|  | /** | 
|  | * aops.c - NTFS kernel address space operations and page cache handling. | 
|  | *	    Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2001-2005 Anton Altaparmakov | 
|  | * Copyright (c) 2002 Richard Russon | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  |  | 
|  | #include "aops.h" | 
|  | #include "attrib.h" | 
|  | #include "debug.h" | 
|  | #include "inode.h" | 
|  | #include "mft.h" | 
|  | #include "runlist.h" | 
|  | #include "types.h" | 
|  | #include "ntfs.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_end_buffer_async_read - async io completion for reading attributes | 
|  | * @bh:		buffer head on which io is completed | 
|  | * @uptodate:	whether @bh is now uptodate or not | 
|  | * | 
|  | * Asynchronous I/O completion handler for reading pages belonging to the | 
|  | * attribute address space of an inode.  The inodes can either be files or | 
|  | * directories or they can be fake inodes describing some attribute. | 
|  | * | 
|  | * If NInoMstProtected(), perform the post read mst fixups when all IO on the | 
|  | * page has been completed and mark the page uptodate or set the error bit on | 
|  | * the page.  To determine the size of the records that need fixing up, we | 
|  | * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs | 
|  | * record size, and index_block_size_bits, to the log(base 2) of the ntfs | 
|  | * record size. | 
|  | */ | 
|  | static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct buffer_head *first, *tmp; | 
|  | struct page *page; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni; | 
|  | int page_uptodate = 1; | 
|  |  | 
|  | page = bh->b_page; | 
|  | vi = page->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  |  | 
|  | if (likely(uptodate)) { | 
|  | loff_t i_size; | 
|  | s64 file_ofs, init_size; | 
|  |  | 
|  | set_buffer_uptodate(bh); | 
|  |  | 
|  | file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) + | 
|  | bh_offset(bh); | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | init_size = ni->initialized_size; | 
|  | i_size = i_size_read(vi); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (unlikely(init_size > i_size)) { | 
|  | /* Race with shrinking truncate. */ | 
|  | init_size = i_size; | 
|  | } | 
|  | /* Check for the current buffer head overflowing. */ | 
|  | if (unlikely(file_ofs + bh->b_size > init_size)) { | 
|  | u8 *kaddr; | 
|  | int ofs; | 
|  |  | 
|  | ofs = 0; | 
|  | if (file_ofs < init_size) | 
|  | ofs = init_size - file_ofs; | 
|  | kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); | 
|  | memset(kaddr + bh_offset(bh) + ofs, 0, | 
|  | bh->b_size - ofs); | 
|  | kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | } else { | 
|  | clear_buffer_uptodate(bh); | 
|  | SetPageError(page); | 
|  | ntfs_error(ni->vol->sb, "Buffer I/O error, logical block " | 
|  | "0x%llx.", (unsigned long long)bh->b_blocknr); | 
|  | } | 
|  | first = page_buffers(page); | 
|  | local_irq_save(flags); | 
|  | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | 
|  | clear_buffer_async_read(bh); | 
|  | unlock_buffer(bh); | 
|  | tmp = bh; | 
|  | do { | 
|  | if (!buffer_uptodate(tmp)) | 
|  | page_uptodate = 0; | 
|  | if (buffer_async_read(tmp)) { | 
|  | if (likely(buffer_locked(tmp))) | 
|  | goto still_busy; | 
|  | /* Async buffers must be locked. */ | 
|  | BUG(); | 
|  | } | 
|  | tmp = tmp->b_this_page; | 
|  | } while (tmp != bh); | 
|  | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); | 
|  | local_irq_restore(flags); | 
|  | /* | 
|  | * If none of the buffers had errors then we can set the page uptodate, | 
|  | * but we first have to perform the post read mst fixups, if the | 
|  | * attribute is mst protected, i.e. if NInoMstProteced(ni) is true. | 
|  | * Note we ignore fixup errors as those are detected when | 
|  | * map_mft_record() is called which gives us per record granularity | 
|  | * rather than per page granularity. | 
|  | */ | 
|  | if (!NInoMstProtected(ni)) { | 
|  | if (likely(page_uptodate && !PageError(page))) | 
|  | SetPageUptodate(page); | 
|  | } else { | 
|  | u8 *kaddr; | 
|  | unsigned int i, recs; | 
|  | u32 rec_size; | 
|  |  | 
|  | rec_size = ni->itype.index.block_size; | 
|  | recs = PAGE_CACHE_SIZE / rec_size; | 
|  | /* Should have been verified before we got here... */ | 
|  | BUG_ON(!recs); | 
|  | kaddr = kmap_atomic(page, KM_BIO_SRC_IRQ); | 
|  | for (i = 0; i < recs; i++) | 
|  | post_read_mst_fixup((NTFS_RECORD*)(kaddr + | 
|  | i * rec_size), rec_size); | 
|  | kunmap_atomic(kaddr, KM_BIO_SRC_IRQ); | 
|  | flush_dcache_page(page); | 
|  | if (likely(page_uptodate && !PageError(page))) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | unlock_page(page); | 
|  | return; | 
|  | still_busy: | 
|  | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_read_block - fill a @page of an address space with data | 
|  | * @page:	page cache page to fill with data | 
|  | * | 
|  | * Fill the page @page of the address space belonging to the @page->host inode. | 
|  | * We read each buffer asynchronously and when all buffers are read in, our io | 
|  | * completion handler ntfs_end_buffer_read_async(), if required, automatically | 
|  | * applies the mst fixups to the page before finally marking it uptodate and | 
|  | * unlocking it. | 
|  | * | 
|  | * We only enforce allocated_size limit because i_size is checked for in | 
|  | * generic_file_read(). | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Contains an adapted version of fs/buffer.c::block_read_full_page(). | 
|  | */ | 
|  | static int ntfs_read_block(struct page *page) | 
|  | { | 
|  | loff_t i_size; | 
|  | VCN vcn; | 
|  | LCN lcn; | 
|  | s64 init_size; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni; | 
|  | ntfs_volume *vol; | 
|  | runlist_element *rl; | 
|  | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | 
|  | sector_t iblock, lblock, zblock; | 
|  | unsigned long flags; | 
|  | unsigned int blocksize, vcn_ofs; | 
|  | int i, nr; | 
|  | unsigned char blocksize_bits; | 
|  |  | 
|  | vi = page->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | vol = ni->vol; | 
|  |  | 
|  | /* $MFT/$DATA must have its complete runlist in memory at all times. */ | 
|  | BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni)); | 
|  |  | 
|  | blocksize_bits = VFS_I(ni)->i_blkbits; | 
|  | blocksize = 1 << blocksize_bits; | 
|  |  | 
|  | if (!page_has_buffers(page)) { | 
|  | create_empty_buffers(page, blocksize, 0); | 
|  | if (unlikely(!page_has_buffers(page))) { | 
|  | unlock_page(page); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  |  | 
|  | /* | 
|  | * We may be racing with truncate.  To avoid some of the problems we | 
|  | * now take a snapshot of the various sizes and use those for the whole | 
|  | * of the function.  In case of an extending truncate it just means we | 
|  | * may leave some buffers unmapped which are now allocated.  This is | 
|  | * not a problem since these buffers will just get mapped when a write | 
|  | * occurs.  In case of a shrinking truncate, we will detect this later | 
|  | * on due to the runlist being incomplete and if the page is being | 
|  | * fully truncated, truncate will throw it away as soon as we unlock | 
|  | * it so no need to worry what we do with it. | 
|  | */ | 
|  | iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits; | 
|  | init_size = ni->initialized_size; | 
|  | i_size = i_size_read(vi); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (unlikely(init_size > i_size)) { | 
|  | /* Race with shrinking truncate. */ | 
|  | init_size = i_size; | 
|  | } | 
|  | zblock = (init_size + blocksize - 1) >> blocksize_bits; | 
|  |  | 
|  | /* Loop through all the buffers in the page. */ | 
|  | rl = NULL; | 
|  | nr = i = 0; | 
|  | do { | 
|  | u8 *kaddr; | 
|  | int err; | 
|  |  | 
|  | if (unlikely(buffer_uptodate(bh))) | 
|  | continue; | 
|  | if (unlikely(buffer_mapped(bh))) { | 
|  | arr[nr++] = bh; | 
|  | continue; | 
|  | } | 
|  | err = 0; | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  | /* Is the block within the allowed limits? */ | 
|  | if (iblock < lblock) { | 
|  | BOOL is_retry = FALSE; | 
|  |  | 
|  | /* Convert iblock into corresponding vcn and offset. */ | 
|  | vcn = (VCN)iblock << blocksize_bits >> | 
|  | vol->cluster_size_bits; | 
|  | vcn_ofs = ((VCN)iblock << blocksize_bits) & | 
|  | vol->cluster_size_mask; | 
|  | if (!rl) { | 
|  | lock_retry_remap: | 
|  | down_read(&ni->runlist.lock); | 
|  | rl = ni->runlist.rl; | 
|  | } | 
|  | if (likely(rl != NULL)) { | 
|  | /* Seek to element containing target vcn. */ | 
|  | while (rl->length && rl[1].vcn <= vcn) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | 
|  | } else | 
|  | lcn = LCN_RL_NOT_MAPPED; | 
|  | /* Successful remap. */ | 
|  | if (lcn >= 0) { | 
|  | /* Setup buffer head to correct block. */ | 
|  | bh->b_blocknr = ((lcn << vol->cluster_size_bits) | 
|  | + vcn_ofs) >> blocksize_bits; | 
|  | set_buffer_mapped(bh); | 
|  | /* Only read initialized data blocks. */ | 
|  | if (iblock < zblock) { | 
|  | arr[nr++] = bh; | 
|  | continue; | 
|  | } | 
|  | /* Fully non-initialized data block, zero it. */ | 
|  | goto handle_zblock; | 
|  | } | 
|  | /* It is a hole, need to zero it. */ | 
|  | if (lcn == LCN_HOLE) | 
|  | goto handle_hole; | 
|  | /* If first try and runlist unmapped, map and retry. */ | 
|  | if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { | 
|  | is_retry = TRUE; | 
|  | /* | 
|  | * Attempt to map runlist, dropping lock for | 
|  | * the duration. | 
|  | */ | 
|  | up_read(&ni->runlist.lock); | 
|  | err = ntfs_map_runlist(ni, vcn); | 
|  | if (likely(!err)) | 
|  | goto lock_retry_remap; | 
|  | rl = NULL; | 
|  | } else if (!rl) | 
|  | up_read(&ni->runlist.lock); | 
|  | /* | 
|  | * If buffer is outside the runlist, treat it as a | 
|  | * hole.  This can happen due to concurrent truncate | 
|  | * for example. | 
|  | */ | 
|  | if (err == -ENOENT || lcn == LCN_ENOENT) { | 
|  | err = 0; | 
|  | goto handle_hole; | 
|  | } | 
|  | /* Hard error, zero out region. */ | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | bh->b_blocknr = -1; | 
|  | SetPageError(page); | 
|  | ntfs_error(vol->sb, "Failed to read from inode 0x%lx, " | 
|  | "attribute type 0x%x, vcn 0x%llx, " | 
|  | "offset 0x%x because its location on " | 
|  | "disk could not be determined%s " | 
|  | "(error code %i).", ni->mft_no, | 
|  | ni->type, (unsigned long long)vcn, | 
|  | vcn_ofs, is_retry ? " even after " | 
|  | "retrying" : "", err); | 
|  | } | 
|  | /* | 
|  | * Either iblock was outside lblock limits or | 
|  | * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion | 
|  | * of the page and set the buffer uptodate. | 
|  | */ | 
|  | handle_hole: | 
|  | bh->b_blocknr = -1UL; | 
|  | clear_buffer_mapped(bh); | 
|  | handle_zblock: | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr + i * blocksize, 0, blocksize); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | if (likely(!err)) | 
|  | set_buffer_uptodate(bh); | 
|  | } while (i++, iblock++, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | /* Release the lock if we took it. */ | 
|  | if (rl) | 
|  | up_read(&ni->runlist.lock); | 
|  |  | 
|  | /* Check we have at least one buffer ready for i/o. */ | 
|  | if (nr) { | 
|  | struct buffer_head *tbh; | 
|  |  | 
|  | /* Lock the buffers. */ | 
|  | for (i = 0; i < nr; i++) { | 
|  | tbh = arr[i]; | 
|  | lock_buffer(tbh); | 
|  | tbh->b_end_io = ntfs_end_buffer_async_read; | 
|  | set_buffer_async_read(tbh); | 
|  | } | 
|  | /* Finally, start i/o on the buffers. */ | 
|  | for (i = 0; i < nr; i++) { | 
|  | tbh = arr[i]; | 
|  | if (likely(!buffer_uptodate(tbh))) | 
|  | submit_bh(READ, tbh); | 
|  | else | 
|  | ntfs_end_buffer_async_read(tbh, 1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | /* No i/o was scheduled on any of the buffers. */ | 
|  | if (likely(!PageError(page))) | 
|  | SetPageUptodate(page); | 
|  | else /* Signal synchronous i/o error. */ | 
|  | nr = -EIO; | 
|  | unlock_page(page); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_readpage - fill a @page of a @file with data from the device | 
|  | * @file:	open file to which the page @page belongs or NULL | 
|  | * @page:	page cache page to fill with data | 
|  | * | 
|  | * For non-resident attributes, ntfs_readpage() fills the @page of the open | 
|  | * file @file by calling the ntfs version of the generic block_read_full_page() | 
|  | * function, ntfs_read_block(), which in turn creates and reads in the buffers | 
|  | * associated with the page asynchronously. | 
|  | * | 
|  | * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the | 
|  | * data from the mft record (which at this stage is most likely in memory) and | 
|  | * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as | 
|  | * even if the mft record is not cached at this point in time, we need to wait | 
|  | * for it to be read in before we can do the copy. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | */ | 
|  | static int ntfs_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | loff_t i_size; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni, *base_ni; | 
|  | u8 *kaddr; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *mrec; | 
|  | unsigned long flags; | 
|  | u32 attr_len; | 
|  | int err = 0; | 
|  |  | 
|  | retry_readpage: | 
|  | BUG_ON(!PageLocked(page)); | 
|  | /* | 
|  | * This can potentially happen because we clear PageUptodate() during | 
|  | * ntfs_writepage() of MstProtected() attributes. | 
|  | */ | 
|  | if (PageUptodate(page)) { | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  | vi = page->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | /* | 
|  | * Only $DATA attributes can be encrypted and only unnamed $DATA | 
|  | * attributes can be compressed.  Index root can have the flags set but | 
|  | * this means to create compressed/encrypted files, not that the | 
|  | * attribute is compressed/encrypted.  Note we need to check for | 
|  | * AT_INDEX_ALLOCATION since this is the type of both directory and | 
|  | * index inodes. | 
|  | */ | 
|  | if (ni->type != AT_INDEX_ALLOCATION) { | 
|  | /* If attribute is encrypted, deny access, just like NT4. */ | 
|  | if (NInoEncrypted(ni)) { | 
|  | BUG_ON(ni->type != AT_DATA); | 
|  | err = -EACCES; | 
|  | goto err_out; | 
|  | } | 
|  | /* Compressed data streams are handled in compress.c. */ | 
|  | if (NInoNonResident(ni) && NInoCompressed(ni)) { | 
|  | BUG_ON(ni->type != AT_DATA); | 
|  | BUG_ON(ni->name_len); | 
|  | return ntfs_read_compressed_block(page); | 
|  | } | 
|  | } | 
|  | /* NInoNonResident() == NInoIndexAllocPresent() */ | 
|  | if (NInoNonResident(ni)) { | 
|  | /* Normal, non-resident data stream. */ | 
|  | return ntfs_read_block(page); | 
|  | } | 
|  | /* | 
|  | * Attribute is resident, implying it is not compressed or encrypted. | 
|  | * This also means the attribute is smaller than an mft record and | 
|  | * hence smaller than a page, so can simply zero out any pages with | 
|  | * index above 0.  Note the attribute can actually be marked compressed | 
|  | * but if it is resident the actual data is not compressed so we are | 
|  | * ok to ignore the compressed flag here. | 
|  | */ | 
|  | if (unlikely(page->index > 0)) { | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr, 0, PAGE_CACHE_SIZE); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | goto done; | 
|  | } | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | /* Map, pin, and lock the mft record. */ | 
|  | mrec = map_mft_record(base_ni); | 
|  | if (IS_ERR(mrec)) { | 
|  | err = PTR_ERR(mrec); | 
|  | goto err_out; | 
|  | } | 
|  | /* | 
|  | * If a parallel write made the attribute non-resident, drop the mft | 
|  | * record and retry the readpage. | 
|  | */ | 
|  | if (unlikely(NInoNonResident(ni))) { | 
|  | unmap_mft_record(base_ni); | 
|  | goto retry_readpage; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) | 
|  | goto put_unm_err_out; | 
|  | attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | if (unlikely(attr_len > ni->initialized_size)) | 
|  | attr_len = ni->initialized_size; | 
|  | i_size = i_size_read(vi); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (unlikely(attr_len > i_size)) { | 
|  | /* Race with shrinking truncate. */ | 
|  | attr_len = i_size; | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | /* Copy the data to the page. */ | 
|  | memcpy(kaddr, (u8*)ctx->attr + | 
|  | le16_to_cpu(ctx->attr->data.resident.value_offset), | 
|  | attr_len); | 
|  | /* Zero the remainder of the page. */ | 
|  | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | 
|  | flush_dcache_page(page); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | put_unm_err_out: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unm_err_out: | 
|  | unmap_mft_record(base_ni); | 
|  | done: | 
|  | SetPageUptodate(page); | 
|  | err_out: | 
|  | unlock_page(page); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | /** | 
|  | * ntfs_write_block - write a @page to the backing store | 
|  | * @page:	page cache page to write out | 
|  | * @wbc:	writeback control structure | 
|  | * | 
|  | * This function is for writing pages belonging to non-resident, non-mst | 
|  | * protected attributes to their backing store. | 
|  | * | 
|  | * For a page with buffers, map and write the dirty buffers asynchronously | 
|  | * under page writeback. For a page without buffers, create buffers for the | 
|  | * page, then proceed as above. | 
|  | * | 
|  | * If a page doesn't have buffers the page dirty state is definitive. If a page | 
|  | * does have buffers, the page dirty state is just a hint, and the buffer dirty | 
|  | * state is definitive. (A hint which has rules: dirty buffers against a clean | 
|  | * page is illegal. Other combinations are legal and need to be handled. In | 
|  | * particular a dirty page containing clean buffers for example.) | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Based on ntfs_read_block() and __block_write_full_page(). | 
|  | */ | 
|  | static int ntfs_write_block(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | VCN vcn; | 
|  | LCN lcn; | 
|  | s64 initialized_size; | 
|  | loff_t i_size; | 
|  | sector_t block, dblock, iblock; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni; | 
|  | ntfs_volume *vol; | 
|  | runlist_element *rl; | 
|  | struct buffer_head *bh, *head; | 
|  | unsigned long flags; | 
|  | unsigned int blocksize, vcn_ofs; | 
|  | int err; | 
|  | BOOL need_end_writeback; | 
|  | unsigned char blocksize_bits; | 
|  |  | 
|  | vi = page->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | vol = ni->vol; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | 
|  | "0x%lx.", ni->mft_no, ni->type, page->index); | 
|  |  | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | BUG_ON(NInoMstProtected(ni)); | 
|  |  | 
|  | blocksize_bits = vi->i_blkbits; | 
|  | blocksize = 1 << blocksize_bits; | 
|  |  | 
|  | if (!page_has_buffers(page)) { | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | create_empty_buffers(page, blocksize, | 
|  | (1 << BH_Uptodate) | (1 << BH_Dirty)); | 
|  | if (unlikely(!page_has_buffers(page))) { | 
|  | ntfs_warning(vol->sb, "Error allocating page " | 
|  | "buffers.  Redirtying page so we try " | 
|  | "again later."); | 
|  | /* | 
|  | * Put the page back on mapping->dirty_pages, but leave | 
|  | * its buffers' dirty state as-is. | 
|  | */ | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  |  | 
|  | /* NOTE: Different naming scheme to ntfs_read_block()! */ | 
|  |  | 
|  | /* The first block in the page. */ | 
|  | block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits); | 
|  |  | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | i_size = i_size_read(vi); | 
|  | initialized_size = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  |  | 
|  | /* The first out of bounds block for the data size. */ | 
|  | dblock = (i_size + blocksize - 1) >> blocksize_bits; | 
|  |  | 
|  | /* The last (fully or partially) initialized block. */ | 
|  | iblock = initialized_size >> blocksize_bits; | 
|  |  | 
|  | /* | 
|  | * Be very careful.  We have no exclusion from __set_page_dirty_buffers | 
|  | * here, and the (potentially unmapped) buffers may become dirty at | 
|  | * any time.  If a buffer becomes dirty here after we've inspected it | 
|  | * then we just miss that fact, and the page stays dirty. | 
|  | * | 
|  | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | 
|  | * handle that here by just cleaning them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Loop through all the buffers in the page, mapping all the dirty | 
|  | * buffers to disk addresses and handling any aliases from the | 
|  | * underlying block device's mapping. | 
|  | */ | 
|  | rl = NULL; | 
|  | err = 0; | 
|  | do { | 
|  | BOOL is_retry = FALSE; | 
|  |  | 
|  | if (unlikely(block >= dblock)) { | 
|  | /* | 
|  | * Mapped buffers outside i_size will occur, because | 
|  | * this page can be outside i_size when there is a | 
|  | * truncate in progress. The contents of such buffers | 
|  | * were zeroed by ntfs_writepage(). | 
|  | * | 
|  | * FIXME: What about the small race window where | 
|  | * ntfs_writepage() has not done any clearing because | 
|  | * the page was within i_size but before we get here, | 
|  | * vmtruncate() modifies i_size? | 
|  | */ | 
|  | clear_buffer_dirty(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Clean buffers are not written out, so no need to map them. */ | 
|  | if (!buffer_dirty(bh)) | 
|  | continue; | 
|  |  | 
|  | /* Make sure we have enough initialized size. */ | 
|  | if (unlikely((block >= iblock) && | 
|  | (initialized_size < i_size))) { | 
|  | /* | 
|  | * If this page is fully outside initialized size, zero | 
|  | * out all pages between the current initialized size | 
|  | * and the current page. Just use ntfs_readpage() to do | 
|  | * the zeroing transparently. | 
|  | */ | 
|  | if (block > iblock) { | 
|  | // TODO: | 
|  | // For each page do: | 
|  | // - read_cache_page() | 
|  | // Again for each page do: | 
|  | // - wait_on_page_locked() | 
|  | // - Check (PageUptodate(page) && | 
|  | //			!PageError(page)) | 
|  | // Update initialized size in the attribute and | 
|  | // in the inode. | 
|  | // Again, for each page do: | 
|  | //	__set_page_dirty_buffers(); | 
|  | // page_cache_release() | 
|  | // We don't need to wait on the writes. | 
|  | // Update iblock. | 
|  | } | 
|  | /* | 
|  | * The current page straddles initialized size. Zero | 
|  | * all non-uptodate buffers and set them uptodate (and | 
|  | * dirty?). Note, there aren't any non-uptodate buffers | 
|  | * if the page is uptodate. | 
|  | * FIXME: For an uptodate page, the buffers may need to | 
|  | * be written out because they were not initialized on | 
|  | * disk before. | 
|  | */ | 
|  | if (!PageUptodate(page)) { | 
|  | // TODO: | 
|  | // Zero any non-uptodate buffers up to i_size. | 
|  | // Set them uptodate and dirty. | 
|  | } | 
|  | // TODO: | 
|  | // Update initialized size in the attribute and in the | 
|  | // inode (up to i_size). | 
|  | // Update iblock. | 
|  | // FIXME: This is inefficient. Try to batch the two | 
|  | // size changes to happen in one go. | 
|  | ntfs_error(vol->sb, "Writing beyond initialized size " | 
|  | "is not supported yet. Sorry."); | 
|  | err = -EOPNOTSUPP; | 
|  | break; | 
|  | // Do NOT set_buffer_new() BUT DO clear buffer range | 
|  | // outside write request range. | 
|  | // set_buffer_uptodate() on complete buffers as well as | 
|  | // set_buffer_dirty(). | 
|  | } | 
|  |  | 
|  | /* No need to map buffers that are already mapped. */ | 
|  | if (buffer_mapped(bh)) | 
|  | continue; | 
|  |  | 
|  | /* Unmapped, dirty buffer. Need to map it. */ | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  |  | 
|  | /* Convert block into corresponding vcn and offset. */ | 
|  | vcn = (VCN)block << blocksize_bits; | 
|  | vcn_ofs = vcn & vol->cluster_size_mask; | 
|  | vcn >>= vol->cluster_size_bits; | 
|  | if (!rl) { | 
|  | lock_retry_remap: | 
|  | down_read(&ni->runlist.lock); | 
|  | rl = ni->runlist.rl; | 
|  | } | 
|  | if (likely(rl != NULL)) { | 
|  | /* Seek to element containing target vcn. */ | 
|  | while (rl->length && rl[1].vcn <= vcn) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | 
|  | } else | 
|  | lcn = LCN_RL_NOT_MAPPED; | 
|  | /* Successful remap. */ | 
|  | if (lcn >= 0) { | 
|  | /* Setup buffer head to point to correct block. */ | 
|  | bh->b_blocknr = ((lcn << vol->cluster_size_bits) + | 
|  | vcn_ofs) >> blocksize_bits; | 
|  | set_buffer_mapped(bh); | 
|  | continue; | 
|  | } | 
|  | /* It is a hole, need to instantiate it. */ | 
|  | if (lcn == LCN_HOLE) { | 
|  | u8 *kaddr; | 
|  | unsigned long *bpos, *bend; | 
|  |  | 
|  | /* Check if the buffer is zero. */ | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | bpos = (unsigned long *)(kaddr + bh_offset(bh)); | 
|  | bend = (unsigned long *)((u8*)bpos + blocksize); | 
|  | do { | 
|  | if (unlikely(*bpos)) | 
|  | break; | 
|  | } while (likely(++bpos < bend)); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | if (bpos == bend) { | 
|  | /* | 
|  | * Buffer is zero and sparse, no need to write | 
|  | * it. | 
|  | */ | 
|  | bh->b_blocknr = -1; | 
|  | clear_buffer_dirty(bh); | 
|  | continue; | 
|  | } | 
|  | // TODO: Instantiate the hole. | 
|  | // clear_buffer_new(bh); | 
|  | // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | 
|  | ntfs_error(vol->sb, "Writing into sparse regions is " | 
|  | "not supported yet. Sorry."); | 
|  | err = -EOPNOTSUPP; | 
|  | break; | 
|  | } | 
|  | /* If first try and runlist unmapped, map and retry. */ | 
|  | if (!is_retry && lcn == LCN_RL_NOT_MAPPED) { | 
|  | is_retry = TRUE; | 
|  | /* | 
|  | * Attempt to map runlist, dropping lock for | 
|  | * the duration. | 
|  | */ | 
|  | up_read(&ni->runlist.lock); | 
|  | err = ntfs_map_runlist(ni, vcn); | 
|  | if (likely(!err)) | 
|  | goto lock_retry_remap; | 
|  | rl = NULL; | 
|  | } else if (!rl) | 
|  | up_read(&ni->runlist.lock); | 
|  | /* | 
|  | * If buffer is outside the runlist, truncate has cut it out | 
|  | * of the runlist.  Just clean and clear the buffer and set it | 
|  | * uptodate so it can get discarded by the VM. | 
|  | */ | 
|  | if (err == -ENOENT || lcn == LCN_ENOENT) { | 
|  | u8 *kaddr; | 
|  |  | 
|  | bh->b_blocknr = -1; | 
|  | clear_buffer_dirty(bh); | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr + bh_offset(bh), 0, blocksize); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | set_buffer_uptodate(bh); | 
|  | err = 0; | 
|  | continue; | 
|  | } | 
|  | /* Failed to map the buffer, even after retrying. */ | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | bh->b_blocknr = -1; | 
|  | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | 
|  | "attribute type 0x%x, vcn 0x%llx, offset 0x%x " | 
|  | "because its location on disk could not be " | 
|  | "determined%s (error code %i).", ni->mft_no, | 
|  | ni->type, (unsigned long long)vcn, | 
|  | vcn_ofs, is_retry ? " even after " | 
|  | "retrying" : "", err); | 
|  | break; | 
|  | } while (block++, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | /* Release the lock if we took it. */ | 
|  | if (rl) | 
|  | up_read(&ni->runlist.lock); | 
|  |  | 
|  | /* For the error case, need to reset bh to the beginning. */ | 
|  | bh = head; | 
|  |  | 
|  | /* Just an optimization, so ->readpage() is not called later. */ | 
|  | if (unlikely(!PageUptodate(page))) { | 
|  | int uptodate = 1; | 
|  | do { | 
|  | if (!buffer_uptodate(bh)) { | 
|  | uptodate = 0; | 
|  | bh = head; | 
|  | break; | 
|  | } | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | if (uptodate) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | /* Setup all mapped, dirty buffers for async write i/o. */ | 
|  | do { | 
|  | if (buffer_mapped(bh) && buffer_dirty(bh)) { | 
|  | lock_buffer(bh); | 
|  | if (test_clear_buffer_dirty(bh)) { | 
|  | BUG_ON(!buffer_uptodate(bh)); | 
|  | mark_buffer_async_write(bh); | 
|  | } else | 
|  | unlock_buffer(bh); | 
|  | } else if (unlikely(err)) { | 
|  | /* | 
|  | * For the error case. The buffer may have been set | 
|  | * dirty during attachment to a dirty page. | 
|  | */ | 
|  | if (err != -ENOMEM) | 
|  | clear_buffer_dirty(bh); | 
|  | } | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | // TODO: Remove the -EOPNOTSUPP check later on... | 
|  | if (unlikely(err == -EOPNOTSUPP)) | 
|  | err = 0; | 
|  | else if (err == -ENOMEM) { | 
|  | ntfs_warning(vol->sb, "Error allocating memory. " | 
|  | "Redirtying page so we try again " | 
|  | "later."); | 
|  | /* | 
|  | * Put the page back on mapping->dirty_pages, but | 
|  | * leave its buffer's dirty state as-is. | 
|  | */ | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | err = 0; | 
|  | } else | 
|  | SetPageError(page); | 
|  | } | 
|  |  | 
|  | BUG_ON(PageWriteback(page)); | 
|  | set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */ | 
|  |  | 
|  | /* Submit the prepared buffers for i/o. */ | 
|  | need_end_writeback = TRUE; | 
|  | do { | 
|  | struct buffer_head *next = bh->b_this_page; | 
|  | if (buffer_async_write(bh)) { | 
|  | submit_bh(WRITE, bh); | 
|  | need_end_writeback = FALSE; | 
|  | } | 
|  | bh = next; | 
|  | } while (bh != head); | 
|  | unlock_page(page); | 
|  |  | 
|  | /* If no i/o was started, need to end_page_writeback(). */ | 
|  | if (unlikely(need_end_writeback)) | 
|  | end_page_writeback(page); | 
|  |  | 
|  | ntfs_debug("Done."); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_write_mst_block - write a @page to the backing store | 
|  | * @page:	page cache page to write out | 
|  | * @wbc:	writeback control structure | 
|  | * | 
|  | * This function is for writing pages belonging to non-resident, mst protected | 
|  | * attributes to their backing store.  The only supported attributes are index | 
|  | * allocation and $MFT/$DATA.  Both directory inodes and index inodes are | 
|  | * supported for the index allocation case. | 
|  | * | 
|  | * The page must remain locked for the duration of the write because we apply | 
|  | * the mst fixups, write, and then undo the fixups, so if we were to unlock the | 
|  | * page before undoing the fixups, any other user of the page will see the | 
|  | * page contents as corrupt. | 
|  | * | 
|  | * We clear the page uptodate flag for the duration of the function to ensure | 
|  | * exclusion for the $MFT/$DATA case against someone mapping an mft record we | 
|  | * are about to apply the mst fixups to. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Based on ntfs_write_block(), ntfs_mft_writepage(), and | 
|  | * write_mft_record_nolock(). | 
|  | */ | 
|  | static int ntfs_write_mst_block(struct page *page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | sector_t block, dblock, rec_block; | 
|  | struct inode *vi = page->mapping->host; | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  | ntfs_volume *vol = ni->vol; | 
|  | u8 *kaddr; | 
|  | unsigned int rec_size = ni->itype.index.block_size; | 
|  | ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size]; | 
|  | struct buffer_head *bh, *head, *tbh, *rec_start_bh; | 
|  | struct buffer_head *bhs[MAX_BUF_PER_PAGE]; | 
|  | runlist_element *rl; | 
|  | int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2; | 
|  | unsigned bh_size, rec_size_bits; | 
|  | BOOL sync, is_mft, page_is_dirty, rec_is_dirty; | 
|  | unsigned char bh_size_bits; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index " | 
|  | "0x%lx.", vi->i_ino, ni->type, page->index); | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | BUG_ON(!NInoMstProtected(ni)); | 
|  | is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino); | 
|  | /* | 
|  | * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page | 
|  | * in its page cache were to be marked dirty.  However this should | 
|  | * never happen with the current driver and considering we do not | 
|  | * handle this case here we do want to BUG(), at least for now. | 
|  | */ | 
|  | BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) || | 
|  | (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION))); | 
|  | bh_size_bits = vi->i_blkbits; | 
|  | bh_size = 1 << bh_size_bits; | 
|  | max_bhs = PAGE_CACHE_SIZE / bh_size; | 
|  | BUG_ON(!max_bhs); | 
|  | BUG_ON(max_bhs > MAX_BUF_PER_PAGE); | 
|  |  | 
|  | /* Were we called for sync purposes? */ | 
|  | sync = (wbc->sync_mode == WB_SYNC_ALL); | 
|  |  | 
|  | /* Make sure we have mapped buffers. */ | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  |  | 
|  | rec_size_bits = ni->itype.index.block_size_bits; | 
|  | BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits)); | 
|  | bhs_per_rec = rec_size >> bh_size_bits; | 
|  | BUG_ON(!bhs_per_rec); | 
|  |  | 
|  | /* The first block in the page. */ | 
|  | rec_block = block = (sector_t)page->index << | 
|  | (PAGE_CACHE_SHIFT - bh_size_bits); | 
|  |  | 
|  | /* The first out of bounds block for the data size. */ | 
|  | dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits; | 
|  |  | 
|  | rl = NULL; | 
|  | err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0; | 
|  | page_is_dirty = rec_is_dirty = FALSE; | 
|  | rec_start_bh = NULL; | 
|  | do { | 
|  | BOOL is_retry = FALSE; | 
|  |  | 
|  | if (likely(block < rec_block)) { | 
|  | if (unlikely(block >= dblock)) { | 
|  | clear_buffer_dirty(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * This block is not the first one in the record.  We | 
|  | * ignore the buffer's dirty state because we could | 
|  | * have raced with a parallel mark_ntfs_record_dirty(). | 
|  | */ | 
|  | if (!rec_is_dirty) | 
|  | continue; | 
|  | if (unlikely(err2)) { | 
|  | if (err2 != -ENOMEM) | 
|  | clear_buffer_dirty(bh); | 
|  | continue; | 
|  | } | 
|  | } else /* if (block == rec_block) */ { | 
|  | BUG_ON(block > rec_block); | 
|  | /* This block is the first one in the record. */ | 
|  | rec_block += bhs_per_rec; | 
|  | err2 = 0; | 
|  | if (unlikely(block >= dblock)) { | 
|  | clear_buffer_dirty(bh); | 
|  | continue; | 
|  | } | 
|  | if (!buffer_dirty(bh)) { | 
|  | /* Clean records are not written out. */ | 
|  | rec_is_dirty = FALSE; | 
|  | continue; | 
|  | } | 
|  | rec_is_dirty = TRUE; | 
|  | rec_start_bh = bh; | 
|  | } | 
|  | /* Need to map the buffer if it is not mapped already. */ | 
|  | if (unlikely(!buffer_mapped(bh))) { | 
|  | VCN vcn; | 
|  | LCN lcn; | 
|  | unsigned int vcn_ofs; | 
|  |  | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  | /* Obtain the vcn and offset of the current block. */ | 
|  | vcn = (VCN)block << bh_size_bits; | 
|  | vcn_ofs = vcn & vol->cluster_size_mask; | 
|  | vcn >>= vol->cluster_size_bits; | 
|  | if (!rl) { | 
|  | lock_retry_remap: | 
|  | down_read(&ni->runlist.lock); | 
|  | rl = ni->runlist.rl; | 
|  | } | 
|  | if (likely(rl != NULL)) { | 
|  | /* Seek to element containing target vcn. */ | 
|  | while (rl->length && rl[1].vcn <= vcn) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | 
|  | } else | 
|  | lcn = LCN_RL_NOT_MAPPED; | 
|  | /* Successful remap. */ | 
|  | if (likely(lcn >= 0)) { | 
|  | /* Setup buffer head to correct block. */ | 
|  | bh->b_blocknr = ((lcn << | 
|  | vol->cluster_size_bits) + | 
|  | vcn_ofs) >> bh_size_bits; | 
|  | set_buffer_mapped(bh); | 
|  | } else { | 
|  | /* | 
|  | * Remap failed.  Retry to map the runlist once | 
|  | * unless we are working on $MFT which always | 
|  | * has the whole of its runlist in memory. | 
|  | */ | 
|  | if (!is_mft && !is_retry && | 
|  | lcn == LCN_RL_NOT_MAPPED) { | 
|  | is_retry = TRUE; | 
|  | /* | 
|  | * Attempt to map runlist, dropping | 
|  | * lock for the duration. | 
|  | */ | 
|  | up_read(&ni->runlist.lock); | 
|  | err2 = ntfs_map_runlist(ni, vcn); | 
|  | if (likely(!err2)) | 
|  | goto lock_retry_remap; | 
|  | if (err2 == -ENOMEM) | 
|  | page_is_dirty = TRUE; | 
|  | lcn = err2; | 
|  | } else { | 
|  | err2 = -EIO; | 
|  | if (!rl) | 
|  | up_read(&ni->runlist.lock); | 
|  | } | 
|  | /* Hard error.  Abort writing this record. */ | 
|  | if (!err || err == -ENOMEM) | 
|  | err = err2; | 
|  | bh->b_blocknr = -1; | 
|  | ntfs_error(vol->sb, "Cannot write ntfs record " | 
|  | "0x%llx (inode 0x%lx, " | 
|  | "attribute type 0x%x) because " | 
|  | "its location on disk could " | 
|  | "not be determined (error " | 
|  | "code %lli).", | 
|  | (long long)block << | 
|  | bh_size_bits >> | 
|  | vol->mft_record_size_bits, | 
|  | ni->mft_no, ni->type, | 
|  | (long long)lcn); | 
|  | /* | 
|  | * If this is not the first buffer, remove the | 
|  | * buffers in this record from the list of | 
|  | * buffers to write and clear their dirty bit | 
|  | * if not error -ENOMEM. | 
|  | */ | 
|  | if (rec_start_bh != bh) { | 
|  | while (bhs[--nr_bhs] != rec_start_bh) | 
|  | ; | 
|  | if (err2 != -ENOMEM) { | 
|  | do { | 
|  | clear_buffer_dirty( | 
|  | rec_start_bh); | 
|  | } while ((rec_start_bh = | 
|  | rec_start_bh-> | 
|  | b_this_page) != | 
|  | bh); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  | BUG_ON(!buffer_uptodate(bh)); | 
|  | BUG_ON(nr_bhs >= max_bhs); | 
|  | bhs[nr_bhs++] = bh; | 
|  | } while (block++, (bh = bh->b_this_page) != head); | 
|  | if (unlikely(rl)) | 
|  | up_read(&ni->runlist.lock); | 
|  | /* If there were no dirty buffers, we are done. */ | 
|  | if (!nr_bhs) | 
|  | goto done; | 
|  | /* Map the page so we can access its contents. */ | 
|  | kaddr = kmap(page); | 
|  | /* Clear the page uptodate flag whilst the mst fixups are applied. */ | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | ClearPageUptodate(page); | 
|  | for (i = 0; i < nr_bhs; i++) { | 
|  | unsigned int ofs; | 
|  |  | 
|  | /* Skip buffers which are not at the beginning of records. */ | 
|  | if (i % bhs_per_rec) | 
|  | continue; | 
|  | tbh = bhs[i]; | 
|  | ofs = bh_offset(tbh); | 
|  | if (is_mft) { | 
|  | ntfs_inode *tni; | 
|  | unsigned long mft_no; | 
|  |  | 
|  | /* Get the mft record number. */ | 
|  | mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) | 
|  | >> rec_size_bits; | 
|  | /* Check whether to write this mft record. */ | 
|  | tni = NULL; | 
|  | if (!ntfs_may_write_mft_record(vol, mft_no, | 
|  | (MFT_RECORD*)(kaddr + ofs), &tni)) { | 
|  | /* | 
|  | * The record should not be written.  This | 
|  | * means we need to redirty the page before | 
|  | * returning. | 
|  | */ | 
|  | page_is_dirty = TRUE; | 
|  | /* | 
|  | * Remove the buffers in this mft record from | 
|  | * the list of buffers to write. | 
|  | */ | 
|  | do { | 
|  | bhs[i] = NULL; | 
|  | } while (++i % bhs_per_rec); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The record should be written.  If a locked ntfs | 
|  | * inode was returned, add it to the array of locked | 
|  | * ntfs inodes. | 
|  | */ | 
|  | if (tni) | 
|  | locked_nis[nr_locked_nis++] = tni; | 
|  | } | 
|  | /* Apply the mst protection fixups. */ | 
|  | err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs), | 
|  | rec_size); | 
|  | if (unlikely(err2)) { | 
|  | if (!err || err == -ENOMEM) | 
|  | err = -EIO; | 
|  | ntfs_error(vol->sb, "Failed to apply mst fixups " | 
|  | "(inode 0x%lx, attribute type 0x%x, " | 
|  | "page index 0x%lx, page offset 0x%x)!" | 
|  | "  Unmount and run chkdsk.", vi->i_ino, | 
|  | ni->type, page->index, ofs); | 
|  | /* | 
|  | * Mark all the buffers in this record clean as we do | 
|  | * not want to write corrupt data to disk. | 
|  | */ | 
|  | do { | 
|  | clear_buffer_dirty(bhs[i]); | 
|  | bhs[i] = NULL; | 
|  | } while (++i % bhs_per_rec); | 
|  | continue; | 
|  | } | 
|  | nr_recs++; | 
|  | } | 
|  | /* If no records are to be written out, we are done. */ | 
|  | if (!nr_recs) | 
|  | goto unm_done; | 
|  | flush_dcache_page(page); | 
|  | /* Lock buffers and start synchronous write i/o on them. */ | 
|  | for (i = 0; i < nr_bhs; i++) { | 
|  | tbh = bhs[i]; | 
|  | if (!tbh) | 
|  | continue; | 
|  | if (unlikely(test_set_buffer_locked(tbh))) | 
|  | BUG(); | 
|  | /* The buffer dirty state is now irrelevant, just clean it. */ | 
|  | clear_buffer_dirty(tbh); | 
|  | BUG_ON(!buffer_uptodate(tbh)); | 
|  | BUG_ON(!buffer_mapped(tbh)); | 
|  | get_bh(tbh); | 
|  | tbh->b_end_io = end_buffer_write_sync; | 
|  | submit_bh(WRITE, tbh); | 
|  | } | 
|  | /* Synchronize the mft mirror now if not @sync. */ | 
|  | if (is_mft && !sync) | 
|  | goto do_mirror; | 
|  | do_wait: | 
|  | /* Wait on i/o completion of buffers. */ | 
|  | for (i = 0; i < nr_bhs; i++) { | 
|  | tbh = bhs[i]; | 
|  | if (!tbh) | 
|  | continue; | 
|  | wait_on_buffer(tbh); | 
|  | if (unlikely(!buffer_uptodate(tbh))) { | 
|  | ntfs_error(vol->sb, "I/O error while writing ntfs " | 
|  | "record buffer (inode 0x%lx, " | 
|  | "attribute type 0x%x, page index " | 
|  | "0x%lx, page offset 0x%lx)!  Unmount " | 
|  | "and run chkdsk.", vi->i_ino, ni->type, | 
|  | page->index, bh_offset(tbh)); | 
|  | if (!err || err == -ENOMEM) | 
|  | err = -EIO; | 
|  | /* | 
|  | * Set the buffer uptodate so the page and buffer | 
|  | * states do not become out of sync. | 
|  | */ | 
|  | set_buffer_uptodate(tbh); | 
|  | } | 
|  | } | 
|  | /* If @sync, now synchronize the mft mirror. */ | 
|  | if (is_mft && sync) { | 
|  | do_mirror: | 
|  | for (i = 0; i < nr_bhs; i++) { | 
|  | unsigned long mft_no; | 
|  | unsigned int ofs; | 
|  |  | 
|  | /* | 
|  | * Skip buffers which are not at the beginning of | 
|  | * records. | 
|  | */ | 
|  | if (i % bhs_per_rec) | 
|  | continue; | 
|  | tbh = bhs[i]; | 
|  | /* Skip removed buffers (and hence records). */ | 
|  | if (!tbh) | 
|  | continue; | 
|  | ofs = bh_offset(tbh); | 
|  | /* Get the mft record number. */ | 
|  | mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs) | 
|  | >> rec_size_bits; | 
|  | if (mft_no < vol->mftmirr_size) | 
|  | ntfs_sync_mft_mirror(vol, mft_no, | 
|  | (MFT_RECORD*)(kaddr + ofs), | 
|  | sync); | 
|  | } | 
|  | if (!sync) | 
|  | goto do_wait; | 
|  | } | 
|  | /* Remove the mst protection fixups again. */ | 
|  | for (i = 0; i < nr_bhs; i++) { | 
|  | if (!(i % bhs_per_rec)) { | 
|  | tbh = bhs[i]; | 
|  | if (!tbh) | 
|  | continue; | 
|  | post_write_mst_fixup((NTFS_RECORD*)(kaddr + | 
|  | bh_offset(tbh))); | 
|  | } | 
|  | } | 
|  | flush_dcache_page(page); | 
|  | unm_done: | 
|  | /* Unlock any locked inodes. */ | 
|  | while (nr_locked_nis-- > 0) { | 
|  | ntfs_inode *tni, *base_tni; | 
|  |  | 
|  | tni = locked_nis[nr_locked_nis]; | 
|  | /* Get the base inode. */ | 
|  | down(&tni->extent_lock); | 
|  | if (tni->nr_extents >= 0) | 
|  | base_tni = tni; | 
|  | else { | 
|  | base_tni = tni->ext.base_ntfs_ino; | 
|  | BUG_ON(!base_tni); | 
|  | } | 
|  | up(&tni->extent_lock); | 
|  | ntfs_debug("Unlocking %s inode 0x%lx.", | 
|  | tni == base_tni ? "base" : "extent", | 
|  | tni->mft_no); | 
|  | up(&tni->mrec_lock); | 
|  | atomic_dec(&tni->count); | 
|  | iput(VFS_I(base_tni)); | 
|  | } | 
|  | SetPageUptodate(page); | 
|  | kunmap(page); | 
|  | done: | 
|  | if (unlikely(err && err != -ENOMEM)) { | 
|  | /* | 
|  | * Set page error if there is only one ntfs record in the page. | 
|  | * Otherwise we would loose per-record granularity. | 
|  | */ | 
|  | if (ni->itype.index.block_size == PAGE_CACHE_SIZE) | 
|  | SetPageError(page); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | if (page_is_dirty) { | 
|  | ntfs_debug("Page still contains one or more dirty ntfs " | 
|  | "records.  Redirtying the page starting at " | 
|  | "record 0x%lx.", page->index << | 
|  | (PAGE_CACHE_SHIFT - rec_size_bits)); | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | } else { | 
|  | /* | 
|  | * Keep the VM happy.  This must be done otherwise the | 
|  | * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though | 
|  | * the page is clean. | 
|  | */ | 
|  | BUG_ON(PageWriteback(page)); | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | end_page_writeback(page); | 
|  | } | 
|  | if (likely(!err)) | 
|  | ntfs_debug("Done."); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_writepage - write a @page to the backing store | 
|  | * @page:	page cache page to write out | 
|  | * @wbc:	writeback control structure | 
|  | * | 
|  | * This is called from the VM when it wants to have a dirty ntfs page cache | 
|  | * page cleaned.  The VM has already locked the page and marked it clean. | 
|  | * | 
|  | * For non-resident attributes, ntfs_writepage() writes the @page by calling | 
|  | * the ntfs version of the generic block_write_full_page() function, | 
|  | * ntfs_write_block(), which in turn if necessary creates and writes the | 
|  | * buffers associated with the page asynchronously. | 
|  | * | 
|  | * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying | 
|  | * the data to the mft record (which at this stage is most likely in memory). | 
|  | * The mft record is then marked dirty and written out asynchronously via the | 
|  | * vfs inode dirty code path for the inode the mft record belongs to or via the | 
|  | * vm page dirty code path for the page the mft record is in. | 
|  | * | 
|  | * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page(). | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | */ | 
|  | static int ntfs_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | loff_t i_size; | 
|  | struct inode *vi = page->mapping->host; | 
|  | ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi); | 
|  | char *kaddr; | 
|  | ntfs_attr_search_ctx *ctx = NULL; | 
|  | MFT_RECORD *m = NULL; | 
|  | u32 attr_len; | 
|  | int err; | 
|  |  | 
|  | retry_writepage: | 
|  | BUG_ON(!PageLocked(page)); | 
|  | i_size = i_size_read(vi); | 
|  | /* Is the page fully outside i_size? (truncate in progress) */ | 
|  | if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >> | 
|  | PAGE_CACHE_SHIFT)) { | 
|  | /* | 
|  | * The page may have dirty, unmapped buffers.  Make them | 
|  | * freeable here, so the page does not leak. | 
|  | */ | 
|  | block_invalidatepage(page, 0); | 
|  | unlock_page(page); | 
|  | ntfs_debug("Write outside i_size - truncated?"); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Only $DATA attributes can be encrypted and only unnamed $DATA | 
|  | * attributes can be compressed.  Index root can have the flags set but | 
|  | * this means to create compressed/encrypted files, not that the | 
|  | * attribute is compressed/encrypted.  Note we need to check for | 
|  | * AT_INDEX_ALLOCATION since this is the type of both directory and | 
|  | * index inodes. | 
|  | */ | 
|  | if (ni->type != AT_INDEX_ALLOCATION) { | 
|  | /* If file is encrypted, deny access, just like NT4. */ | 
|  | if (NInoEncrypted(ni)) { | 
|  | unlock_page(page); | 
|  | BUG_ON(ni->type != AT_DATA); | 
|  | ntfs_debug("Denying write access to encrypted file."); | 
|  | return -EACCES; | 
|  | } | 
|  | /* Compressed data streams are handled in compress.c. */ | 
|  | if (NInoNonResident(ni) && NInoCompressed(ni)) { | 
|  | BUG_ON(ni->type != AT_DATA); | 
|  | BUG_ON(ni->name_len); | 
|  | // TODO: Implement and replace this with | 
|  | // return ntfs_write_compressed_block(page); | 
|  | unlock_page(page); | 
|  | ntfs_error(vi->i_sb, "Writing to compressed files is " | 
|  | "not supported yet.  Sorry."); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | // TODO: Implement and remove this check. | 
|  | if (NInoNonResident(ni) && NInoSparse(ni)) { | 
|  | unlock_page(page); | 
|  | ntfs_error(vi->i_sb, "Writing to sparse files is not " | 
|  | "supported yet.  Sorry."); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  | /* NInoNonResident() == NInoIndexAllocPresent() */ | 
|  | if (NInoNonResident(ni)) { | 
|  | /* We have to zero every time due to mmap-at-end-of-file. */ | 
|  | if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) { | 
|  | /* The page straddles i_size. */ | 
|  | unsigned int ofs = i_size & ~PAGE_CACHE_MASK; | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | /* Handle mst protected attributes. */ | 
|  | if (NInoMstProtected(ni)) | 
|  | return ntfs_write_mst_block(page, wbc); | 
|  | /* Normal, non-resident data stream. */ | 
|  | return ntfs_write_block(page, wbc); | 
|  | } | 
|  | /* | 
|  | * Attribute is resident, implying it is not compressed, encrypted, or | 
|  | * mst protected.  This also means the attribute is smaller than an mft | 
|  | * record and hence smaller than a page, so can simply return error on | 
|  | * any pages with index above 0.  Note the attribute can actually be | 
|  | * marked compressed but if it is resident the actual data is not | 
|  | * compressed so we are ok to ignore the compressed flag here. | 
|  | */ | 
|  | BUG_ON(page_has_buffers(page)); | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | if (unlikely(page->index > 0)) { | 
|  | ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  " | 
|  | "Aborting write.", page->index); | 
|  | BUG_ON(PageWriteback(page)); | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | end_page_writeback(page); | 
|  | return -EIO; | 
|  | } | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | /* Map, pin, and lock the mft record. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | /* | 
|  | * If a parallel write made the attribute non-resident, drop the mft | 
|  | * record and retry the writepage. | 
|  | */ | 
|  | if (unlikely(NInoNonResident(ni))) { | 
|  | unmap_mft_record(base_ni); | 
|  | goto retry_writepage; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) | 
|  | goto err_out; | 
|  | /* | 
|  | * Keep the VM happy.  This must be done otherwise the radix-tree tag | 
|  | * PAGECACHE_TAG_DIRTY remains set even though the page is clean. | 
|  | */ | 
|  | BUG_ON(PageWriteback(page)); | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | attr_len = le32_to_cpu(ctx->attr->data.resident.value_length); | 
|  | i_size = i_size_read(vi); | 
|  | if (unlikely(attr_len > i_size)) { | 
|  | /* Race with shrinking truncate or a failed truncate. */ | 
|  | attr_len = i_size; | 
|  | /* | 
|  | * If the truncate failed, fix it up now.  If a concurrent | 
|  | * truncate, we do its job, so it does not have to do anything. | 
|  | */ | 
|  | err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr, | 
|  | attr_len); | 
|  | /* Shrinking cannot fail. */ | 
|  | BUG_ON(err); | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | /* Copy the data from the page to the mft record. */ | 
|  | memcpy((u8*)ctx->attr + | 
|  | le16_to_cpu(ctx->attr->data.resident.value_offset), | 
|  | kaddr, attr_len); | 
|  | /* Zero out of bounds area in the page cache page. */ | 
|  | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | /* We are done with the page. */ | 
|  | end_page_writeback(page); | 
|  | /* Finally, mark the mft record dirty, so it gets written back. */ | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | return 0; | 
|  | err_out: | 
|  | if (err == -ENOMEM) { | 
|  | ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying " | 
|  | "page so we try again later."); | 
|  | /* | 
|  | * Put the page back on mapping->dirty_pages, but leave its | 
|  | * buffers' dirty state as-is. | 
|  | */ | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | err = 0; | 
|  | } else { | 
|  | ntfs_error(vi->i_sb, "Resident attribute write failed with " | 
|  | "error %i.", err); | 
|  | SetPageError(page); | 
|  | NVolSetErrors(ni->vol); | 
|  | make_bad_inode(vi); | 
|  | } | 
|  | unlock_page(page); | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #endif	/* NTFS_RW */ | 
|  |  | 
|  | /** | 
|  | * ntfs_aops - general address space operations for inodes and attributes | 
|  | */ | 
|  | struct address_space_operations ntfs_aops = { | 
|  | .readpage	= ntfs_readpage,	/* Fill page with data. */ | 
|  | .sync_page	= block_sync_page,	/* Currently, just unplugs the | 
|  | disk request queue. */ | 
|  | #ifdef NTFS_RW | 
|  | .writepage	= ntfs_writepage,	/* Write dirty page to disk. */ | 
|  | #endif /* NTFS_RW */ | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ntfs_mst_aops - general address space operations for mst protecteed inodes | 
|  | *		   and attributes | 
|  | */ | 
|  | struct address_space_operations ntfs_mst_aops = { | 
|  | .readpage	= ntfs_readpage,	/* Fill page with data. */ | 
|  | .sync_page	= block_sync_page,	/* Currently, just unplugs the | 
|  | disk request queue. */ | 
|  | #ifdef NTFS_RW | 
|  | .writepage	= ntfs_writepage,	/* Write dirty page to disk. */ | 
|  | .set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty | 
|  | without touching the buffers | 
|  | belonging to the page. */ | 
|  | #endif /* NTFS_RW */ | 
|  | }; | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | /** | 
|  | * mark_ntfs_record_dirty - mark an ntfs record dirty | 
|  | * @page:	page containing the ntfs record to mark dirty | 
|  | * @ofs:	byte offset within @page at which the ntfs record begins | 
|  | * | 
|  | * Set the buffers and the page in which the ntfs record is located dirty. | 
|  | * | 
|  | * The latter also marks the vfs inode the ntfs record belongs to dirty | 
|  | * (I_DIRTY_PAGES only). | 
|  | * | 
|  | * If the page does not have buffers, we create them and set them uptodate. | 
|  | * The page may not be locked which is why we need to handle the buffers under | 
|  | * the mapping->private_lock.  Once the buffers are marked dirty we no longer | 
|  | * need the lock since try_to_free_buffers() does not free dirty buffers. | 
|  | */ | 
|  | void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) { | 
|  | struct address_space *mapping = page->mapping; | 
|  | ntfs_inode *ni = NTFS_I(mapping->host); | 
|  | struct buffer_head *bh, *head, *buffers_to_free = NULL; | 
|  | unsigned int end, bh_size, bh_ofs; | 
|  |  | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | end = ofs + ni->itype.index.block_size; | 
|  | bh_size = 1 << VFS_I(ni)->i_blkbits; | 
|  | spin_lock(&mapping->private_lock); | 
|  | if (unlikely(!page_has_buffers(page))) { | 
|  | spin_unlock(&mapping->private_lock); | 
|  | bh = head = alloc_page_buffers(page, bh_size, 1); | 
|  | spin_lock(&mapping->private_lock); | 
|  | if (likely(!page_has_buffers(page))) { | 
|  | struct buffer_head *tail; | 
|  |  | 
|  | do { | 
|  | set_buffer_uptodate(bh); | 
|  | tail = bh; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh); | 
|  | tail->b_this_page = head; | 
|  | attach_page_buffers(page, head); | 
|  | } else | 
|  | buffers_to_free = bh; | 
|  | } | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  | do { | 
|  | bh_ofs = bh_offset(bh); | 
|  | if (bh_ofs + bh_size <= ofs) | 
|  | continue; | 
|  | if (unlikely(bh_ofs >= end)) | 
|  | break; | 
|  | set_buffer_dirty(bh); | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | spin_unlock(&mapping->private_lock); | 
|  | __set_page_dirty_nobuffers(page); | 
|  | if (unlikely(buffers_to_free)) { | 
|  | do { | 
|  | bh = buffers_to_free->b_this_page; | 
|  | free_buffer_head(buffers_to_free); | 
|  | buffers_to_free = bh; | 
|  | } while (buffers_to_free); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* NTFS_RW */ |