|  | /* | 
|  | *  arch/ppc/kernel/process.c | 
|  | * | 
|  | *  Derived from "arch/i386/kernel/process.c" | 
|  | *    Copyright (C) 1995  Linus Torvalds | 
|  | * | 
|  | *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and | 
|  | *  Paul Mackerras (paulus@cs.anu.edu.au) | 
|  | * | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU General Public License | 
|  | *  as published by the Free Software Foundation; either version | 
|  | *  2 of the License, or (at your option) any later version. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/mqueue.h> | 
|  | #include <linux/hardirq.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/prom.h> | 
|  |  | 
|  | extern unsigned long _get_SP(void); | 
|  |  | 
|  | struct task_struct *last_task_used_math = NULL; | 
|  | struct task_struct *last_task_used_altivec = NULL; | 
|  | struct task_struct *last_task_used_spe = NULL; | 
|  |  | 
|  | static struct fs_struct init_fs = INIT_FS; | 
|  | static struct files_struct init_files = INIT_FILES; | 
|  | static struct signal_struct init_signals = INIT_SIGNALS(init_signals); | 
|  | static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand); | 
|  | struct mm_struct init_mm = INIT_MM(init_mm); | 
|  | EXPORT_SYMBOL(init_mm); | 
|  |  | 
|  | /* this is 8kB-aligned so we can get to the thread_info struct | 
|  | at the base of it from the stack pointer with 1 integer instruction. */ | 
|  | union thread_union init_thread_union | 
|  | __attribute__((__section__(".data.init_task"))) = | 
|  | { INIT_THREAD_INFO(init_task) }; | 
|  |  | 
|  | /* initial task structure */ | 
|  | struct task_struct init_task = INIT_TASK(init_task); | 
|  | EXPORT_SYMBOL(init_task); | 
|  |  | 
|  | /* only used to get secondary processor up */ | 
|  | struct task_struct *current_set[NR_CPUS] = {&init_task, }; | 
|  |  | 
|  | #undef SHOW_TASK_SWITCHES | 
|  | #undef CHECK_STACK | 
|  |  | 
|  | #if defined(CHECK_STACK) | 
|  | unsigned long | 
|  | kernel_stack_top(struct task_struct *tsk) | 
|  | { | 
|  | return ((unsigned long)tsk) + sizeof(union task_union); | 
|  | } | 
|  |  | 
|  | unsigned long | 
|  | task_top(struct task_struct *tsk) | 
|  | { | 
|  | return ((unsigned long)tsk) + sizeof(struct thread_info); | 
|  | } | 
|  |  | 
|  | /* check to make sure the kernel stack is healthy */ | 
|  | int check_stack(struct task_struct *tsk) | 
|  | { | 
|  | unsigned long stack_top = kernel_stack_top(tsk); | 
|  | unsigned long tsk_top = task_top(tsk); | 
|  | int ret = 0; | 
|  |  | 
|  | #if 0 | 
|  | /* check thread magic */ | 
|  | if ( tsk->thread.magic != THREAD_MAGIC ) | 
|  | { | 
|  | ret |= 1; | 
|  | printk("thread.magic bad: %08x\n", tsk->thread.magic); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if ( !tsk ) | 
|  | printk("check_stack(): tsk bad tsk %p\n",tsk); | 
|  |  | 
|  | /* check if stored ksp is bad */ | 
|  | if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) ) | 
|  | { | 
|  | printk("stack out of bounds: %s/%d\n" | 
|  | " tsk_top %08lx ksp %08lx stack_top %08lx\n", | 
|  | tsk->comm,tsk->pid, | 
|  | tsk_top, tsk->thread.ksp, stack_top); | 
|  | ret |= 2; | 
|  | } | 
|  |  | 
|  | /* check if stack ptr RIGHT NOW is bad */ | 
|  | if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) ) | 
|  | { | 
|  | printk("current stack ptr out of bounds: %s/%d\n" | 
|  | " tsk_top %08lx sp %08lx stack_top %08lx\n", | 
|  | current->comm,current->pid, | 
|  | tsk_top, _get_SP(), stack_top); | 
|  | ret |= 4; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* check amount of free stack */ | 
|  | for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ ) | 
|  | { | 
|  | if ( !i ) | 
|  | printk("check_stack(): i = %p\n", i); | 
|  | if ( *i != 0 ) | 
|  | { | 
|  | /* only notify if it's less than 900 bytes */ | 
|  | if ( (i - (unsigned long *)task_top(tsk))  < 900 ) | 
|  | printk("%d bytes free on stack\n", | 
|  | i - task_top(tsk)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (ret) | 
|  | { | 
|  | panic("bad kernel stack"); | 
|  | } | 
|  | return(ret); | 
|  | } | 
|  | #endif /* defined(CHECK_STACK) */ | 
|  |  | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | int | 
|  | dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) | 
|  | { | 
|  | if (regs->msr & MSR_VEC) | 
|  | giveup_altivec(current); | 
|  | memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | enable_kernel_altivec(void) | 
|  | { | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) | 
|  | giveup_altivec(current); | 
|  | else | 
|  | giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */ | 
|  | #else | 
|  | giveup_altivec(last_task_used_altivec); | 
|  | #endif /* __SMP __ */ | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_altivec); | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  |  | 
|  | #ifdef CONFIG_SPE | 
|  | int | 
|  | dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) | 
|  | { | 
|  | if (regs->msr & MSR_SPE) | 
|  | giveup_spe(current); | 
|  | /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ | 
|  | memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void | 
|  | enable_kernel_spe(void) | 
|  | { | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) | 
|  | giveup_spe(current); | 
|  | else | 
|  | giveup_spe(NULL);	/* just enable SPE for kernel - force */ | 
|  | #else | 
|  | giveup_spe(last_task_used_spe); | 
|  | #endif /* __SMP __ */ | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_spe); | 
|  | #endif /* CONFIG_SPE */ | 
|  |  | 
|  | void | 
|  | enable_kernel_fp(void) | 
|  | { | 
|  | WARN_ON(preemptible()); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) | 
|  | giveup_fpu(current); | 
|  | else | 
|  | giveup_fpu(NULL);	/* just enables FP for kernel */ | 
|  | #else | 
|  | giveup_fpu(last_task_used_math); | 
|  | #endif /* CONFIG_SMP */ | 
|  | } | 
|  | EXPORT_SYMBOL(enable_kernel_fp); | 
|  |  | 
|  | int | 
|  | dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (tsk->thread.regs && (tsk->thread.regs->msr & MSR_FP)) | 
|  | giveup_fpu(tsk); | 
|  | preempt_enable(); | 
|  | memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct task_struct *__switch_to(struct task_struct *prev, | 
|  | struct task_struct *new) | 
|  | { | 
|  | struct thread_struct *new_thread, *old_thread; | 
|  | unsigned long s; | 
|  | struct task_struct *last; | 
|  |  | 
|  | local_irq_save(s); | 
|  | #ifdef CHECK_STACK | 
|  | check_stack(prev); | 
|  | check_stack(new); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* avoid complexity of lazy save/restore of fpu | 
|  | * by just saving it every time we switch out if | 
|  | * this task used the fpu during the last quantum. | 
|  | * | 
|  | * If it tries to use the fpu again, it'll trap and | 
|  | * reload its fp regs.  So we don't have to do a restore | 
|  | * every switch, just a save. | 
|  | *  -- Cort | 
|  | */ | 
|  | if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) | 
|  | giveup_fpu(prev); | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | /* | 
|  | * If the previous thread used altivec in the last quantum | 
|  | * (thus changing altivec regs) then save them. | 
|  | * We used to check the VRSAVE register but not all apps | 
|  | * set it, so we don't rely on it now (and in fact we need | 
|  | * to save & restore VSCR even if VRSAVE == 0).  -- paulus | 
|  | * | 
|  | * On SMP we always save/restore altivec regs just to avoid the | 
|  | * complexity of changing processors. | 
|  | *  -- Cort | 
|  | */ | 
|  | if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))) | 
|  | giveup_altivec(prev); | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  | #ifdef CONFIG_SPE | 
|  | /* | 
|  | * If the previous thread used spe in the last quantum | 
|  | * (thus changing spe regs) then save them. | 
|  | * | 
|  | * On SMP we always save/restore spe regs just to avoid the | 
|  | * complexity of changing processors. | 
|  | */ | 
|  | if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) | 
|  | giveup_spe(prev); | 
|  | #endif /* CONFIG_SPE */ | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* Avoid the trap.  On smp this this never happens since | 
|  | * we don't set last_task_used_altivec -- Cort | 
|  | */ | 
|  | if (new->thread.regs && last_task_used_altivec == new) | 
|  | new->thread.regs->msr |= MSR_VEC; | 
|  | #ifdef CONFIG_SPE | 
|  | /* Avoid the trap.  On smp this this never happens since | 
|  | * we don't set last_task_used_spe | 
|  | */ | 
|  | if (new->thread.regs && last_task_used_spe == new) | 
|  | new->thread.regs->msr |= MSR_SPE; | 
|  | #endif /* CONFIG_SPE */ | 
|  | new_thread = &new->thread; | 
|  | old_thread = ¤t->thread; | 
|  | last = _switch(old_thread, new_thread); | 
|  | local_irq_restore(s); | 
|  | return last; | 
|  | } | 
|  |  | 
|  | void show_regs(struct pt_regs * regs) | 
|  | { | 
|  | int i, trap; | 
|  |  | 
|  | printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx    %s\n", | 
|  | regs->nip, regs->link, regs->gpr[1], regs, regs->trap, | 
|  | print_tainted()); | 
|  | printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", | 
|  | regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, | 
|  | regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, | 
|  | regs->msr&MSR_IR ? 1 : 0, | 
|  | regs->msr&MSR_DR ? 1 : 0); | 
|  | trap = TRAP(regs); | 
|  | if (trap == 0x300 || trap == 0x600) | 
|  | printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr); | 
|  | printk("TASK = %p[%d] '%s' THREAD: %p\n", | 
|  | current, current->pid, current->comm, current->thread_info); | 
|  | printk("Last syscall: %ld ", current->thread.last_syscall); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | printk(" CPU: %d", smp_processor_id()); | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | for (i = 0;  i < 32;  i++) { | 
|  | long r; | 
|  | if ((i % 8) == 0) | 
|  | printk("\n" KERN_INFO "GPR%02d: ", i); | 
|  | if (__get_user(r, ®s->gpr[i])) | 
|  | break; | 
|  | printk("%08lX ", r); | 
|  | if (i == 12 && !FULL_REGS(regs)) | 
|  | break; | 
|  | } | 
|  | printk("\n"); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | /* | 
|  | * Lookup NIP late so we have the best change of getting the | 
|  | * above info out without failing | 
|  | */ | 
|  | printk("NIP [%08lx] ", regs->nip); | 
|  | print_symbol("%s\n", regs->nip); | 
|  | printk("LR [%08lx] ", regs->link); | 
|  | print_symbol("%s\n", regs->link); | 
|  | #endif | 
|  | show_stack(current, (unsigned long *) regs->gpr[1]); | 
|  | } | 
|  |  | 
|  | void exit_thread(void) | 
|  | { | 
|  | if (last_task_used_math == current) | 
|  | last_task_used_math = NULL; | 
|  | if (last_task_used_altivec == current) | 
|  | last_task_used_altivec = NULL; | 
|  | #ifdef CONFIG_SPE | 
|  | if (last_task_used_spe == current) | 
|  | last_task_used_spe = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void flush_thread(void) | 
|  | { | 
|  | if (last_task_used_math == current) | 
|  | last_task_used_math = NULL; | 
|  | if (last_task_used_altivec == current) | 
|  | last_task_used_altivec = NULL; | 
|  | #ifdef CONFIG_SPE | 
|  | if (last_task_used_spe == current) | 
|  | last_task_used_spe = NULL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void | 
|  | release_thread(struct task_struct *t) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This gets called before we allocate a new thread and copy | 
|  | * the current task into it. | 
|  | */ | 
|  | void prepare_to_copy(struct task_struct *tsk) | 
|  | { | 
|  | struct pt_regs *regs = tsk->thread.regs; | 
|  |  | 
|  | if (regs == NULL) | 
|  | return; | 
|  | preempt_disable(); | 
|  | if (regs->msr & MSR_FP) | 
|  | giveup_fpu(current); | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (regs->msr & MSR_VEC) | 
|  | giveup_altivec(current); | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  | #ifdef CONFIG_SPE | 
|  | if (regs->msr & MSR_SPE) | 
|  | giveup_spe(current); | 
|  | #endif /* CONFIG_SPE */ | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy a thread.. | 
|  | */ | 
|  | int | 
|  | copy_thread(int nr, unsigned long clone_flags, unsigned long usp, | 
|  | unsigned long unused, | 
|  | struct task_struct *p, struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *childregs, *kregs; | 
|  | extern void ret_from_fork(void); | 
|  | unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; | 
|  | unsigned long childframe; | 
|  |  | 
|  | CHECK_FULL_REGS(regs); | 
|  | /* Copy registers */ | 
|  | sp -= sizeof(struct pt_regs); | 
|  | childregs = (struct pt_regs *) sp; | 
|  | *childregs = *regs; | 
|  | if ((childregs->msr & MSR_PR) == 0) { | 
|  | /* for kernel thread, set `current' and stackptr in new task */ | 
|  | childregs->gpr[1] = sp + sizeof(struct pt_regs); | 
|  | childregs->gpr[2] = (unsigned long) p; | 
|  | p->thread.regs = NULL;	/* no user register state */ | 
|  | } else { | 
|  | childregs->gpr[1] = usp; | 
|  | p->thread.regs = childregs; | 
|  | if (clone_flags & CLONE_SETTLS) | 
|  | childregs->gpr[2] = childregs->gpr[6]; | 
|  | } | 
|  | childregs->gpr[3] = 0;  /* Result from fork() */ | 
|  | sp -= STACK_FRAME_OVERHEAD; | 
|  | childframe = sp; | 
|  |  | 
|  | /* | 
|  | * The way this works is that at some point in the future | 
|  | * some task will call _switch to switch to the new task. | 
|  | * That will pop off the stack frame created below and start | 
|  | * the new task running at ret_from_fork.  The new task will | 
|  | * do some house keeping and then return from the fork or clone | 
|  | * system call, using the stack frame created above. | 
|  | */ | 
|  | sp -= sizeof(struct pt_regs); | 
|  | kregs = (struct pt_regs *) sp; | 
|  | sp -= STACK_FRAME_OVERHEAD; | 
|  | p->thread.ksp = sp; | 
|  | kregs->nip = (unsigned long)ret_from_fork; | 
|  |  | 
|  | p->thread.last_syscall = -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up a thread for executing a new program | 
|  | */ | 
|  | void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp) | 
|  | { | 
|  | set_fs(USER_DS); | 
|  | memset(regs->gpr, 0, sizeof(regs->gpr)); | 
|  | regs->ctr = 0; | 
|  | regs->link = 0; | 
|  | regs->xer = 0; | 
|  | regs->ccr = 0; | 
|  | regs->mq = 0; | 
|  | regs->nip = nip; | 
|  | regs->gpr[1] = sp; | 
|  | regs->msr = MSR_USER; | 
|  | if (last_task_used_math == current) | 
|  | last_task_used_math = NULL; | 
|  | if (last_task_used_altivec == current) | 
|  | last_task_used_altivec = NULL; | 
|  | #ifdef CONFIG_SPE | 
|  | if (last_task_used_spe == current) | 
|  | last_task_used_spe = NULL; | 
|  | #endif | 
|  | memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); | 
|  | current->thread.fpscr = 0; | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | memset(current->thread.vr, 0, sizeof(current->thread.vr)); | 
|  | memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); | 
|  | current->thread.vrsave = 0; | 
|  | current->thread.used_vr = 0; | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  | #ifdef CONFIG_SPE | 
|  | memset(current->thread.evr, 0, sizeof(current->thread.evr)); | 
|  | current->thread.acc = 0; | 
|  | current->thread.spefscr = 0; | 
|  | current->thread.used_spe = 0; | 
|  | #endif /* CONFIG_SPE */ | 
|  | } | 
|  |  | 
|  | #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ | 
|  | | PR_FP_EXC_RES | PR_FP_EXC_INV) | 
|  |  | 
|  | int set_fpexc_mode(struct task_struct *tsk, unsigned int val) | 
|  | { | 
|  | struct pt_regs *regs = tsk->thread.regs; | 
|  |  | 
|  | /* This is a bit hairy.  If we are an SPE enabled  processor | 
|  | * (have embedded fp) we store the IEEE exception enable flags in | 
|  | * fpexc_mode.  fpexc_mode is also used for setting FP exception | 
|  | * mode (asyn, precise, disabled) for 'Classic' FP. */ | 
|  | if (val & PR_FP_EXC_SW_ENABLE) { | 
|  | #ifdef CONFIG_SPE | 
|  | tsk->thread.fpexc_mode = val & | 
|  | (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } else { | 
|  | /* on a CONFIG_SPE this does not hurt us.  The bits that | 
|  | * __pack_fe01 use do not overlap with bits used for | 
|  | * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits | 
|  | * on CONFIG_SPE implementations are reserved so writing to | 
|  | * them does not change anything */ | 
|  | if (val > PR_FP_EXC_PRECISE) | 
|  | return -EINVAL; | 
|  | tsk->thread.fpexc_mode = __pack_fe01(val); | 
|  | if (regs != NULL && (regs->msr & MSR_FP) != 0) | 
|  | regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) | 
|  | | tsk->thread.fpexc_mode; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) | 
|  | #ifdef CONFIG_SPE | 
|  | val = tsk->thread.fpexc_mode; | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | else | 
|  | val = __unpack_fe01(tsk->thread.fpexc_mode); | 
|  | return put_user(val, (unsigned int __user *) adr); | 
|  | } | 
|  |  | 
|  | int sys_clone(unsigned long clone_flags, unsigned long usp, | 
|  | int __user *parent_tidp, void __user *child_threadptr, | 
|  | int __user *child_tidp, int p6, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | CHECK_FULL_REGS(regs); | 
|  | if (usp == 0) | 
|  | usp = regs->gpr[1];	/* stack pointer for child */ | 
|  | return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); | 
|  | } | 
|  |  | 
|  | int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | CHECK_FULL_REGS(regs); | 
|  | return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | CHECK_FULL_REGS(regs); | 
|  | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], | 
|  | regs, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, | 
|  | unsigned long a3, unsigned long a4, unsigned long a5, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | int error; | 
|  | char * filename; | 
|  |  | 
|  | filename = getname((char __user *) a0); | 
|  | error = PTR_ERR(filename); | 
|  | if (IS_ERR(filename)) | 
|  | goto out; | 
|  | preempt_disable(); | 
|  | if (regs->msr & MSR_FP) | 
|  | giveup_fpu(current); | 
|  | #ifdef CONFIG_ALTIVEC | 
|  | if (regs->msr & MSR_VEC) | 
|  | giveup_altivec(current); | 
|  | #endif /* CONFIG_ALTIVEC */ | 
|  | #ifdef CONFIG_SPE | 
|  | if (regs->msr & MSR_SPE) | 
|  | giveup_spe(current); | 
|  | #endif /* CONFIG_SPE */ | 
|  | preempt_enable(); | 
|  | error = do_execve(filename, (char __user *__user *) a1, | 
|  | (char __user *__user *) a2, regs); | 
|  | if (error == 0) { | 
|  | task_lock(current); | 
|  | current->ptrace &= ~PT_DTRACE; | 
|  | task_unlock(current); | 
|  | } | 
|  | putname(filename); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | void dump_stack(void) | 
|  | { | 
|  | show_stack(current, NULL); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | void show_stack(struct task_struct *tsk, unsigned long *stack) | 
|  | { | 
|  | unsigned long sp, stack_top, prev_sp, ret; | 
|  | int count = 0; | 
|  | unsigned long next_exc = 0; | 
|  | struct pt_regs *regs; | 
|  | extern char ret_from_except, ret_from_except_full, ret_from_syscall; | 
|  |  | 
|  | sp = (unsigned long) stack; | 
|  | if (tsk == NULL) | 
|  | tsk = current; | 
|  | if (sp == 0) { | 
|  | if (tsk == current) | 
|  | asm("mr %0,1" : "=r" (sp)); | 
|  | else | 
|  | sp = tsk->thread.ksp; | 
|  | } | 
|  |  | 
|  | prev_sp = (unsigned long) (tsk->thread_info + 1); | 
|  | stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE; | 
|  | while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) { | 
|  | if (count == 0) { | 
|  | printk("Call trace:"); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | printk("\n"); | 
|  | #endif | 
|  | } else { | 
|  | if (next_exc) { | 
|  | ret = next_exc; | 
|  | next_exc = 0; | 
|  | } else | 
|  | ret = *(unsigned long *)(sp + 4); | 
|  | printk(" [%08lx] ", ret); | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | print_symbol("%s", ret); | 
|  | printk("\n"); | 
|  | #endif | 
|  | if (ret == (unsigned long) &ret_from_except | 
|  | || ret == (unsigned long) &ret_from_except_full | 
|  | || ret == (unsigned long) &ret_from_syscall) { | 
|  | /* sp + 16 points to an exception frame */ | 
|  | regs = (struct pt_regs *) (sp + 16); | 
|  | if (sp + 16 + sizeof(*regs) <= stack_top) | 
|  | next_exc = regs->nip; | 
|  | } | 
|  | } | 
|  | ++count; | 
|  | sp = *(unsigned long *)sp; | 
|  | } | 
|  | #ifndef CONFIG_KALLSYMS | 
|  | if (count > 0) | 
|  | printk("\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | * Low level print for debugging - Cort | 
|  | */ | 
|  | int __init ll_printk(const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[256]; | 
|  | int i; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | i=vsprintf(buf,fmt,args); | 
|  | ll_puts(buf); | 
|  | va_end(args); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | int lines = 24, cols = 80; | 
|  | int orig_x = 0, orig_y = 0; | 
|  |  | 
|  | void puthex(unsigned long val) | 
|  | { | 
|  | unsigned char buf[10]; | 
|  | int i; | 
|  | for (i = 7;  i >= 0;  i--) | 
|  | { | 
|  | buf[i] = "0123456789ABCDEF"[val & 0x0F]; | 
|  | val >>= 4; | 
|  | } | 
|  | buf[8] = '\0'; | 
|  | prom_print(buf); | 
|  | } | 
|  |  | 
|  | void __init ll_puts(const char *s) | 
|  | { | 
|  | int x,y; | 
|  | char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000; | 
|  | char c; | 
|  | extern int mem_init_done; | 
|  |  | 
|  | if ( mem_init_done ) /* assume this means we can printk */ | 
|  | { | 
|  | printk(s); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | if ( have_of ) | 
|  | { | 
|  | prom_print(s); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * can't ll_puts on chrp without openfirmware yet. | 
|  | * vidmem just needs to be setup for it. | 
|  | * -- Cort | 
|  | */ | 
|  | if ( _machine != _MACH_prep ) | 
|  | return; | 
|  | x = orig_x; | 
|  | y = orig_y; | 
|  |  | 
|  | while ( ( c = *s++ ) != '\0' ) { | 
|  | if ( c == '\n' ) { | 
|  | x = 0; | 
|  | if ( ++y >= lines ) { | 
|  | /*scroll();*/ | 
|  | /*y--;*/ | 
|  | y = 0; | 
|  | } | 
|  | } else { | 
|  | vidmem [ ( x + cols * y ) * 2 ] = c; | 
|  | if ( ++x >= cols ) { | 
|  | x = 0; | 
|  | if ( ++y >= lines ) { | 
|  | /*scroll();*/ | 
|  | /*y--;*/ | 
|  | y = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | orig_x = x; | 
|  | orig_y = y; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long ip, sp; | 
|  | unsigned long stack_page = (unsigned long) p->thread_info; | 
|  | int count = 0; | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  | sp = p->thread.ksp; | 
|  | do { | 
|  | sp = *(unsigned long *)sp; | 
|  | if (sp < stack_page || sp >= stack_page + 8188) | 
|  | return 0; | 
|  | if (count > 0) { | 
|  | ip = *(unsigned long *)(sp + 4); | 
|  | if (!in_sched_functions(ip)) | 
|  | return ip; | 
|  | } | 
|  | } while (count++ < 16); | 
|  | return 0; | 
|  | } |