|  | /* multi_arith.h: multi-precision integer arithmetic functions, needed | 
|  | to do extended-precision floating point. | 
|  |  | 
|  | (c) 1998 David Huggins-Daines. | 
|  |  | 
|  | Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) | 
|  | David Mosberger-Tang. | 
|  |  | 
|  | You may copy, modify, and redistribute this file under the terms of | 
|  | the GNU General Public License, version 2, or any later version, at | 
|  | your convenience. */ | 
|  |  | 
|  | /* Note: | 
|  |  | 
|  | These are not general multi-precision math routines.  Rather, they | 
|  | implement the subset of integer arithmetic that we need in order to | 
|  | multiply, divide, and normalize 128-bit unsigned mantissae.  */ | 
|  |  | 
|  | #ifndef MULTI_ARITH_H | 
|  | #define MULTI_ARITH_H | 
|  |  | 
|  | #if 0	/* old code... */ | 
|  |  | 
|  | /* Unsigned only, because we don't need signs to multiply and divide. */ | 
|  | typedef unsigned int int128[4]; | 
|  |  | 
|  | /* Word order */ | 
|  | enum { | 
|  | MSW128, | 
|  | NMSW128, | 
|  | NLSW128, | 
|  | LSW128 | 
|  | }; | 
|  |  | 
|  | /* big-endian */ | 
|  | #define LO_WORD(ll) (((unsigned int *) &ll)[1]) | 
|  | #define HI_WORD(ll) (((unsigned int *) &ll)[0]) | 
|  |  | 
|  | /* Convenience functions to stuff various integer values into int128s */ | 
|  |  | 
|  | static inline void zero128(int128 a) | 
|  | { | 
|  | a[LSW128] = a[NLSW128] = a[NMSW128] = a[MSW128] = 0; | 
|  | } | 
|  |  | 
|  | /* Human-readable word order in the arguments */ | 
|  | static inline void set128(unsigned int i3, unsigned int i2, unsigned int i1, | 
|  | unsigned int i0, int128 a) | 
|  | { | 
|  | a[LSW128] = i0; | 
|  | a[NLSW128] = i1; | 
|  | a[NMSW128] = i2; | 
|  | a[MSW128] = i3; | 
|  | } | 
|  |  | 
|  | /* Convenience functions (for testing as well) */ | 
|  | static inline void int64_to_128(unsigned long long src, int128 dest) | 
|  | { | 
|  | dest[LSW128] = (unsigned int) src; | 
|  | dest[NLSW128] = src >> 32; | 
|  | dest[NMSW128] = dest[MSW128] = 0; | 
|  | } | 
|  |  | 
|  | static inline void int128_to_64(const int128 src, unsigned long long *dest) | 
|  | { | 
|  | *dest = src[LSW128] | (long long) src[NLSW128] << 32; | 
|  | } | 
|  |  | 
|  | static inline void put_i128(const int128 a) | 
|  | { | 
|  | printk("%08x %08x %08x %08x\n", a[MSW128], a[NMSW128], | 
|  | a[NLSW128], a[LSW128]); | 
|  | } | 
|  |  | 
|  | /* Internal shifters: | 
|  |  | 
|  | Note that these are only good for 0 < count < 32. | 
|  | */ | 
|  |  | 
|  | static inline void _lsl128(unsigned int count, int128 a) | 
|  | { | 
|  | a[MSW128] = (a[MSW128] << count) | (a[NMSW128] >> (32 - count)); | 
|  | a[NMSW128] = (a[NMSW128] << count) | (a[NLSW128] >> (32 - count)); | 
|  | a[NLSW128] = (a[NLSW128] << count) | (a[LSW128] >> (32 - count)); | 
|  | a[LSW128] <<= count; | 
|  | } | 
|  |  | 
|  | static inline void _lsr128(unsigned int count, int128 a) | 
|  | { | 
|  | a[LSW128] = (a[LSW128] >> count) | (a[NLSW128] << (32 - count)); | 
|  | a[NLSW128] = (a[NLSW128] >> count) | (a[NMSW128] << (32 - count)); | 
|  | a[NMSW128] = (a[NMSW128] >> count) | (a[MSW128] << (32 - count)); | 
|  | a[MSW128] >>= count; | 
|  | } | 
|  |  | 
|  | /* Should be faster, one would hope */ | 
|  |  | 
|  | static inline void lslone128(int128 a) | 
|  | { | 
|  | asm volatile ("lsl.l #1,%0\n" | 
|  | "roxl.l #1,%1\n" | 
|  | "roxl.l #1,%2\n" | 
|  | "roxl.l #1,%3\n" | 
|  | : | 
|  | "=d" (a[LSW128]), | 
|  | "=d"(a[NLSW128]), | 
|  | "=d"(a[NMSW128]), | 
|  | "=d"(a[MSW128]) | 
|  | : | 
|  | "0"(a[LSW128]), | 
|  | "1"(a[NLSW128]), | 
|  | "2"(a[NMSW128]), | 
|  | "3"(a[MSW128])); | 
|  | } | 
|  |  | 
|  | static inline void lsrone128(int128 a) | 
|  | { | 
|  | asm volatile ("lsr.l #1,%0\n" | 
|  | "roxr.l #1,%1\n" | 
|  | "roxr.l #1,%2\n" | 
|  | "roxr.l #1,%3\n" | 
|  | : | 
|  | "=d" (a[MSW128]), | 
|  | "=d"(a[NMSW128]), | 
|  | "=d"(a[NLSW128]), | 
|  | "=d"(a[LSW128]) | 
|  | : | 
|  | "0"(a[MSW128]), | 
|  | "1"(a[NMSW128]), | 
|  | "2"(a[NLSW128]), | 
|  | "3"(a[LSW128])); | 
|  | } | 
|  |  | 
|  | /* Generalized 128-bit shifters: | 
|  |  | 
|  | These bit-shift to a multiple of 32, then move whole longwords.  */ | 
|  |  | 
|  | static inline void lsl128(unsigned int count, int128 a) | 
|  | { | 
|  | int wordcount, i; | 
|  |  | 
|  | if (count % 32) | 
|  | _lsl128(count % 32, a); | 
|  |  | 
|  | if (0 == (wordcount = count / 32)) | 
|  | return; | 
|  |  | 
|  | /* argh, gak, endian-sensitive */ | 
|  | for (i = 0; i < 4 - wordcount; i++) { | 
|  | a[i] = a[i + wordcount]; | 
|  | } | 
|  | for (i = 3; i >= 4 - wordcount; --i) { | 
|  | a[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void lsr128(unsigned int count, int128 a) | 
|  | { | 
|  | int wordcount, i; | 
|  |  | 
|  | if (count % 32) | 
|  | _lsr128(count % 32, a); | 
|  |  | 
|  | if (0 == (wordcount = count / 32)) | 
|  | return; | 
|  |  | 
|  | for (i = 3; i >= wordcount; --i) { | 
|  | a[i] = a[i - wordcount]; | 
|  | } | 
|  | for (i = 0; i < wordcount; i++) { | 
|  | a[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int orl128(int a, int128 b) | 
|  | { | 
|  | b[LSW128] |= a; | 
|  | } | 
|  |  | 
|  | static inline int btsthi128(const int128 a) | 
|  | { | 
|  | return a[MSW128] & 0x80000000; | 
|  | } | 
|  |  | 
|  | /* test bits (numbered from 0 = LSB) up to and including "top" */ | 
|  | static inline int bftestlo128(int top, const int128 a) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | if (top > 31) | 
|  | r |= a[LSW128]; | 
|  | if (top > 63) | 
|  | r |= a[NLSW128]; | 
|  | if (top > 95) | 
|  | r |= a[NMSW128]; | 
|  |  | 
|  | r |= a[3 - (top / 32)] & ((1 << (top % 32 + 1)) - 1); | 
|  |  | 
|  | return (r != 0); | 
|  | } | 
|  |  | 
|  | /* Aargh.  We need these because GCC is broken */ | 
|  | /* FIXME: do them in assembly, for goodness' sake! */ | 
|  | static inline void mask64(int pos, unsigned long long *mask) | 
|  | { | 
|  | *mask = 0; | 
|  |  | 
|  | if (pos < 32) { | 
|  | LO_WORD(*mask) = (1 << pos) - 1; | 
|  | return; | 
|  | } | 
|  | LO_WORD(*mask) = -1; | 
|  | HI_WORD(*mask) = (1 << (pos - 32)) - 1; | 
|  | } | 
|  |  | 
|  | static inline void bset64(int pos, unsigned long long *dest) | 
|  | { | 
|  | /* This conditional will be optimized away.  Thanks, GCC! */ | 
|  | if (pos < 32) | 
|  | asm volatile ("bset %1,%0":"=m" | 
|  | (LO_WORD(*dest)):"id"(pos)); | 
|  | else | 
|  | asm volatile ("bset %1,%0":"=m" | 
|  | (HI_WORD(*dest)):"id"(pos - 32)); | 
|  | } | 
|  |  | 
|  | static inline int btst64(int pos, unsigned long long dest) | 
|  | { | 
|  | if (pos < 32) | 
|  | return (0 != (LO_WORD(dest) & (1 << pos))); | 
|  | else | 
|  | return (0 != (HI_WORD(dest) & (1 << (pos - 32)))); | 
|  | } | 
|  |  | 
|  | static inline void lsl64(int count, unsigned long long *dest) | 
|  | { | 
|  | if (count < 32) { | 
|  | HI_WORD(*dest) = (HI_WORD(*dest) << count) | 
|  | | (LO_WORD(*dest) >> count); | 
|  | LO_WORD(*dest) <<= count; | 
|  | return; | 
|  | } | 
|  | count -= 32; | 
|  | HI_WORD(*dest) = LO_WORD(*dest) << count; | 
|  | LO_WORD(*dest) = 0; | 
|  | } | 
|  |  | 
|  | static inline void lsr64(int count, unsigned long long *dest) | 
|  | { | 
|  | if (count < 32) { | 
|  | LO_WORD(*dest) = (LO_WORD(*dest) >> count) | 
|  | | (HI_WORD(*dest) << (32 - count)); | 
|  | HI_WORD(*dest) >>= count; | 
|  | return; | 
|  | } | 
|  | count -= 32; | 
|  | LO_WORD(*dest) = HI_WORD(*dest) >> count; | 
|  | HI_WORD(*dest) = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) | 
|  | { | 
|  | reg->exp += cnt; | 
|  |  | 
|  | switch (cnt) { | 
|  | case 0 ... 8: | 
|  | reg->lowmant = reg->mant.m32[1] << (8 - cnt); | 
|  | reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | | 
|  | (reg->mant.m32[0] << (32 - cnt)); | 
|  | reg->mant.m32[0] = reg->mant.m32[0] >> cnt; | 
|  | break; | 
|  | case 9 ... 32: | 
|  | reg->lowmant = reg->mant.m32[1] >> (cnt - 8); | 
|  | if (reg->mant.m32[1] << (40 - cnt)) | 
|  | reg->lowmant |= 1; | 
|  | reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | | 
|  | (reg->mant.m32[0] << (32 - cnt)); | 
|  | reg->mant.m32[0] = reg->mant.m32[0] >> cnt; | 
|  | break; | 
|  | case 33 ... 39: | 
|  | asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) | 
|  | : "m" (reg->mant.m32[0]), "d" (64 - cnt)); | 
|  | if (reg->mant.m32[1] << (40 - cnt)) | 
|  | reg->lowmant |= 1; | 
|  | reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); | 
|  | reg->mant.m32[0] = 0; | 
|  | break; | 
|  | case 40 ... 71: | 
|  | reg->lowmant = reg->mant.m32[0] >> (cnt - 40); | 
|  | if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) | 
|  | reg->lowmant |= 1; | 
|  | reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); | 
|  | reg->mant.m32[0] = 0; | 
|  | break; | 
|  | default: | 
|  | reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; | 
|  | reg->mant.m32[0] = 0; | 
|  | reg->mant.m32[1] = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int fp_overnormalize(struct fp_ext *reg) | 
|  | { | 
|  | int shift; | 
|  |  | 
|  | if (reg->mant.m32[0]) { | 
|  | asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); | 
|  | reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); | 
|  | reg->mant.m32[1] = (reg->mant.m32[1] << shift); | 
|  | } else { | 
|  | asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); | 
|  | reg->mant.m32[0] = (reg->mant.m32[1] << shift); | 
|  | reg->mant.m32[1] = 0; | 
|  | shift += 32; | 
|  | } | 
|  |  | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) | 
|  | { | 
|  | int carry; | 
|  |  | 
|  | /* we assume here, gcc only insert move and a clr instr */ | 
|  | asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) | 
|  | : "g,d" (src->lowmant), "0,0" (dest->lowmant)); | 
|  | asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) | 
|  | : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); | 
|  | asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) | 
|  | : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); | 
|  | asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); | 
|  |  | 
|  | return carry; | 
|  | } | 
|  |  | 
|  | static inline int fp_addcarry(struct fp_ext *reg) | 
|  | { | 
|  | if (++reg->exp == 0x7fff) { | 
|  | if (reg->mant.m64) | 
|  | fp_set_sr(FPSR_EXC_INEX2); | 
|  | reg->mant.m64 = 0; | 
|  | fp_set_sr(FPSR_EXC_OVFL); | 
|  | return 0; | 
|  | } | 
|  | reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); | 
|  | reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | | 
|  | (reg->mant.m32[0] << 31); | 
|  | reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, | 
|  | struct fp_ext *src2) | 
|  | { | 
|  | /* we assume here, gcc only insert move and a clr instr */ | 
|  | asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) | 
|  | : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); | 
|  | asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) | 
|  | : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); | 
|  | asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) | 
|  | : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); | 
|  | } | 
|  |  | 
|  | #define fp_mul64(desth, destl, src1, src2) ({				\ | 
|  | asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\ | 
|  | : "g" (src1), "0" (src2));				\ | 
|  | }) | 
|  | #define fp_div64(quot, rem, srch, srcl, div)				\ | 
|  | asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\ | 
|  | : "dm" (div), "1" (srch), "0" (srcl)) | 
|  | #define fp_add64(dest1, dest2, src1, src2) ({				\ | 
|  | asm ("add.l %1,%0" : "=d,dm" (dest2)				\ | 
|  | : "dm,d" (src2), "0,0" (dest2));			\ | 
|  | asm ("addx.l %1,%0" : "=d" (dest1)				\ | 
|  | : "d" (src1), "0" (dest1));				\ | 
|  | }) | 
|  | #define fp_addx96(dest, src) ({						\ | 
|  | /* we assume here, gcc only insert move and a clr instr */	\ | 
|  | asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\ | 
|  | : "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\ | 
|  | asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\ | 
|  | : "d" (temp.m32[0]), "0" (dest->m32[1]));		\ | 
|  | asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\ | 
|  | : "d" (0), "0" (dest->m32[0]));				\ | 
|  | }) | 
|  | #define fp_sub64(dest, src) ({						\ | 
|  | asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\ | 
|  | : "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\ | 
|  | asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\ | 
|  | : "d" (src.m32[0]), "0" (dest.m32[0]));			\ | 
|  | }) | 
|  | #define fp_sub96c(dest, srch, srcm, srcl) ({				\ | 
|  | char carry;							\ | 
|  | asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\ | 
|  | : "dm,d" (srcl), "0,0" (dest.m32[2]));			\ | 
|  | asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\ | 
|  | : "d" (srcm), "0" (dest.m32[1]));			\ | 
|  | asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\ | 
|  | : "d" (srch), "1" (dest.m32[0]));			\ | 
|  | carry;								\ | 
|  | }) | 
|  |  | 
|  | static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, | 
|  | struct fp_ext *src2) | 
|  | { | 
|  | union fp_mant64 temp; | 
|  |  | 
|  | fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); | 
|  | fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); | 
|  |  | 
|  | fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); | 
|  | fp_addx96(dest, temp); | 
|  |  | 
|  | fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); | 
|  | fp_addx96(dest, temp); | 
|  | } | 
|  |  | 
|  | static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, | 
|  | struct fp_ext *div) | 
|  | { | 
|  | union fp_mant128 tmp; | 
|  | union fp_mant64 tmp64; | 
|  | unsigned long *mantp = dest->m32; | 
|  | unsigned long fix, rem, first, dummy; | 
|  | int i; | 
|  |  | 
|  | /* the algorithm below requires dest to be smaller than div, | 
|  | but both have the high bit set */ | 
|  | if (src->mant.m64 >= div->mant.m64) { | 
|  | fp_sub64(src->mant, div->mant); | 
|  | *mantp = 1; | 
|  | } else | 
|  | *mantp = 0; | 
|  | mantp++; | 
|  |  | 
|  | /* basic idea behind this algorithm: we can't divide two 64bit numbers | 
|  | (AB/CD) directly, but we can calculate AB/C0, but this means this | 
|  | quotient is off by C0/CD, so we have to multiply the first result | 
|  | to fix the result, after that we have nearly the correct result | 
|  | and only a few corrections are needed. */ | 
|  |  | 
|  | /* C0/CD can be precalculated, but it's an 64bit division again, but | 
|  | we can make it a bit easier, by dividing first through C so we get | 
|  | 10/1D and now only a single shift and the value fits into 32bit. */ | 
|  | fix = 0x80000000; | 
|  | dummy = div->mant.m32[1] / div->mant.m32[0] + 1; | 
|  | dummy = (dummy >> 1) | fix; | 
|  | fp_div64(fix, dummy, fix, 0, dummy); | 
|  | fix--; | 
|  |  | 
|  | for (i = 0; i < 3; i++, mantp++) { | 
|  | if (src->mant.m32[0] == div->mant.m32[0]) { | 
|  | fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); | 
|  |  | 
|  | fp_mul64(*mantp, dummy, first, fix); | 
|  | *mantp += fix; | 
|  | } else { | 
|  | fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); | 
|  |  | 
|  | fp_mul64(*mantp, dummy, first, fix); | 
|  | } | 
|  |  | 
|  | fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); | 
|  | fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); | 
|  | tmp.m32[2] = 0; | 
|  |  | 
|  | fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); | 
|  | fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); | 
|  |  | 
|  | src->mant.m32[0] = tmp.m32[1]; | 
|  | src->mant.m32[1] = tmp.m32[2]; | 
|  |  | 
|  | while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { | 
|  | src->mant.m32[0] = tmp.m32[1]; | 
|  | src->mant.m32[1] = tmp.m32[2]; | 
|  | *mantp += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static inline unsigned int fp_fls128(union fp_mant128 *src) | 
|  | { | 
|  | unsigned long data; | 
|  | unsigned int res, off; | 
|  |  | 
|  | if ((data = src->m32[0])) | 
|  | off = 0; | 
|  | else if ((data = src->m32[1])) | 
|  | off = 32; | 
|  | else if ((data = src->m32[2])) | 
|  | off = 64; | 
|  | else if ((data = src->m32[3])) | 
|  | off = 96; | 
|  | else | 
|  | return 128; | 
|  |  | 
|  | asm ("bfffo %1{#0,#32},%0" : "=d" (res) : "dm" (data)); | 
|  | return res + off; | 
|  | } | 
|  |  | 
|  | static inline void fp_shiftmant128(union fp_mant128 *src, int shift) | 
|  | { | 
|  | unsigned long sticky; | 
|  |  | 
|  | switch (shift) { | 
|  | case 0: | 
|  | return; | 
|  | case 1: | 
|  | asm volatile ("lsl.l #1,%0" | 
|  | : "=d" (src->m32[3]) : "0" (src->m32[3])); | 
|  | asm volatile ("roxl.l #1,%0" | 
|  | : "=d" (src->m32[2]) : "0" (src->m32[2])); | 
|  | asm volatile ("roxl.l #1,%0" | 
|  | : "=d" (src->m32[1]) : "0" (src->m32[1])); | 
|  | asm volatile ("roxl.l #1,%0" | 
|  | : "=d" (src->m32[0]) : "0" (src->m32[0])); | 
|  | return; | 
|  | case 2 ... 31: | 
|  | src->m32[0] = (src->m32[0] << shift) | (src->m32[1] >> (32 - shift)); | 
|  | src->m32[1] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); | 
|  | src->m32[2] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); | 
|  | src->m32[3] = (src->m32[3] << shift); | 
|  | return; | 
|  | case 32 ... 63: | 
|  | shift -= 32; | 
|  | src->m32[0] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); | 
|  | src->m32[1] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); | 
|  | src->m32[2] = (src->m32[3] << shift); | 
|  | src->m32[3] = 0; | 
|  | return; | 
|  | case 64 ... 95: | 
|  | shift -= 64; | 
|  | src->m32[0] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); | 
|  | src->m32[1] = (src->m32[3] << shift); | 
|  | src->m32[2] = src->m32[3] = 0; | 
|  | return; | 
|  | case 96 ... 127: | 
|  | shift -= 96; | 
|  | src->m32[0] = (src->m32[3] << shift); | 
|  | src->m32[1] = src->m32[2] = src->m32[3] = 0; | 
|  | return; | 
|  | case -31 ... -1: | 
|  | shift = -shift; | 
|  | sticky = 0; | 
|  | if (src->m32[3] << (32 - shift)) | 
|  | sticky = 1; | 
|  | src->m32[3] = (src->m32[3] >> shift) | (src->m32[2] << (32 - shift)) | sticky; | 
|  | src->m32[2] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)); | 
|  | src->m32[1] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); | 
|  | src->m32[0] = (src->m32[0] >> shift); | 
|  | return; | 
|  | case -63 ... -32: | 
|  | shift = -shift - 32; | 
|  | sticky = 0; | 
|  | if ((src->m32[2] << (32 - shift)) || src->m32[3]) | 
|  | sticky = 1; | 
|  | src->m32[3] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)) | sticky; | 
|  | src->m32[2] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); | 
|  | src->m32[1] = (src->m32[0] >> shift); | 
|  | src->m32[0] = 0; | 
|  | return; | 
|  | case -95 ... -64: | 
|  | shift = -shift - 64; | 
|  | sticky = 0; | 
|  | if ((src->m32[1] << (32 - shift)) || src->m32[2] || src->m32[3]) | 
|  | sticky = 1; | 
|  | src->m32[3] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)) | sticky; | 
|  | src->m32[2] = (src->m32[0] >> shift); | 
|  | src->m32[1] = src->m32[0] = 0; | 
|  | return; | 
|  | case -127 ... -96: | 
|  | shift = -shift - 96; | 
|  | sticky = 0; | 
|  | if ((src->m32[0] << (32 - shift)) || src->m32[1] || src->m32[2] || src->m32[3]) | 
|  | sticky = 1; | 
|  | src->m32[3] = (src->m32[0] >> shift) | sticky; | 
|  | src->m32[2] = src->m32[1] = src->m32[0] = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (shift < 0 && (src->m32[0] || src->m32[1] || src->m32[2] || src->m32[3])) | 
|  | src->m32[3] = 1; | 
|  | else | 
|  | src->m32[3] = 0; | 
|  | src->m32[2] = 0; | 
|  | src->m32[1] = 0; | 
|  | src->m32[0] = 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, | 
|  | int shift) | 
|  | { | 
|  | unsigned long tmp; | 
|  |  | 
|  | switch (shift) { | 
|  | case 0: | 
|  | dest->mant.m64 = src->m64[0]; | 
|  | dest->lowmant = src->m32[2] >> 24; | 
|  | if (src->m32[3] || (src->m32[2] << 8)) | 
|  | dest->lowmant |= 1; | 
|  | break; | 
|  | case 1: | 
|  | asm volatile ("lsl.l #1,%0" | 
|  | : "=d" (tmp) : "0" (src->m32[2])); | 
|  | asm volatile ("roxl.l #1,%0" | 
|  | : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); | 
|  | asm volatile ("roxl.l #1,%0" | 
|  | : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); | 
|  | dest->lowmant = tmp >> 24; | 
|  | if (src->m32[3] || (tmp << 8)) | 
|  | dest->lowmant |= 1; | 
|  | break; | 
|  | case 31: | 
|  | asm volatile ("lsr.l #1,%1; roxr.l #1,%0" | 
|  | : "=d" (dest->mant.m32[0]) | 
|  | : "d" (src->m32[0]), "0" (src->m32[1])); | 
|  | asm volatile ("roxr.l #1,%0" | 
|  | : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); | 
|  | asm volatile ("roxr.l #1,%0" | 
|  | : "=d" (tmp) : "0" (src->m32[3])); | 
|  | dest->lowmant = tmp >> 24; | 
|  | if (src->m32[3] << 7) | 
|  | dest->lowmant |= 1; | 
|  | break; | 
|  | case 32: | 
|  | dest->mant.m32[0] = src->m32[1]; | 
|  | dest->mant.m32[1] = src->m32[2]; | 
|  | dest->lowmant = src->m32[3] >> 24; | 
|  | if (src->m32[3] << 8) | 
|  | dest->lowmant |= 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 /* old code... */ | 
|  | static inline int fls(unsigned int a) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | asm volatile ("bfffo %1{#0,#32},%0" | 
|  | : "=d" (r) : "md" (a)); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* fls = "find last set" (cf. ffs(3)) */ | 
|  | static inline int fls128(const int128 a) | 
|  | { | 
|  | if (a[MSW128]) | 
|  | return fls(a[MSW128]); | 
|  | if (a[NMSW128]) | 
|  | return fls(a[NMSW128]) + 32; | 
|  | /* XXX: it probably never gets beyond this point in actual | 
|  | use, but that's indicative of a more general problem in the | 
|  | algorithm (i.e. as per the actual 68881 implementation, we | 
|  | really only need at most 67 bits of precision [plus | 
|  | overflow]) so I'm not going to fix it. */ | 
|  | if (a[NLSW128]) | 
|  | return fls(a[NLSW128]) + 64; | 
|  | if (a[LSW128]) | 
|  | return fls(a[LSW128]) + 96; | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline int zerop128(const int128 a) | 
|  | { | 
|  | return !(a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]); | 
|  | } | 
|  |  | 
|  | static inline int nonzerop128(const int128 a) | 
|  | { | 
|  | return (a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]); | 
|  | } | 
|  |  | 
|  | /* Addition and subtraction */ | 
|  | /* Do these in "pure" assembly, because "extended" asm is unmanageable | 
|  | here */ | 
|  | static inline void add128(const int128 a, int128 b) | 
|  | { | 
|  | /* rotating carry flags */ | 
|  | unsigned int carry[2]; | 
|  |  | 
|  | carry[0] = a[LSW128] > (0xffffffff - b[LSW128]); | 
|  | b[LSW128] += a[LSW128]; | 
|  |  | 
|  | carry[1] = a[NLSW128] > (0xffffffff - b[NLSW128] - carry[0]); | 
|  | b[NLSW128] = a[NLSW128] + b[NLSW128] + carry[0]; | 
|  |  | 
|  | carry[0] = a[NMSW128] > (0xffffffff - b[NMSW128] - carry[1]); | 
|  | b[NMSW128] = a[NMSW128] + b[NMSW128] + carry[1]; | 
|  |  | 
|  | b[MSW128] = a[MSW128] + b[MSW128] + carry[0]; | 
|  | } | 
|  |  | 
|  | /* Note: assembler semantics: "b -= a" */ | 
|  | static inline void sub128(const int128 a, int128 b) | 
|  | { | 
|  | /* rotating borrow flags */ | 
|  | unsigned int borrow[2]; | 
|  |  | 
|  | borrow[0] = b[LSW128] < a[LSW128]; | 
|  | b[LSW128] -= a[LSW128]; | 
|  |  | 
|  | borrow[1] = b[NLSW128] < a[NLSW128] + borrow[0]; | 
|  | b[NLSW128] = b[NLSW128] - a[NLSW128] - borrow[0]; | 
|  |  | 
|  | borrow[0] = b[NMSW128] < a[NMSW128] + borrow[1]; | 
|  | b[NMSW128] = b[NMSW128] - a[NMSW128] - borrow[1]; | 
|  |  | 
|  | b[MSW128] = b[MSW128] - a[MSW128] - borrow[0]; | 
|  | } | 
|  |  | 
|  | /* Poor man's 64-bit expanding multiply */ | 
|  | static inline void mul64(unsigned long long a, unsigned long long b, int128 c) | 
|  | { | 
|  | unsigned long long acc; | 
|  | int128 acc128; | 
|  |  | 
|  | zero128(acc128); | 
|  | zero128(c); | 
|  |  | 
|  | /* first the low words */ | 
|  | if (LO_WORD(a) && LO_WORD(b)) { | 
|  | acc = (long long) LO_WORD(a) * LO_WORD(b); | 
|  | c[NLSW128] = HI_WORD(acc); | 
|  | c[LSW128] = LO_WORD(acc); | 
|  | } | 
|  | /* Next the high words */ | 
|  | if (HI_WORD(a) && HI_WORD(b)) { | 
|  | acc = (long long) HI_WORD(a) * HI_WORD(b); | 
|  | c[MSW128] = HI_WORD(acc); | 
|  | c[NMSW128] = LO_WORD(acc); | 
|  | } | 
|  | /* The middle words */ | 
|  | if (LO_WORD(a) && HI_WORD(b)) { | 
|  | acc = (long long) LO_WORD(a) * HI_WORD(b); | 
|  | acc128[NMSW128] = HI_WORD(acc); | 
|  | acc128[NLSW128] = LO_WORD(acc); | 
|  | add128(acc128, c); | 
|  | } | 
|  | /* The first and last words */ | 
|  | if (HI_WORD(a) && LO_WORD(b)) { | 
|  | acc = (long long) HI_WORD(a) * LO_WORD(b); | 
|  | acc128[NMSW128] = HI_WORD(acc); | 
|  | acc128[NLSW128] = LO_WORD(acc); | 
|  | add128(acc128, c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note: unsigned */ | 
|  | static inline int cmp128(int128 a, int128 b) | 
|  | { | 
|  | if (a[MSW128] < b[MSW128]) | 
|  | return -1; | 
|  | if (a[MSW128] > b[MSW128]) | 
|  | return 1; | 
|  | if (a[NMSW128] < b[NMSW128]) | 
|  | return -1; | 
|  | if (a[NMSW128] > b[NMSW128]) | 
|  | return 1; | 
|  | if (a[NLSW128] < b[NLSW128]) | 
|  | return -1; | 
|  | if (a[NLSW128] > b[NLSW128]) | 
|  | return 1; | 
|  |  | 
|  | return (signed) a[LSW128] - b[LSW128]; | 
|  | } | 
|  |  | 
|  | inline void div128(int128 a, int128 b, int128 c) | 
|  | { | 
|  | int128 mask; | 
|  |  | 
|  | /* Algorithm: | 
|  |  | 
|  | Shift the divisor until it's at least as big as the | 
|  | dividend, keeping track of the position to which we've | 
|  | shifted it, i.e. the power of 2 which we've multiplied it | 
|  | by. | 
|  |  | 
|  | Then, for this power of 2 (the mask), and every one smaller | 
|  | than it, subtract the mask from the dividend and add it to | 
|  | the quotient until the dividend is smaller than the raised | 
|  | divisor.  At this point, divide the dividend and the mask | 
|  | by 2 (i.e. shift one place to the right).  Lather, rinse, | 
|  | and repeat, until there are no more powers of 2 left. */ | 
|  |  | 
|  | /* FIXME: needless to say, there's room for improvement here too. */ | 
|  |  | 
|  | /* Shift up */ | 
|  | /* XXX: since it just has to be "at least as big", we can | 
|  | probably eliminate this horribly wasteful loop.  I will | 
|  | have to prove this first, though */ | 
|  | set128(0, 0, 0, 1, mask); | 
|  | while (cmp128(b, a) < 0 && !btsthi128(b)) { | 
|  | lslone128(b); | 
|  | lslone128(mask); | 
|  | } | 
|  |  | 
|  | /* Shift down */ | 
|  | zero128(c); | 
|  | do { | 
|  | if (cmp128(a, b) >= 0) { | 
|  | sub128(b, a); | 
|  | add128(mask, c); | 
|  | } | 
|  | lsrone128(mask); | 
|  | lsrone128(b); | 
|  | } while (nonzerop128(mask)); | 
|  |  | 
|  | /* The remainder is in a... */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif	/* MULTI_ARITH_H */ |