| /* | 
 |  * arch/xtensa/mm/init.c | 
 |  * | 
 |  * Derived from MIPS, PPC. | 
 |  * | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Copyright (C) 2001 - 2005 Tensilica Inc. | 
 |  * | 
 |  * Chris Zankel	<chris@zankel.net> | 
 |  * Joe Taylor	<joe@tensilica.com, joetylr@yahoo.com> | 
 |  * Marc Gauthier | 
 |  * Kevin Chea | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/init.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/bootparam.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 |  | 
 |  | 
 | #define DEBUG 0 | 
 |  | 
 | DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); | 
 | //static DEFINE_SPINLOCK(tlb_lock); | 
 |  | 
 | /* | 
 |  * This flag is used to indicate that the page was mapped and modified in | 
 |  * kernel space, so the cache is probably dirty at that address. | 
 |  * If cache aliasing is enabled and the page color mismatches, update_mmu_cache | 
 |  * synchronizes the caches if this bit is set. | 
 |  */ | 
 |  | 
 | #define PG_cache_clean PG_arch_1 | 
 |  | 
 | /* References to section boundaries */ | 
 |  | 
 | extern char _ftext, _etext, _fdata, _edata, _rodata_end; | 
 | extern char __init_begin, __init_end; | 
 |  | 
 | /* | 
 |  * mem_reserve(start, end, must_exist) | 
 |  * | 
 |  * Reserve some memory from the memory pool. | 
 |  * | 
 |  * Parameters: | 
 |  *  start	Start of region, | 
 |  *  end		End of region, | 
 |  *  must_exist	Must exist in memory pool. | 
 |  * | 
 |  * Returns: | 
 |  *  0 (memory area couldn't be mapped) | 
 |  * -1 (success) | 
 |  */ | 
 |  | 
 | int __init mem_reserve(unsigned long start, unsigned long end, int must_exist) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (start == end) | 
 | 		return 0; | 
 |  | 
 | 	start = start & PAGE_MASK; | 
 | 	end = PAGE_ALIGN(end); | 
 |  | 
 | 	for (i = 0; i < sysmem.nr_banks; i++) | 
 | 		if (start < sysmem.bank[i].end | 
 | 		    && end >= sysmem.bank[i].start) | 
 | 			break; | 
 |  | 
 | 	if (i == sysmem.nr_banks) { | 
 | 		if (must_exist) | 
 | 			printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) " | 
 | 				"not in any region!\n", start, end); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (start > sysmem.bank[i].start) { | 
 | 		if (end < sysmem.bank[i].end) { | 
 | 			/* split entry */ | 
 | 			if (sysmem.nr_banks >= SYSMEM_BANKS_MAX) | 
 | 				panic("meminfo overflow\n"); | 
 | 			sysmem.bank[sysmem.nr_banks].start = end; | 
 | 			sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end; | 
 | 			sysmem.nr_banks++; | 
 | 		} | 
 | 		sysmem.bank[i].end = start; | 
 | 	} else { | 
 | 		if (end < sysmem.bank[i].end) | 
 | 			sysmem.bank[i].start = end; | 
 | 		else { | 
 | 			/* remove entry */ | 
 | 			sysmem.nr_banks--; | 
 | 			sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start; | 
 | 			sysmem.bank[i].end   = sysmem.bank[sysmem.nr_banks].end; | 
 | 		} | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize the bootmem system and give it all the memory we have available. | 
 |  */ | 
 |  | 
 | void __init bootmem_init(void) | 
 | { | 
 | 	unsigned long pfn; | 
 | 	unsigned long bootmap_start, bootmap_size; | 
 | 	int i; | 
 |  | 
 | 	max_low_pfn = max_pfn = 0; | 
 | 	min_low_pfn = ~0; | 
 |  | 
 | 	for (i=0; i < sysmem.nr_banks; i++) { | 
 | 		pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT; | 
 | 		if (pfn < min_low_pfn) | 
 | 			min_low_pfn = pfn; | 
 | 		pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT; | 
 | 		if (pfn > max_pfn) | 
 | 			max_pfn = pfn; | 
 | 	} | 
 |  | 
 | 	if (min_low_pfn > max_pfn) | 
 | 		panic("No memory found!\n"); | 
 |  | 
 | 	max_low_pfn = max_pfn < MAX_LOW_MEMORY >> PAGE_SHIFT ? | 
 | 		max_pfn : MAX_LOW_MEMORY >> PAGE_SHIFT; | 
 |  | 
 | 	/* Find an area to use for the bootmem bitmap. */ | 
 |  | 
 | 	bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT; | 
 | 	bootmap_start = ~0; | 
 |  | 
 | 	for (i=0; i<sysmem.nr_banks; i++) | 
 | 		if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) { | 
 | 			bootmap_start = sysmem.bank[i].start; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	if (bootmap_start == ~0UL) | 
 | 		panic("Cannot find %ld bytes for bootmap\n", bootmap_size); | 
 |  | 
 | 	/* Reserve the bootmem bitmap area */ | 
 |  | 
 | 	mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1); | 
 | 	bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn, | 
 | 					 bootmap_start >> PAGE_SHIFT, | 
 | 					 max_low_pfn); | 
 |  | 
 | 	/* Add all remaining memory pieces into the bootmem map */ | 
 |  | 
 | 	for (i=0; i<sysmem.nr_banks; i++) | 
 | 		free_bootmem(sysmem.bank[i].start, | 
 | 			     sysmem.bank[i].end - sysmem.bank[i].start); | 
 |  | 
 | } | 
 |  | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long zones_size[MAX_NR_ZONES]; | 
 | 	int i; | 
 |  | 
 | 	/* All pages are DMA-able, so we put them all in the DMA zone. */ | 
 |  | 
 | 	zones_size[ZONE_DMA] = max_low_pfn; | 
 | 	for (i = 1; i < MAX_NR_ZONES; i++) | 
 | 		zones_size[i] = 0; | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn; | 
 | #endif | 
 |  | 
 | 	/* Initialize the kernel's page tables. */ | 
 |  | 
 | 	memset(swapper_pg_dir, 0, PAGE_SIZE); | 
 |  | 
 | 	free_area_init(zones_size); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush the mmu and reset associated register to default values. | 
 |  */ | 
 |  | 
 | void __init init_mmu (void) | 
 | { | 
 | 	/* Writing zeros to the <t>TLBCFG special registers ensure | 
 | 	 * that valid values exist in the register.  For existing | 
 | 	 * PGSZID<w> fields, zero selects the first element of the | 
 | 	 * page-size array.  For nonexistant PGSZID<w> fields, zero is | 
 | 	 * the best value to write.  Also, when changing PGSZID<w> | 
 | 	 * fields, the corresponding TLB must be flushed. | 
 | 	 */ | 
 | 	set_itlbcfg_register (0); | 
 | 	set_dtlbcfg_register (0); | 
 | 	flush_tlb_all (); | 
 |  | 
 | 	/* Set rasid register to a known value. */ | 
 |  | 
 | 	set_rasid_register (ASID_ALL_RESERVED); | 
 |  | 
 | 	/* Set PTEVADDR special register to the start of the page | 
 | 	 * table, which is in kernel mappable space (ie. not | 
 | 	 * statically mapped).  This register's value is undefined on | 
 | 	 * reset. | 
 | 	 */ | 
 | 	set_ptevaddr_register (PGTABLE_START); | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize memory pages. | 
 |  */ | 
 |  | 
 | void __init mem_init(void) | 
 | { | 
 | 	unsigned long codesize, reservedpages, datasize, initsize; | 
 | 	unsigned long highmemsize, tmp, ram; | 
 |  | 
 | 	max_mapnr = num_physpages = max_low_pfn; | 
 | 	high_memory = (void *) __va(max_mapnr << PAGE_SHIFT); | 
 | 	highmemsize = 0; | 
 |  | 
 | #if CONFIG_HIGHMEM | 
 | #error HIGHGMEM not implemented in init.c | 
 | #endif | 
 |  | 
 | 	totalram_pages += free_all_bootmem(); | 
 |  | 
 | 	reservedpages = ram = 0; | 
 | 	for (tmp = 0; tmp < max_low_pfn; tmp++) { | 
 | 		ram++; | 
 | 		if (PageReserved(mem_map+tmp)) | 
 | 			reservedpages++; | 
 | 	} | 
 |  | 
 | 	codesize =  (unsigned long) &_etext - (unsigned long) &_ftext; | 
 | 	datasize =  (unsigned long) &_edata - (unsigned long) &_fdata; | 
 | 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin; | 
 |  | 
 | 	printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, " | 
 | 	       "%ldk data, %ldk init %ldk highmem)\n", | 
 | 	       (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | 
 | 	       ram << (PAGE_SHIFT-10), | 
 | 	       codesize >> 10, | 
 | 	       reservedpages << (PAGE_SHIFT-10), | 
 | 	       datasize >> 10, | 
 | 	       initsize >> 10, | 
 | 	       highmemsize >> 10); | 
 | } | 
 |  | 
 | void | 
 | free_reserved_mem(void *start, void *end) | 
 | { | 
 | 	for (; start < end; start += PAGE_SIZE) { | 
 | 		ClearPageReserved(virt_to_page(start)); | 
 | 		set_page_count(virt_to_page(start), 1); | 
 | 		free_page((unsigned long)start); | 
 | 		totalram_pages++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | extern int initrd_is_mapped; | 
 |  | 
 | void free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	if (initrd_is_mapped) { | 
 | 		free_reserved_mem((void*)start, (void*)end); | 
 | 		printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	free_reserved_mem(&__init_begin, &__init_end); | 
 | 	printk("Freeing unused kernel memory: %dk freed\n", | 
 | 	       (&__init_end - &__init_begin) >> 10); | 
 | } | 
 |  | 
 | void show_mem(void) | 
 | { | 
 | 	int i, free = 0, total = 0, reserved = 0; | 
 | 	int shared = 0, cached = 0; | 
 |  | 
 | 	printk("Mem-info:\n"); | 
 | 	show_free_areas(); | 
 | 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | 
 | 	i = max_mapnr; | 
 | 	while (i-- > 0) { | 
 | 		total++; | 
 | 		if (PageReserved(mem_map+i)) | 
 | 			reserved++; | 
 | 		else if (PageSwapCache(mem_map+i)) | 
 | 			cached++; | 
 | 		else if (!page_count(mem_map + i)) | 
 | 			free++; | 
 | 		else | 
 | 			shared += page_count(mem_map + i) - 1; | 
 | 	} | 
 | 	printk("%d pages of RAM\n", total); | 
 | 	printk("%d reserved pages\n", reserved); | 
 | 	printk("%d pages shared\n", shared); | 
 | 	printk("%d pages swap cached\n",cached); | 
 | 	printk("%d free pages\n", free); | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | #if (DCACHE_WAY_SIZE > PAGE_SIZE) | 
 |  | 
 | /* | 
 |  * With cache aliasing, the page color of the page in kernel space and user | 
 |  * space might mismatch. We temporarily map the page to a different virtual | 
 |  * address with the same color and clear the page there. | 
 |  */ | 
 |  | 
 | void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page) | 
 | { | 
 |  | 
 |   	/*  There shouldn't be any entries for this page. */ | 
 |  | 
 | 	__flush_invalidate_dcache_page_phys(__pa(page_address(page))); | 
 |  | 
 | 	if (!PAGE_COLOR_EQ(vaddr, kaddr)) { | 
 | 		unsigned long v, p; | 
 |  | 
 | 		/* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */ | 
 |  | 
 | 		spin_lock(&tlb_lock); | 
 |  | 
 | 		p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL))); | 
 | 		kaddr = (void*)PAGE_COLOR_MAP0(vaddr); | 
 | 		v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0; | 
 | 		__asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v)); | 
 |  | 
 | 		clear_page(kaddr); | 
 |  | 
 | 		spin_unlock(&tlb_lock); | 
 | 	} else { | 
 | 		clear_page(kaddr); | 
 | 	} | 
 |  | 
 | 	/* We need to make sure that i$ and d$ are coherent. */ | 
 |  | 
 | 	clear_bit(PG_cache_clean, &page->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * With cache aliasing, we have to make sure that the page color of the page | 
 |  * in kernel space matches that of the virtual user address before we read | 
 |  * the page. If the page color differ, we create a temporary DTLB entry with | 
 |  * the corrent page color and use this 'temporary' address as the source. | 
 |  * We then use the same approach as in clear_user_page and copy the data | 
 |  * to the kernel space and clear the PG_cache_clean bit to synchronize caches | 
 |  * later. | 
 |  * | 
 |  * Note: | 
 |  * Instead of using another 'way' for the temporary DTLB entry, we could | 
 |  * probably use the same entry that points to the kernel address (after | 
 |  * saving the original value and restoring it when we are done). | 
 |  */ | 
 |  | 
 | void copy_user_page(void* to, void* from, unsigned long vaddr, | 
 |     		    struct page* to_page) | 
 | { | 
 | 	/* There shouldn't be any entries for the new page. */ | 
 |  | 
 | 	__flush_invalidate_dcache_page_phys(__pa(page_address(to_page))); | 
 |  | 
 | 	spin_lock(&tlb_lock); | 
 |  | 
 | 	if (!PAGE_COLOR_EQ(vaddr, from)) { | 
 | 		unsigned long v, p, t; | 
 |  | 
 | 		__asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1" | 
 | 				      : "=a"(p), "=a"(t) : "a"(from)); | 
 | 		from = (void*)PAGE_COLOR_MAP0(vaddr); | 
 | 		v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0; | 
 | 		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); | 
 | 	} | 
 |  | 
 | 	if (!PAGE_COLOR_EQ(vaddr, to)) { | 
 | 		unsigned long v, p; | 
 |  | 
 | 		p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL))); | 
 | 		to = (void*)PAGE_COLOR_MAP1(vaddr); | 
 | 		v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1; | 
 | 		__asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v)); | 
 | 	} | 
 | 	copy_page(to, from); | 
 |  | 
 | 	spin_unlock(&tlb_lock); | 
 |  | 
 | 	/* We need to make sure that i$ and d$ are coherent. */ | 
 |  | 
 | 	clear_bit(PG_cache_clean, &to_page->flags); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |  * Any time the kernel writes to a user page cache page, or it is about to | 
 |  * read from a page cache page this routine is called. | 
 |  * | 
 |  * Note: | 
 |  * The kernel currently only provides one architecture bit in the page | 
 |  * flags that we use for I$/D$ coherency. Maybe, in future, we can | 
 |  * use a sepearte bit for deferred dcache aliasing: | 
 |  * If the page is not mapped yet, we only need to set a flag, | 
 |  * if mapped, we need to invalidate the page. | 
 |  */ | 
 | // FIXME: we probably need this for WB caches not only for Page Coloring.. | 
 |  | 
 | void flush_dcache_page(struct page *page) | 
 | { | 
 | 	unsigned long addr = __pa(page_address(page)); | 
 | 	struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 	__flush_invalidate_dcache_page_phys(addr); | 
 |  | 
 | 	if (!test_bit(PG_cache_clean, &page->flags)) | 
 | 		return; | 
 |  | 
 | 	/* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/ | 
 | #if 0 | 
 | 	if (mapping && !mapping_mapped(mapping)) | 
 | 		clear_bit(PG_cache_clean, &page->flags); | 
 | 	else | 
 | #endif | 
 | 		__invalidate_icache_page_phys(addr); | 
 | } | 
 |  | 
 | void flush_cache_range(struct vm_area_struct* vma, unsigned long s, | 
 | 		       unsigned long e) | 
 | { | 
 | 	__flush_invalidate_cache_all(); | 
 | } | 
 |  | 
 | void flush_cache_page(struct vm_area_struct* vma, unsigned long address, | 
 |     		      unsigned long pfn) | 
 | { | 
 | 	struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 	/* Remove any entry for the old mapping. */ | 
 |  | 
 | 	if (current->active_mm == vma->vm_mm) { | 
 | 		unsigned long addr = __pa(page_address(page)); | 
 | 		__flush_invalidate_dcache_page_phys(addr); | 
 | 		if ((vma->vm_flags & VM_EXEC) != 0) | 
 | 			__invalidate_icache_page_phys(addr); | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | #endif	/* (DCACHE_WAY_SIZE > PAGE_SIZE) */ | 
 |  | 
 |  | 
 | pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr) | 
 | { | 
 | 	pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0); | 
 | 	if (likely(pte)) { | 
 | 	       	pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET); | 
 | 		int i; | 
 | 		for (i = 0; i < 1024; i++, ptep++) | 
 | 			pte_clear(mm, addr, ptep); | 
 | 	} | 
 | 	return pte; | 
 | } | 
 |  | 
 | struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0); | 
 |  | 
 | 	if (likely(page)) { | 
 | 		pte_t* ptep = kmap_atomic(page, KM_USER0); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < 1024; i++, ptep++) | 
 | 			pte_clear(mm, addr, ptep); | 
 |  | 
 | 		kunmap_atomic(ptep, KM_USER0); | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Handle D$/I$ coherency. | 
 |  * | 
 |  * Note: | 
 |  * We only have one architecture bit for the page flags, so we cannot handle | 
 |  * cache aliasing, yet. | 
 |  */ | 
 |  | 
 | void | 
 | update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 | 	struct page *page; | 
 | 	unsigned long vaddr = addr & PAGE_MASK; | 
 |  | 
 | 	if (!pfn_valid(pfn)) | 
 | 		return; | 
 |  | 
 | 	page = pfn_to_page(pfn); | 
 |  | 
 | 	invalidate_itlb_mapping(addr); | 
 | 	invalidate_dtlb_mapping(addr); | 
 |  | 
 | 	/* We have a new mapping. Use it. */ | 
 |  | 
 | 	write_dtlb_entry(pte, dtlb_probe(addr)); | 
 |  | 
 | 	/* If the processor can execute from this page, synchronize D$/I$. */ | 
 |  | 
 | 	if ((vma->vm_flags & VM_EXEC) != 0) { | 
 |  | 
 | 		write_itlb_entry(pte, itlb_probe(addr)); | 
 |  | 
 | 		/* Synchronize caches, if not clean. */ | 
 |  | 
 | 		if (!test_and_set_bit(PG_cache_clean, &page->flags)) { | 
 | 			__flush_dcache_page(vaddr); | 
 | 			__invalidate_icache_page(vaddr); | 
 | 		} | 
 | 	} | 
 | } | 
 |  |