | 
|  | static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb, | 
|  | __be32 src, __be32 dst, int len) | 
|  | { | 
|  | unsigned int offset; | 
|  | struct udphdr *uh = udp_hdr(skb); | 
|  | __wsum csum = 0; | 
|  |  | 
|  | if (skb_queue_len(&sk->sk_write_queue) == 1) { | 
|  | /* | 
|  | * Only one fragment on the socket. | 
|  | */ | 
|  | skb->csum_start = skb_transport_header(skb) - skb->head; | 
|  | skb->csum_offset = offsetof(struct udphdr, check); | 
|  | uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0); | 
|  | } else { | 
|  | /* | 
|  | * HW-checksum won't work as there are two or more | 
|  | * fragments on the socket so that all csums of sk_buffs | 
|  | * should be together | 
|  | */ | 
|  | offset = skb_transport_offset(skb); | 
|  | skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); | 
|  |  | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | skb_queue_walk(&sk->sk_write_queue, skb) { | 
|  | csum = csum_add(csum, skb->csum); | 
|  | } | 
|  |  | 
|  | uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum); | 
|  | if (uh->check == 0) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Push out all pending data as one UDP datagram. Socket is locked. | 
|  | */ | 
|  | static int udp_push_pending_frames(struct sock *sk) | 
|  | { | 
|  | struct udp_sock  *up = udp_sk(sk); | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct flowi *fl = &inet->cork.fl; | 
|  | struct sk_buff *skb; | 
|  | struct udphdr *uh; | 
|  | int err = 0; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | __wsum csum = 0; | 
|  |  | 
|  | /* Grab the skbuff where UDP header space exists. */ | 
|  | if ((skb = skb_peek(&sk->sk_write_queue)) == NULL) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Create a UDP header | 
|  | */ | 
|  | uh = udp_hdr(skb); | 
|  | uh->source = fl->fl_ip_sport; | 
|  | uh->dest = fl->fl_ip_dport; | 
|  | uh->len = htons(up->len); | 
|  | uh->check = 0; | 
|  |  | 
|  | if (is_udplite)  				 /*     UDP-Lite      */ | 
|  | csum  = udplite_csum_outgoing(sk, skb); | 
|  |  | 
|  | else if (sk->sk_no_check == UDP_CSUM_NOXMIT) {   /* UDP csum disabled */ | 
|  |  | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | goto send; | 
|  |  | 
|  | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ | 
|  |  | 
|  | udp4_hwcsum_outgoing(sk, skb, fl->fl4_src, fl->fl4_dst, up->len); | 
|  | goto send; | 
|  |  | 
|  | } else						 /*   `normal' UDP    */ | 
|  | csum = udp_csum_outgoing(sk, skb); | 
|  |  | 
|  | /* add protocol-dependent pseudo-header */ | 
|  | uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len, | 
|  | sk->sk_protocol, csum); | 
|  | if (uh->check == 0) | 
|  | uh->check = CSUM_MANGLED_0; | 
|  |  | 
|  | send: | 
|  | err = ip_push_pending_frames(sk); | 
|  | if (err) { | 
|  | if (err == -ENOBUFS && !inet->recverr) { | 
|  | UDP_INC_STATS_USER(sock_net(sk), | 
|  | UDP_MIB_SNDBUFERRORS, is_udplite); | 
|  | err = 0; | 
|  | } | 
|  | } else | 
|  | UDP_INC_STATS_USER(sock_net(sk), | 
|  | UDP_MIB_OUTDATAGRAMS, is_udplite); | 
|  | out: | 
|  | up->len = 0; | 
|  | up->pending = 0; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, | 
|  | size_t len) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int ulen = len; | 
|  | struct ipcm_cookie ipc; | 
|  | struct rtable *rt = NULL; | 
|  | int free = 0; | 
|  | int connected = 0; | 
|  | __be32 daddr, faddr, saddr; | 
|  | __be16 dport; | 
|  | u8  tos; | 
|  | int err, is_udplite = IS_UDPLITE(sk); | 
|  | int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; | 
|  | int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); | 
|  |  | 
|  | if (len > 0xFFFF) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | /* | 
|  | *	Check the flags. | 
|  | */ | 
|  |  | 
|  | if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ipc.opt = NULL; | 
|  | ipc.shtx.flags = 0; | 
|  |  | 
|  | if (up->pending) { | 
|  | /* | 
|  | * There are pending frames. | 
|  | * The socket lock must be held while it's corked. | 
|  | */ | 
|  | lock_sock(sk); | 
|  | if (likely(up->pending)) { | 
|  | if (unlikely(up->pending != AF_INET)) { | 
|  | release_sock(sk); | 
|  | return -EINVAL; | 
|  | } | 
|  | goto do_append_data; | 
|  | } | 
|  | release_sock(sk); | 
|  | } | 
|  | ulen += sizeof(struct udphdr); | 
|  |  | 
|  | /* | 
|  | *	Get and verify the address. | 
|  | */ | 
|  | if (msg->msg_name) { | 
|  | struct sockaddr_in * usin = (struct sockaddr_in *)msg->msg_name; | 
|  | if (msg->msg_namelen < sizeof(*usin)) | 
|  | return -EINVAL; | 
|  | if (usin->sin_family != AF_INET) { | 
|  | if (usin->sin_family != AF_UNSPEC) | 
|  | return -EAFNOSUPPORT; | 
|  | } | 
|  |  | 
|  | daddr = usin->sin_addr.s_addr; | 
|  | dport = usin->sin_port; | 
|  | if (dport == 0) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | if (sk->sk_state != TCP_ESTABLISHED) | 
|  | return -EDESTADDRREQ; | 
|  | daddr = inet->inet_daddr; | 
|  | dport = inet->inet_dport; | 
|  | /* Open fast path for connected socket. | 
|  | Route will not be used, if at least one option is set. | 
|  | */ | 
|  | connected = 1; | 
|  | } | 
|  | ipc.addr = inet->inet_saddr; | 
|  |  | 
|  | ipc.oif = sk->sk_bound_dev_if; | 
|  | err = sock_tx_timestamp(msg, sk, &ipc.shtx); | 
|  | if (err) | 
|  | return err; | 
|  | if (msg->msg_controllen) { | 
|  | err = ip_cmsg_send(sock_net(sk), msg, &ipc); | 
|  | if (err) | 
|  | return err; | 
|  | if (ipc.opt) | 
|  | free = 1; | 
|  | connected = 0; | 
|  | } | 
|  | if (!ipc.opt) | 
|  | ipc.opt = inet->opt; | 
|  |  | 
|  | saddr = ipc.addr; | 
|  | ipc.addr = faddr = daddr; | 
|  |  | 
|  | if (ipc.opt && ipc.opt->srr) { | 
|  | if (!daddr) | 
|  | return -EINVAL; | 
|  | faddr = ipc.opt->faddr; | 
|  | connected = 0; | 
|  | } | 
|  | tos = RT_TOS(inet->tos); | 
|  | if (sock_flag(sk, SOCK_LOCALROUTE) || | 
|  | (msg->msg_flags & MSG_DONTROUTE) || | 
|  | (ipc.opt && ipc.opt->is_strictroute)) { | 
|  | tos |= RTO_ONLINK; | 
|  | connected = 0; | 
|  | } | 
|  |  | 
|  | if (ipv4_is_multicast(daddr)) { | 
|  | if (!ipc.oif) | 
|  | ipc.oif = inet->mc_index; | 
|  | if (!saddr) | 
|  | saddr = inet->mc_addr; | 
|  | connected = 0; | 
|  | } | 
|  |  | 
|  | if (connected) | 
|  | rt = (struct rtable *)sk_dst_check(sk, 0); | 
|  |  | 
|  | if (rt == NULL) { | 
|  | struct flowi fl = { .oif = ipc.oif, | 
|  | .mark = sk->sk_mark, | 
|  | .nl_u = { .ip4_u = | 
|  | { .daddr = faddr, | 
|  | .saddr = saddr, | 
|  | .tos = tos } }, | 
|  | .proto = sk->sk_protocol, | 
|  | .flags = inet_sk_flowi_flags(sk), | 
|  | .uli_u = { .ports = | 
|  | { .sport = inet->inet_sport, | 
|  | .dport = dport } } }; | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | security_sk_classify_flow(sk, &fl); | 
|  | err = ip_route_output_flow(net, &rt, &fl, sk, 1); | 
|  | if (err) { | 
|  | if (err == -ENETUNREACH) | 
|  | IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = -EACCES; | 
|  | if ((rt->rt_flags & RTCF_BROADCAST) && | 
|  | !sock_flag(sk, SOCK_BROADCAST)) | 
|  | goto out; | 
|  | if (connected) | 
|  | sk_dst_set(sk, dst_clone(&rt->dst)); | 
|  | } | 
|  |  | 
|  | if (msg->msg_flags&MSG_CONFIRM) | 
|  | goto do_confirm; | 
|  | back_from_confirm: | 
|  |  | 
|  | saddr = rt->rt_src; | 
|  | if (!ipc.addr) | 
|  | daddr = ipc.addr = rt->rt_dst; | 
|  |  | 
|  | lock_sock(sk); | 
|  | if (unlikely(up->pending)) { | 
|  | /* The socket is already corked while preparing it. */ | 
|  | /* ... which is an evident application bug. --ANK */ | 
|  | release_sock(sk); | 
|  |  | 
|  | LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n"); | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | *	Now cork the socket to pend data. | 
|  | */ | 
|  | inet->cork.fl.fl4_dst = daddr; | 
|  | inet->cork.fl.fl_ip_dport = dport; | 
|  | inet->cork.fl.fl4_src = saddr; | 
|  | inet->cork.fl.fl_ip_sport = inet->inet_sport; | 
|  | up->pending = AF_INET; | 
|  |  | 
|  | do_append_data: | 
|  | up->len += ulen; | 
|  | getfrag  =  is_udplite ?  udplite_getfrag : ip_generic_getfrag; | 
|  | err = ip_append_data(sk, getfrag, msg->msg_iov, ulen, | 
|  | sizeof(struct udphdr), &ipc, &rt, | 
|  | corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); | 
|  | if (err) | 
|  | udp_flush_pending_frames(sk); | 
|  | else if (!corkreq) | 
|  | err = udp_push_pending_frames(sk); | 
|  | else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) | 
|  | up->pending = 0; | 
|  | release_sock(sk); | 
|  |  | 
|  | out: | 
|  | ip_rt_put(rt); | 
|  | if (free) | 
|  | kfree(ipc.opt); | 
|  | if (!err) | 
|  | return len; | 
|  | /* | 
|  | * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting | 
|  | * ENOBUFS might not be good (it's not tunable per se), but otherwise | 
|  | * we don't have a good statistic (IpOutDiscards but it can be too many | 
|  | * things).  We could add another new stat but at least for now that | 
|  | * seems like overkill. | 
|  | */ | 
|  | if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { | 
|  | UDP_INC_STATS_USER(sock_net(sk), | 
|  | UDP_MIB_SNDBUFERRORS, is_udplite); | 
|  | } | 
|  | return err; | 
|  |  | 
|  | do_confirm: | 
|  | dst_confirm(&rt->dst); | 
|  | if (!(msg->msg_flags&MSG_PROBE) || len) | 
|  | goto back_from_confirm; | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_sendmsg); | 
|  |  | 
|  | int udp_sendpage(struct sock *sk, struct page *page, int offset, | 
|  | size_t size, int flags) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int ret; | 
|  |  | 
|  | if (!up->pending) { | 
|  | struct msghdr msg = {	.msg_flags = flags|MSG_MORE }; | 
|  |  | 
|  | /* Call udp_sendmsg to specify destination address which | 
|  | * sendpage interface can't pass. | 
|  | * This will succeed only when the socket is connected. | 
|  | */ | 
|  | ret = udp_sendmsg(NULL, sk, &msg, 0); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | lock_sock(sk); | 
|  |  | 
|  | if (unlikely(!up->pending)) { | 
|  | release_sock(sk); | 
|  |  | 
|  | LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = ip_append_page(sk, page, offset, size, flags); | 
|  | if (ret == -EOPNOTSUPP) { | 
|  | release_sock(sk); | 
|  | return sock_no_sendpage(sk->sk_socket, page, offset, | 
|  | size, flags); | 
|  | } | 
|  | if (ret < 0) { | 
|  | udp_flush_pending_frames(sk); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | up->len += size; | 
|  | if (!(up->corkflag || (flags&MSG_MORE))) | 
|  | ret = udp_push_pending_frames(sk); | 
|  | if (!ret) | 
|  | ret = size; | 
|  | out: | 
|  | release_sock(sk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	first_packet_length	- return length of first packet in receive queue | 
|  | *	@sk: socket | 
|  | * | 
|  | *	Drops all bad checksum frames, until a valid one is found. | 
|  | *	Returns the length of found skb, or 0 if none is found. | 
|  | */ | 
|  | static unsigned int first_packet_length(struct sock *sk) | 
|  | { | 
|  | struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue; | 
|  | struct sk_buff *skb; | 
|  | unsigned int res; | 
|  |  | 
|  | __skb_queue_head_init(&list_kill); | 
|  |  | 
|  | spin_lock_bh(&rcvq->lock); | 
|  | while ((skb = skb_peek(rcvq)) != NULL && | 
|  | udp_lib_checksum_complete(skb)) { | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | __skb_unlink(skb, rcvq); | 
|  | __skb_queue_tail(&list_kill, skb); | 
|  | } | 
|  | res = skb ? skb->len : 0; | 
|  | spin_unlock_bh(&rcvq->lock); | 
|  |  | 
|  | if (!skb_queue_empty(&list_kill)) { | 
|  | bool slow = lock_sock_fast(sk); | 
|  |  | 
|  | __skb_queue_purge(&list_kill); | 
|  | sk_mem_reclaim_partial(sk); | 
|  | unlock_sock_fast(sk, slow); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	IOCTL requests applicable to the UDP protocol | 
|  | */ | 
|  |  | 
|  | int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCOUTQ: | 
|  | { | 
|  | int amount = sk_wmem_alloc_get(sk); | 
|  |  | 
|  | return put_user(amount, (int __user *)arg); | 
|  | } | 
|  |  | 
|  | case SIOCINQ: | 
|  | { | 
|  | unsigned int amount = first_packet_length(sk); | 
|  |  | 
|  | if (amount) | 
|  | /* | 
|  | * We will only return the amount | 
|  | * of this packet since that is all | 
|  | * that will be read. | 
|  | */ | 
|  | amount -= sizeof(struct udphdr); | 
|  |  | 
|  | return put_user(amount, (int __user *)arg); | 
|  | } | 
|  |  | 
|  | default: | 
|  | return -ENOIOCTLCMD; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_ioctl); | 
|  |  | 
|  | /* | 
|  | * 	This should be easy, if there is something there we | 
|  | * 	return it, otherwise we block. | 
|  | */ | 
|  |  | 
|  | int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, | 
|  | size_t len, int noblock, int flags, int *addr_len) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; | 
|  | struct sk_buff *skb; | 
|  | unsigned int ulen; | 
|  | int peeked; | 
|  | int err; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  | bool slow; | 
|  |  | 
|  | /* | 
|  | *	Check any passed addresses | 
|  | */ | 
|  | if (addr_len) | 
|  | *addr_len = sizeof(*sin); | 
|  |  | 
|  | if (flags & MSG_ERRQUEUE) | 
|  | return ip_recv_error(sk, msg, len); | 
|  |  | 
|  | try_again: | 
|  | skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0), | 
|  | &peeked, &err); | 
|  | if (!skb) | 
|  | goto out; | 
|  |  | 
|  | ulen = skb->len - sizeof(struct udphdr); | 
|  | if (len > ulen) | 
|  | len = ulen; | 
|  | else if (len < ulen) | 
|  | msg->msg_flags |= MSG_TRUNC; | 
|  |  | 
|  | /* | 
|  | * If checksum is needed at all, try to do it while copying the | 
|  | * data.  If the data is truncated, or if we only want a partial | 
|  | * coverage checksum (UDP-Lite), do it before the copy. | 
|  | */ | 
|  |  | 
|  | if (len < ulen || UDP_SKB_CB(skb)->partial_cov) { | 
|  | if (udp_lib_checksum_complete(skb)) | 
|  | goto csum_copy_err; | 
|  | } | 
|  |  | 
|  | if (skb_csum_unnecessary(skb)) | 
|  | err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), | 
|  | msg->msg_iov, len); | 
|  | else { | 
|  | err = skb_copy_and_csum_datagram_iovec(skb, | 
|  | sizeof(struct udphdr), | 
|  | msg->msg_iov); | 
|  |  | 
|  | if (err == -EINVAL) | 
|  | goto csum_copy_err; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | goto out_free; | 
|  |  | 
|  | if (!peeked) | 
|  | UDP_INC_STATS_USER(sock_net(sk), | 
|  | UDP_MIB_INDATAGRAMS, is_udplite); | 
|  |  | 
|  | sock_recv_ts_and_drops(msg, sk, skb); | 
|  |  | 
|  | /* Copy the address. */ | 
|  | if (sin) { | 
|  | sin->sin_family = AF_INET; | 
|  | sin->sin_port = udp_hdr(skb)->source; | 
|  | sin->sin_addr.s_addr = ip_hdr(skb)->saddr; | 
|  | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); | 
|  | } | 
|  | if (inet->cmsg_flags) | 
|  | ip_cmsg_recv(msg, skb); | 
|  |  | 
|  | err = len; | 
|  | if (flags & MSG_TRUNC) | 
|  | err = ulen; | 
|  |  | 
|  | out_free: | 
|  | skb_free_datagram_locked(sk, skb); | 
|  | out: | 
|  | return err; | 
|  |  | 
|  | csum_copy_err: | 
|  | slow = lock_sock_fast(sk); | 
|  | if (!skb_kill_datagram(sk, skb, flags)) | 
|  | UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | unlock_sock_fast(sk, slow); | 
|  |  | 
|  | if (noblock) | 
|  | return -EAGAIN; | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  |  | 
|  | int udp_disconnect(struct sock *sk, int flags) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | /* | 
|  | *	1003.1g - break association. | 
|  | */ | 
|  |  | 
|  | sk->sk_state = TCP_CLOSE; | 
|  | inet->inet_daddr = 0; | 
|  | inet->inet_dport = 0; | 
|  | sock_rps_save_rxhash(sk, 0); | 
|  | sk->sk_bound_dev_if = 0; | 
|  | if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) | 
|  | inet_reset_saddr(sk); | 
|  |  | 
|  | if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { | 
|  | sk->sk_prot->unhash(sk); | 
|  | inet->inet_sport = 0; | 
|  | } | 
|  | sk_dst_reset(sk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_disconnect); | 
|  |  | 
|  | void udp_lib_unhash(struct sock *sk) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | struct udp_table *udptable = sk->sk_prot->h.udp_table; | 
|  | struct udp_hslot *hslot, *hslot2; | 
|  |  | 
|  | hslot  = udp_hashslot(udptable, sock_net(sk), | 
|  | udp_sk(sk)->udp_port_hash); | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  |  | 
|  | spin_lock_bh(&hslot->lock); | 
|  | if (sk_nulls_del_node_init_rcu(sk)) { | 
|  | hslot->count--; | 
|  | inet_sk(sk)->inet_num = 0; | 
|  | sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); | 
|  | hslot2->count--; | 
|  | spin_unlock(&hslot2->lock); | 
|  | } | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(udp_lib_unhash); | 
|  |  | 
|  | /* | 
|  | * inet_rcv_saddr was changed, we must rehash secondary hash | 
|  | */ | 
|  | void udp_lib_rehash(struct sock *sk, u16 newhash) | 
|  | { | 
|  | if (sk_hashed(sk)) { | 
|  | struct udp_table *udptable = sk->sk_prot->h.udp_table; | 
|  | struct udp_hslot *hslot, *hslot2, *nhslot2; | 
|  |  | 
|  | hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash); | 
|  | nhslot2 = udp_hashslot2(udptable, newhash); | 
|  | udp_sk(sk)->udp_portaddr_hash = newhash; | 
|  | if (hslot2 != nhslot2) { | 
|  | hslot = udp_hashslot(udptable, sock_net(sk), | 
|  | udp_sk(sk)->udp_port_hash); | 
|  | /* we must lock primary chain too */ | 
|  | spin_lock_bh(&hslot->lock); | 
|  |  | 
|  | spin_lock(&hslot2->lock); | 
|  | hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node); | 
|  | hslot2->count--; | 
|  | spin_unlock(&hslot2->lock); | 
|  |  | 
|  | spin_lock(&nhslot2->lock); | 
|  | hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node, | 
|  | &nhslot2->head); | 
|  | nhslot2->count++; | 
|  | spin_unlock(&nhslot2->lock); | 
|  |  | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(udp_lib_rehash); | 
|  |  | 
|  | static void udp_v4_rehash(struct sock *sk) | 
|  | { | 
|  | u16 new_hash = udp4_portaddr_hash(sock_net(sk), | 
|  | inet_sk(sk)->inet_rcv_saddr, | 
|  | inet_sk(sk)->inet_num); | 
|  | udp_lib_rehash(sk, new_hash); | 
|  | } | 
|  |  | 
|  | static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (inet_sk(sk)->inet_daddr) | 
|  | sock_rps_save_rxhash(sk, skb->rxhash); | 
|  |  | 
|  | rc = ip_queue_rcv_skb(sk, skb); | 
|  | if (rc < 0) { | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  |  | 
|  | /* Note that an ENOMEM error is charged twice */ | 
|  | if (rc == -ENOMEM) | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, | 
|  | is_udplite); | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | kfree_skb(skb); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* returns: | 
|  | *  -1: error | 
|  | *   0: success | 
|  | *  >0: "udp encap" protocol resubmission | 
|  | * | 
|  | * Note that in the success and error cases, the skb is assumed to | 
|  | * have either been requeued or freed. | 
|  | */ | 
|  | int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int rc; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  |  | 
|  | /* | 
|  | *	Charge it to the socket, dropping if the queue is full. | 
|  | */ | 
|  | if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) | 
|  | goto drop; | 
|  | nf_reset(skb); | 
|  |  | 
|  | if (up->encap_type) { | 
|  | /* | 
|  | * This is an encapsulation socket so pass the skb to | 
|  | * the socket's udp_encap_rcv() hook. Otherwise, just | 
|  | * fall through and pass this up the UDP socket. | 
|  | * up->encap_rcv() returns the following value: | 
|  | * =0 if skb was successfully passed to the encap | 
|  | *    handler or was discarded by it. | 
|  | * >0 if skb should be passed on to UDP. | 
|  | * <0 if skb should be resubmitted as proto -N | 
|  | */ | 
|  |  | 
|  | /* if we're overly short, let UDP handle it */ | 
|  | if (skb->len > sizeof(struct udphdr) && | 
|  | up->encap_rcv != NULL) { | 
|  | int ret; | 
|  |  | 
|  | ret = (*up->encap_rcv)(sk, skb); | 
|  | if (ret <= 0) { | 
|  | UDP_INC_STATS_BH(sock_net(sk), | 
|  | UDP_MIB_INDATAGRAMS, | 
|  | is_udplite); | 
|  | return -ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FALLTHROUGH -- it's a UDP Packet */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 	UDP-Lite specific tests, ignored on UDP sockets | 
|  | */ | 
|  | if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) { | 
|  |  | 
|  | /* | 
|  | * MIB statistics other than incrementing the error count are | 
|  | * disabled for the following two types of errors: these depend | 
|  | * on the application settings, not on the functioning of the | 
|  | * protocol stack as such. | 
|  | * | 
|  | * RFC 3828 here recommends (sec 3.3): "There should also be a | 
|  | * way ... to ... at least let the receiving application block | 
|  | * delivery of packets with coverage values less than a value | 
|  | * provided by the application." | 
|  | */ | 
|  | if (up->pcrlen == 0) {          /* full coverage was set  */ | 
|  | LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage " | 
|  | "%d while full coverage %d requested\n", | 
|  | UDP_SKB_CB(skb)->cscov, skb->len); | 
|  | goto drop; | 
|  | } | 
|  | /* The next case involves violating the min. coverage requested | 
|  | * by the receiver. This is subtle: if receiver wants x and x is | 
|  | * greater than the buffersize/MTU then receiver will complain | 
|  | * that it wants x while sender emits packets of smaller size y. | 
|  | * Therefore the above ...()->partial_cov statement is essential. | 
|  | */ | 
|  | if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) { | 
|  | LIMIT_NETDEBUG(KERN_WARNING | 
|  | "UDPLITE: coverage %d too small, need min %d\n", | 
|  | UDP_SKB_CB(skb)->cscov, up->pcrlen); | 
|  | goto drop; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sk->sk_filter) { | 
|  | if (udp_lib_checksum_complete(skb)) | 
|  | goto drop; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (sk_rcvqueues_full(sk, skb)) | 
|  | goto drop; | 
|  |  | 
|  | rc = 0; | 
|  |  | 
|  | bh_lock_sock(sk); | 
|  | if (!sock_owned_by_user(sk)) | 
|  | rc = __udp_queue_rcv_skb(sk, skb); | 
|  | else if (sk_add_backlog(sk, skb)) { | 
|  | bh_unlock_sock(sk); | 
|  | goto drop; | 
|  | } | 
|  | bh_unlock_sock(sk); | 
|  |  | 
|  | return rc; | 
|  |  | 
|  | drop: | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite); | 
|  | atomic_inc(&sk->sk_drops); | 
|  | kfree_skb(skb); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void flush_stack(struct sock **stack, unsigned int count, | 
|  | struct sk_buff *skb, unsigned int final) | 
|  | { | 
|  | unsigned int i; | 
|  | struct sk_buff *skb1 = NULL; | 
|  | struct sock *sk; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | sk = stack[i]; | 
|  | if (likely(skb1 == NULL)) | 
|  | skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC); | 
|  |  | 
|  | if (!skb1) { | 
|  | atomic_inc(&sk->sk_drops); | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, | 
|  | IS_UDPLITE(sk)); | 
|  | } | 
|  |  | 
|  | if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0) | 
|  | skb1 = NULL; | 
|  | } | 
|  | if (unlikely(skb1)) | 
|  | kfree_skb(skb1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Multicasts and broadcasts go to each listener. | 
|  | * | 
|  | *	Note: called only from the BH handler context. | 
|  | */ | 
|  | static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, | 
|  | struct udphdr  *uh, | 
|  | __be32 saddr, __be32 daddr, | 
|  | struct udp_table *udptable) | 
|  | { | 
|  | struct sock *sk, *stack[256 / sizeof(struct sock *)]; | 
|  | struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest)); | 
|  | int dif; | 
|  | unsigned int i, count = 0; | 
|  |  | 
|  | spin_lock(&hslot->lock); | 
|  | sk = sk_nulls_head(&hslot->head); | 
|  | dif = skb->dev->ifindex; | 
|  | sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif); | 
|  | while (sk) { | 
|  | stack[count++] = sk; | 
|  | sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest, | 
|  | daddr, uh->source, saddr, dif); | 
|  | if (unlikely(count == ARRAY_SIZE(stack))) { | 
|  | if (!sk) | 
|  | break; | 
|  | flush_stack(stack, count, skb, ~0); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * before releasing chain lock, we must take a reference on sockets | 
|  | */ | 
|  | for (i = 0; i < count; i++) | 
|  | sock_hold(stack[i]); | 
|  |  | 
|  | spin_unlock(&hslot->lock); | 
|  |  | 
|  | /* | 
|  | * do the slow work with no lock held | 
|  | */ | 
|  | if (count) { | 
|  | flush_stack(stack, count, skb, count - 1); | 
|  |  | 
|  | for (i = 0; i < count; i++) | 
|  | sock_put(stack[i]); | 
|  | } else { | 
|  | kfree_skb(skb); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Initialize UDP checksum. If exited with zero value (success), | 
|  | * CHECKSUM_UNNECESSARY means, that no more checks are required. | 
|  | * Otherwise, csum completion requires chacksumming packet body, | 
|  | * including udp header and folding it to skb->csum. | 
|  | */ | 
|  | static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, | 
|  | int proto) | 
|  | { | 
|  | const struct iphdr *iph; | 
|  | int err; | 
|  |  | 
|  | UDP_SKB_CB(skb)->partial_cov = 0; | 
|  | UDP_SKB_CB(skb)->cscov = skb->len; | 
|  |  | 
|  | if (proto == IPPROTO_UDPLITE) { | 
|  | err = udplite_checksum_init(skb, uh); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | iph = ip_hdr(skb); | 
|  | if (uh->check == 0) { | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } else if (skb->ip_summed == CHECKSUM_COMPLETE) { | 
|  | if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, | 
|  | proto, skb->csum)) | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } | 
|  | if (!skb_csum_unnecessary(skb)) | 
|  | skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr, | 
|  | skb->len, proto, 0); | 
|  | /* Probably, we should checksum udp header (it should be in cache | 
|  | * in any case) and data in tiny packets (< rx copybreak). | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	All we need to do is get the socket, and then do a checksum. | 
|  | */ | 
|  |  | 
|  | int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, | 
|  | int proto) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct udphdr *uh; | 
|  | unsigned short ulen; | 
|  | struct rtable *rt = skb_rtable(skb); | 
|  | __be32 saddr, daddr; | 
|  | struct net *net = dev_net(skb->dev); | 
|  |  | 
|  | /* | 
|  | *  Validate the packet. | 
|  | */ | 
|  | if (!pskb_may_pull(skb, sizeof(struct udphdr))) | 
|  | goto drop;		/* No space for header. */ | 
|  |  | 
|  | uh   = udp_hdr(skb); | 
|  | ulen = ntohs(uh->len); | 
|  | saddr = ip_hdr(skb)->saddr; | 
|  | daddr = ip_hdr(skb)->daddr; | 
|  |  | 
|  | if (ulen > skb->len) | 
|  | goto short_packet; | 
|  |  | 
|  | if (proto == IPPROTO_UDP) { | 
|  | /* UDP validates ulen. */ | 
|  | if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen)) | 
|  | goto short_packet; | 
|  | uh = udp_hdr(skb); | 
|  | } | 
|  |  | 
|  | if (udp4_csum_init(skb, uh, proto)) | 
|  | goto csum_error; | 
|  |  | 
|  | if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) | 
|  | return __udp4_lib_mcast_deliver(net, skb, uh, | 
|  | saddr, daddr, udptable); | 
|  |  | 
|  | sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable); | 
|  |  | 
|  | if (sk != NULL) { | 
|  | int ret = udp_queue_rcv_skb(sk, skb); | 
|  | sock_put(sk); | 
|  |  | 
|  | /* a return value > 0 means to resubmit the input, but | 
|  | * it wants the return to be -protocol, or 0 | 
|  | */ | 
|  | if (ret > 0) | 
|  | return -ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) | 
|  | goto drop; | 
|  | nf_reset(skb); | 
|  |  | 
|  | /* No socket. Drop packet silently, if checksum is wrong */ | 
|  | if (udp_lib_checksum_complete(skb)) | 
|  | goto csum_error; | 
|  |  | 
|  | UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); | 
|  | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); | 
|  |  | 
|  | /* | 
|  | * Hmm.  We got an UDP packet to a port to which we | 
|  | * don't wanna listen.  Ignore it. | 
|  | */ | 
|  | kfree_skb(skb); | 
|  | return 0; | 
|  |  | 
|  | short_packet: | 
|  | LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", | 
|  | proto == IPPROTO_UDPLITE ? "-Lite" : "", | 
|  | &saddr, | 
|  | ntohs(uh->source), | 
|  | ulen, | 
|  | skb->len, | 
|  | &daddr, | 
|  | ntohs(uh->dest)); | 
|  | goto drop; | 
|  |  | 
|  | csum_error: | 
|  | /* | 
|  | * RFC1122: OK.  Discards the bad packet silently (as far as | 
|  | * the network is concerned, anyway) as per 4.1.3.4 (MUST). | 
|  | */ | 
|  | LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", | 
|  | proto == IPPROTO_UDPLITE ? "-Lite" : "", | 
|  | &saddr, | 
|  | ntohs(uh->source), | 
|  | &daddr, | 
|  | ntohs(uh->dest), | 
|  | ulen); | 
|  | drop: | 
|  | UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); | 
|  | kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int udp_rcv(struct sk_buff *skb) | 
|  | { | 
|  | return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP); | 
|  | } | 
|  |  | 
|  | void udp_destroy_sock(struct sock *sk) | 
|  | { | 
|  | bool slow = lock_sock_fast(sk); | 
|  | udp_flush_pending_frames(sk); | 
|  | unlock_sock_fast(sk, slow); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Socket option code for UDP | 
|  | */ | 
|  | int udp_lib_setsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, unsigned int optlen, | 
|  | int (*push_pending_frames)(struct sock *)) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int val; | 
|  | int err = 0; | 
|  | int is_udplite = IS_UDPLITE(sk); | 
|  |  | 
|  | if (optlen < sizeof(int)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (get_user(val, (int __user *)optval)) | 
|  | return -EFAULT; | 
|  |  | 
|  | switch (optname) { | 
|  | case UDP_CORK: | 
|  | if (val != 0) { | 
|  | up->corkflag = 1; | 
|  | } else { | 
|  | up->corkflag = 0; | 
|  | lock_sock(sk); | 
|  | (*push_pending_frames)(sk); | 
|  | release_sock(sk); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case UDP_ENCAP: | 
|  | switch (val) { | 
|  | case 0: | 
|  | case UDP_ENCAP_ESPINUDP: | 
|  | case UDP_ENCAP_ESPINUDP_NON_IKE: | 
|  | up->encap_rcv = xfrm4_udp_encap_rcv; | 
|  | /* FALLTHROUGH */ | 
|  | case UDP_ENCAP_L2TPINUDP: | 
|  | up->encap_type = val; | 
|  | break; | 
|  | default: | 
|  | err = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * 	UDP-Lite's partial checksum coverage (RFC 3828). | 
|  | */ | 
|  | /* The sender sets actual checksum coverage length via this option. | 
|  | * The case coverage > packet length is handled by send module. */ | 
|  | case UDPLITE_SEND_CSCOV: | 
|  | if (!is_udplite)         /* Disable the option on UDP sockets */ | 
|  | return -ENOPROTOOPT; | 
|  | if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ | 
|  | val = 8; | 
|  | else if (val > USHRT_MAX) | 
|  | val = USHRT_MAX; | 
|  | up->pcslen = val; | 
|  | up->pcflag |= UDPLITE_SEND_CC; | 
|  | break; | 
|  |  | 
|  | /* The receiver specifies a minimum checksum coverage value. To make | 
|  | * sense, this should be set to at least 8 (as done below). If zero is | 
|  | * used, this again means full checksum coverage.                     */ | 
|  | case UDPLITE_RECV_CSCOV: | 
|  | if (!is_udplite)         /* Disable the option on UDP sockets */ | 
|  | return -ENOPROTOOPT; | 
|  | if (val != 0 && val < 8) /* Avoid silly minimal values.       */ | 
|  | val = 8; | 
|  | else if (val > USHRT_MAX) | 
|  | val = USHRT_MAX; | 
|  | up->pcrlen = val; | 
|  | up->pcflag |= UDPLITE_RECV_CC; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -ENOPROTOOPT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_lib_setsockopt); | 
|  |  | 
|  | int udp_setsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, unsigned int optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE) | 
|  | return udp_lib_setsockopt(sk, level, optname, optval, optlen, | 
|  | udp_push_pending_frames); | 
|  | return ip_setsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | int compat_udp_setsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, unsigned int optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE) | 
|  | return udp_lib_setsockopt(sk, level, optname, optval, optlen, | 
|  | udp_push_pending_frames); | 
|  | return compat_ip_setsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int udp_lib_getsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | struct udp_sock *up = udp_sk(sk); | 
|  | int val, len; | 
|  |  | 
|  | if (get_user(len, optlen)) | 
|  | return -EFAULT; | 
|  |  | 
|  | len = min_t(unsigned int, len, sizeof(int)); | 
|  |  | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (optname) { | 
|  | case UDP_CORK: | 
|  | val = up->corkflag; | 
|  | break; | 
|  |  | 
|  | case UDP_ENCAP: | 
|  | val = up->encap_type; | 
|  | break; | 
|  |  | 
|  | /* The following two cannot be changed on UDP sockets, the return is | 
|  | * always 0 (which corresponds to the full checksum coverage of UDP). */ | 
|  | case UDPLITE_SEND_CSCOV: | 
|  | val = up->pcslen; | 
|  | break; | 
|  |  | 
|  | case UDPLITE_RECV_CSCOV: | 
|  | val = up->pcrlen; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -ENOPROTOOPT; | 
|  | } | 
|  |  | 
|  | if (put_user(len, optlen)) | 
|  | return -EFAULT; | 
|  | if (copy_to_user(optval, &val, len)) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_lib_getsockopt); | 
|  |  | 
|  | int udp_getsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE) | 
|  | return udp_lib_getsockopt(sk, level, optname, optval, optlen); | 
|  | return ip_getsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | int compat_udp_getsockopt(struct sock *sk, int level, int optname, | 
|  | char __user *optval, int __user *optlen) | 
|  | { | 
|  | if (level == SOL_UDP  ||  level == SOL_UDPLITE) | 
|  | return udp_lib_getsockopt(sk, level, optname, optval, optlen); | 
|  | return compat_ip_getsockopt(sk, level, optname, optval, optlen); | 
|  | } | 
|  | #endif | 
|  | /** | 
|  | * 	udp_poll - wait for a UDP event. | 
|  | *	@file - file struct | 
|  | *	@sock - socket | 
|  | *	@wait - poll table | 
|  | * | 
|  | *	This is same as datagram poll, except for the special case of | 
|  | *	blocking sockets. If application is using a blocking fd | 
|  | *	and a packet with checksum error is in the queue; | 
|  | *	then it could get return from select indicating data available | 
|  | *	but then block when reading it. Add special case code | 
|  | *	to work around these arguably broken applications. | 
|  | */ | 
|  | unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) | 
|  | { | 
|  | unsigned int mask = datagram_poll(file, sock, wait); | 
|  | struct sock *sk = sock->sk; | 
|  |  | 
|  | /* Check for false positives due to checksum errors */ | 
|  | if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) && | 
|  | !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk)) | 
|  | mask &= ~(POLLIN | POLLRDNORM); | 
|  |  | 
|  | return mask; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(udp_poll); | 
|  |  | 
|  | struct proto udp_prot = { | 
|  | .name		   = "UDP", | 
|  | .owner		   = THIS_MODULE, | 
|  | .close		   = udp_lib_close, | 
|  | .connect	   = ip4_datagram_connect, | 
|  | .disconnect	   = udp_disconnect, | 
|  | .ioctl		   = udp_ioctl, | 
|  | .destroy	   = udp_destroy_sock, | 
|  | .setsockopt	   = udp_setsockopt, | 
|  | .getsockopt	   = udp_getsockopt, | 
|  | .sendmsg	   = udp_sendmsg, | 
|  | .recvmsg	   = udp_recvmsg, | 
|  | .sendpage	   = udp_sendpage, | 
|  | .backlog_rcv	   = __udp_queue_rcv_skb, | 
|  | .hash		   = udp_lib_hash, | 
|  | .unhash		   = udp_lib_unhash, | 
|  | .rehash		   = udp_v4_rehash, | 
|  | .get_port	   = udp_v4_get_port, | 
|  | .memory_allocated  = &udp_memory_allocated, | 
|  | .sysctl_mem	   = sysctl_udp_mem, | 
|  | .sysctl_wmem	   = &sysctl_udp_wmem_min, | 
|  | .sysctl_rmem	   = &sysctl_udp_rmem_min, | 
|  | .obj_size	   = sizeof(struct udp_sock), | 
|  | .slab_flags	   = SLAB_DESTROY_BY_RCU, | 
|  | .h.udp_table	   = &udp_table, | 
|  | #ifdef CONFIG_COMPAT | 
|  | .compat_setsockopt = compat_udp_setsockopt, | 
|  | .compat_getsockopt = compat_udp_getsockopt, | 
|  | #endif | 
|  | }; | 
|  | EXPORT_SYMBOL(udp_prot); | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | #ifdef CONFIG_PROC_FS | 
|  |  | 
|  | static struct sock *udp_get_first(struct seq_file *seq, int start) | 
|  | { | 
|  | struct sock *sk; | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  |  | 
|  | for (state->bucket = start; state->bucket <= state->udp_table->mask; | 
|  | ++state->bucket) { | 
|  | struct hlist_nulls_node *node; | 
|  | struct udp_hslot *hslot = &state->udp_table->hash[state->bucket]; | 
|  |  | 
|  | if (hlist_nulls_empty(&hslot->head)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_bh(&hslot->lock); | 
|  | sk_nulls_for_each(sk, node, &hslot->head) { | 
|  | if (!net_eq(sock_net(sk), net)) | 
|  | continue; | 
|  | if (sk->sk_family == state->family) | 
|  | goto found; | 
|  | } | 
|  | spin_unlock_bh(&hslot->lock); | 
|  | } | 
|  | sk = NULL; | 
|  | found: | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  |  | 
|  | do { | 
|  | sk = sk_nulls_next(sk); | 
|  | } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family)); | 
|  |  | 
|  | if (!sk) { | 
|  | if (state->bucket <= state->udp_table->mask) | 
|  | spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); | 
|  | return udp_get_first(seq, state->bucket + 1); | 
|  | } | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) | 
|  | { | 
|  | struct sock *sk = udp_get_first(seq, 0); | 
|  |  | 
|  | if (sk) | 
|  | while (pos && (sk = udp_get_next(seq, sk)) != NULL) | 
|  | --pos; | 
|  | return pos ? NULL : sk; | 
|  | } | 
|  |  | 
|  | static void *udp_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | state->bucket = MAX_UDP_PORTS; | 
|  |  | 
|  | return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN; | 
|  | } | 
|  |  | 
|  | static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct sock *sk; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) | 
|  | sk = udp_get_idx(seq, 0); | 
|  | else | 
|  | sk = udp_get_next(seq, v); | 
|  |  | 
|  | ++*pos; | 
|  | return sk; | 
|  | } | 
|  |  | 
|  | static void udp_seq_stop(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct udp_iter_state *state = seq->private; | 
|  |  | 
|  | if (state->bucket <= state->udp_table->mask) | 
|  | spin_unlock_bh(&state->udp_table->hash[state->bucket].lock); | 
|  | } | 
|  |  | 
|  | static int udp_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct udp_seq_afinfo *afinfo = PDE(inode)->data; | 
|  | struct udp_iter_state *s; | 
|  | int err; | 
|  |  | 
|  | err = seq_open_net(inode, file, &afinfo->seq_ops, | 
|  | sizeof(struct udp_iter_state)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | s = ((struct seq_file *)file->private_data)->private; | 
|  | s->family		= afinfo->family; | 
|  | s->udp_table		= afinfo->udp_table; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo) | 
|  | { | 
|  | struct proc_dir_entry *p; | 
|  | int rc = 0; | 
|  |  | 
|  | afinfo->seq_fops.open		= udp_seq_open; | 
|  | afinfo->seq_fops.read		= seq_read; | 
|  | afinfo->seq_fops.llseek		= seq_lseek; | 
|  | afinfo->seq_fops.release	= seq_release_net; | 
|  |  | 
|  | afinfo->seq_ops.start		= udp_seq_start; | 
|  | afinfo->seq_ops.next		= udp_seq_next; | 
|  | afinfo->seq_ops.stop		= udp_seq_stop; | 
|  |  | 
|  | p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net, | 
|  | &afinfo->seq_fops, afinfo); | 
|  | if (!p) | 
|  | rc = -ENOMEM; | 
|  | return rc; | 
|  | } | 
|  | EXPORT_SYMBOL(udp_proc_register); | 
|  |  | 
|  | void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo) | 
|  | { | 
|  | proc_net_remove(net, afinfo->name); | 
|  | } | 
|  | EXPORT_SYMBOL(udp_proc_unregister); | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | static void udp4_format_sock(struct sock *sp, struct seq_file *f, | 
|  | int bucket, int *len) | 
|  | { | 
|  | struct inet_sock *inet = inet_sk(sp); | 
|  | __be32 dest = inet->inet_daddr; | 
|  | __be32 src  = inet->inet_rcv_saddr; | 
|  | __u16 destp	  = ntohs(inet->inet_dport); | 
|  | __u16 srcp	  = ntohs(inet->inet_sport); | 
|  |  | 
|  | seq_printf(f, "%5d: %08X:%04X %08X:%04X" | 
|  | " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n", | 
|  | bucket, src, srcp, dest, destp, sp->sk_state, | 
|  | sk_wmem_alloc_get(sp), | 
|  | sk_rmem_alloc_get(sp), | 
|  | 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), | 
|  | atomic_read(&sp->sk_refcnt), sp, | 
|  | atomic_read(&sp->sk_drops), len); | 
|  | } | 
|  |  | 
|  | int udp4_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | if (v == SEQ_START_TOKEN) | 
|  | seq_printf(seq, "%-127s\n", | 
|  | "  sl  local_address rem_address   st tx_queue " | 
|  | "rx_queue tr tm->when retrnsmt   uid  timeout " | 
|  | "inode ref pointer drops"); | 
|  | else { | 
|  | struct udp_iter_state *state = seq->private; | 
|  | int len; | 
|  |  | 
|  | udp4_format_sock(v, seq, state->bucket, &len); | 
|  | seq_printf(seq, "%*s\n", 127 - len, ""); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* ------------------------------------------------------------------------ */ | 
|  | static struct udp_seq_afinfo udp4_seq_afinfo = { | 
|  | .name		= "udp", | 
|  | .family		= AF_INET, | 
|  | .udp_table	= &udp_table, | 
|  | .seq_fops	= { | 
|  | .owner	=	THIS_MODULE, | 
|  | }, | 
|  | .seq_ops	= { | 
|  | .show		= udp4_seq_show, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int __net_init udp4_proc_init_net(struct net *net) | 
|  | { | 
|  | return udp_proc_register(net, &udp4_seq_afinfo); | 
|  | } | 
|  |  | 
|  | static void __net_exit udp4_proc_exit_net(struct net *net) | 
|  | { | 
|  | udp_proc_unregister(net, &udp4_seq_afinfo); | 
|  | } | 
|  |  | 
|  | static struct pernet_operations udp4_net_ops = { | 
|  | .init = udp4_proc_init_net, | 
|  | .exit = udp4_proc_exit_net, | 
|  | }; | 
|  |  | 
|  | int __init udp4_proc_init(void) | 
|  | { | 
|  | return register_pernet_subsys(&udp4_net_ops); | 
|  | } | 
|  |  | 
|  | void udp4_proc_exit(void) | 
|  | { | 
|  | unregister_pernet_subsys(&udp4_net_ops); | 
|  | } | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | static __initdata unsigned long uhash_entries; | 
|  | static int __init set_uhash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | uhash_entries = simple_strtoul(str, &str, 0); | 
|  | if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) | 
|  | uhash_entries = UDP_HTABLE_SIZE_MIN; | 
|  | return 1; | 
|  | } | 
|  | __setup("uhash_entries=", set_uhash_entries); | 
|  |  | 
|  | void __init udp_table_init(struct udp_table *table, const char *name) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (!CONFIG_BASE_SMALL) | 
|  | table->hash = alloc_large_system_hash(name, | 
|  | 2 * sizeof(struct udp_hslot), | 
|  | uhash_entries, | 
|  | 21, /* one slot per 2 MB */ | 
|  | 0, | 
|  | &table->log, | 
|  | &table->mask, | 
|  | 64 * 1024); | 
|  | /* | 
|  | * Make sure hash table has the minimum size | 
|  | */ | 
|  | if (CONFIG_BASE_SMALL || table->mask < UDP_HTABLE_SIZE_MIN - 1) { | 
|  | table->hash = kmalloc(UDP_HTABLE_SIZE_MIN * | 
|  | 2 * sizeof(struct udp_hslot), GFP_KERNEL); | 
|  | if (!table->hash) | 
|  | panic(name); | 
|  | table->log = ilog2(UDP_HTABLE_SIZE_MIN); | 
|  | table->mask = UDP_HTABLE_SIZE_MIN - 1; | 
|  | } | 
|  | table->hash2 = table->hash + (table->mask + 1); | 
|  | for (i = 0; i <= table->mask; i++) { | 
|  | INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i); | 
|  | table->hash[i].count = 0; | 
|  | spin_lock_init(&table->hash[i].lock); | 
|  | } | 
|  | for (i = 0; i <= table->mask; i++) { | 
|  | INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i); | 
|  | table->hash2[i].count = 0; | 
|  | spin_lock_init(&table->hash2[i].lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init udp_init(void) | 
|  | { | 
|  | unsigned long nr_pages, limit; | 
|  |  | 
|  | udp_table_init(&udp_table, "UDP"); | 
|  | /* Set the pressure threshold up by the same strategy of TCP. It is a | 
|  | * fraction of global memory that is up to 1/2 at 256 MB, decreasing | 
|  | * toward zero with the amount of memory, with a floor of 128 pages. | 
|  | */ | 
|  | nr_pages = totalram_pages - totalhigh_pages; | 
|  | limit = min(nr_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT); | 
|  | limit = (limit * (nr_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11); | 
|  | limit = max(limit, 128UL); | 
|  | sysctl_udp_mem[0] = limit / 4 * 3; | 
|  | sysctl_udp_mem[1] = limit; | 
|  | sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; | 
|  |  | 
|  | sysctl_udp_rmem_min = SK_MEM_QUANTUM; | 
|  | sysctl_udp_wmem_min = SK_MEM_QUANTUM; | 
|  | } | 
|  |  | 
|  | int udp4_ufo_send_check(struct sk_buff *skb) | 
|  | { | 
|  | const struct iphdr *iph; | 
|  | struct udphdr *uh; | 
|  |  | 
|  | if (!pskb_may_pull(skb, sizeof(*uh))) | 
|  | return -EINVAL; | 
|  |  | 
|  | iph = ip_hdr(skb); | 
|  | uh = udp_hdr(skb); | 
|  |  | 
|  | uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len, | 
|  | IPPROTO_UDP, 0); | 
|  | skb->csum_start = skb_transport_header(skb) - skb->head; | 
|  | skb->csum_offset = offsetof(struct udphdr, check); | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb, int features) | 
|  | { | 
|  | struct sk_buff *segs = ERR_PTR(-EINVAL); | 
|  | unsigned int mss; | 
|  | int offset; | 
|  | __wsum csum; | 
|  |  | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (unlikely(skb->len <= mss)) | 
|  | goto out; | 
|  |  | 
|  | if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { | 
|  | /* Packet is from an untrusted source, reset gso_segs. */ | 
|  | int type = skb_shinfo(skb)->gso_type; | 
|  |  | 
|  | if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) || | 
|  | !(type & (SKB_GSO_UDP)))) | 
|  | goto out; | 
|  |  | 
|  | skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); | 
|  |  | 
|  | segs = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Do software UFO. Complete and fill in the UDP checksum as HW cannot | 
|  | * do checksum of UDP packets sent as multiple IP fragments. | 
|  | */ | 
|  | offset = skb->csum_start - skb_headroom(skb); | 
|  | csum = skb_checksum(skb, offset, skb->len - offset, 0); | 
|  | offset += skb->csum_offset; | 
|  | *(__sum16 *)(skb->data + offset) = csum_fold(csum); | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* Fragment the skb. IP headers of the fragments are updated in | 
|  | * inet_gso_segment() | 
|  | */ | 
|  | segs = skb_segment(skb, features); | 
|  | out: | 
|  | return segs; | 
|  | } | 
|  |  |