| /* | 
 |  *  linux/mm/vmalloc.c | 
 |  * | 
 |  *  Copyright (C) 1993  Linus Torvalds | 
 |  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | 
 |  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | 
 |  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | 
 |  *  Numa awareness, Christoph Lameter, SGI, June 2005 | 
 |  */ | 
 |  | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/list.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/kmemleak.h> | 
 | #include <asm/atomic.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/shmparam.h> | 
 |  | 
 | bool vmap_lazy_unmap __read_mostly = true; | 
 |  | 
 | /*** Page table manipulation functions ***/ | 
 |  | 
 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	do { | 
 | 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | 
 | 		WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 			continue; | 
 | 		vunmap_pte_range(pmd, addr, next); | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (pud_none_or_clear_bad(pud)) | 
 | 			continue; | 
 | 		vunmap_pmd_range(pud, addr, next); | 
 | 	} while (pud++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void vunmap_page_range(unsigned long addr, unsigned long end) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 			continue; | 
 | 		vunmap_pud_range(pgd, addr, next); | 
 | 	} while (pgd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* | 
 | 	 * nr is a running index into the array which helps higher level | 
 | 	 * callers keep track of where we're up to. | 
 | 	 */ | 
 |  | 
 | 	pte = pte_alloc_kernel(pmd, addr); | 
 | 	if (!pte) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		struct page *page = pages[*nr]; | 
 |  | 
 | 		if (WARN_ON(!pte_none(*pte))) | 
 | 			return -EBUSY; | 
 | 		if (WARN_ON(!page)) | 
 | 			return -ENOMEM; | 
 | 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | 
 | 		(*nr)++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 |  | 
 | 	pmd = pmd_alloc(&init_mm, pud, addr); | 
 | 	if (!pmd) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) | 
 | 			return -ENOMEM; | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, | 
 | 		unsigned long end, pgprot_t prot, struct page **pages, int *nr) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 |  | 
 | 	pud = pud_alloc(&init_mm, pgd, addr); | 
 | 	if (!pud) | 
 | 		return -ENOMEM; | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) | 
 | 			return -ENOMEM; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | 
 |  * will have pfns corresponding to the "pages" array. | 
 |  * | 
 |  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | 
 |  */ | 
 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, | 
 | 				   pgprot_t prot, struct page **pages) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 | 	unsigned long addr = start; | 
 | 	int err = 0; | 
 | 	int nr = 0; | 
 |  | 
 | 	BUG_ON(addr >= end); | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} while (pgd++, addr = next, addr != end); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int vmap_page_range(unsigned long start, unsigned long end, | 
 | 			   pgprot_t prot, struct page **pages) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = vmap_page_range_noflush(start, end, prot, pages); | 
 | 	flush_cache_vmap(start, end); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int is_vmalloc_or_module_addr(const void *x) | 
 | { | 
 | 	/* | 
 | 	 * ARM, x86-64 and sparc64 put modules in a special place, | 
 | 	 * and fall back on vmalloc() if that fails. Others | 
 | 	 * just put it in the vmalloc space. | 
 | 	 */ | 
 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | 
 | 	unsigned long addr = (unsigned long)x; | 
 | 	if (addr >= MODULES_VADDR && addr < MODULES_END) | 
 | 		return 1; | 
 | #endif | 
 | 	return is_vmalloc_addr(x); | 
 | } | 
 |  | 
 | /* | 
 |  * Walk a vmap address to the struct page it maps. | 
 |  */ | 
 | struct page *vmalloc_to_page(const void *vmalloc_addr) | 
 | { | 
 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 	struct page *page = NULL; | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 |  | 
 | 	/* | 
 | 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for | 
 | 	 * architectures that do not vmalloc module space | 
 | 	 */ | 
 | 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); | 
 |  | 
 | 	if (!pgd_none(*pgd)) { | 
 | 		pud_t *pud = pud_offset(pgd, addr); | 
 | 		if (!pud_none(*pud)) { | 
 | 			pmd_t *pmd = pmd_offset(pud, addr); | 
 | 			if (!pmd_none(*pmd)) { | 
 | 				pte_t *ptep, pte; | 
 |  | 
 | 				ptep = pte_offset_map(pmd, addr); | 
 | 				pte = *ptep; | 
 | 				if (pte_present(pte)) | 
 | 					page = pte_page(pte); | 
 | 				pte_unmap(ptep); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return page; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_page); | 
 |  | 
 | /* | 
 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 |  */ | 
 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) | 
 | { | 
 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 |  | 
 |  | 
 | /*** Global kva allocator ***/ | 
 |  | 
 | #define VM_LAZY_FREE	0x01 | 
 | #define VM_LAZY_FREEING	0x02 | 
 | #define VM_VM_AREA	0x04 | 
 |  | 
 | struct vmap_area { | 
 | 	unsigned long va_start; | 
 | 	unsigned long va_end; | 
 | 	unsigned long flags; | 
 | 	struct rb_node rb_node;		/* address sorted rbtree */ | 
 | 	struct list_head list;		/* address sorted list */ | 
 | 	struct list_head purge_list;	/* "lazy purge" list */ | 
 | 	void *private; | 
 | 	struct rcu_head rcu_head; | 
 | }; | 
 |  | 
 | static DEFINE_SPINLOCK(vmap_area_lock); | 
 | static struct rb_root vmap_area_root = RB_ROOT; | 
 | static LIST_HEAD(vmap_area_list); | 
 | static unsigned long vmap_area_pcpu_hole; | 
 |  | 
 | static struct vmap_area *__find_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct rb_node *n = vmap_area_root.rb_node; | 
 |  | 
 | 	while (n) { | 
 | 		struct vmap_area *va; | 
 |  | 
 | 		va = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (addr < va->va_start) | 
 | 			n = n->rb_left; | 
 | 		else if (addr > va->va_start) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return va; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __insert_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	struct rb_node **p = &vmap_area_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct rb_node *tmp; | 
 |  | 
 | 	while (*p) { | 
 | 		struct vmap_area *tmp; | 
 |  | 
 | 		parent = *p; | 
 | 		tmp = rb_entry(parent, struct vmap_area, rb_node); | 
 | 		if (va->va_start < tmp->va_end) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (va->va_end > tmp->va_start) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	rb_link_node(&va->rb_node, parent, p); | 
 | 	rb_insert_color(&va->rb_node, &vmap_area_root); | 
 |  | 
 | 	/* address-sort this list so it is usable like the vmlist */ | 
 | 	tmp = rb_prev(&va->rb_node); | 
 | 	if (tmp) { | 
 | 		struct vmap_area *prev; | 
 | 		prev = rb_entry(tmp, struct vmap_area, rb_node); | 
 | 		list_add_rcu(&va->list, &prev->list); | 
 | 	} else | 
 | 		list_add_rcu(&va->list, &vmap_area_list); | 
 | } | 
 |  | 
 | static void purge_vmap_area_lazy(void); | 
 |  | 
 | /* | 
 |  * Allocate a region of KVA of the specified size and alignment, within the | 
 |  * vstart and vend. | 
 |  */ | 
 | static struct vmap_area *alloc_vmap_area(unsigned long size, | 
 | 				unsigned long align, | 
 | 				unsigned long vstart, unsigned long vend, | 
 | 				int node, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct rb_node *n; | 
 | 	unsigned long addr; | 
 | 	int purged = 0; | 
 |  | 
 | 	BUG_ON(!size); | 
 | 	BUG_ON(size & ~PAGE_MASK); | 
 |  | 
 | 	va = kmalloc_node(sizeof(struct vmap_area), | 
 | 			gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!va)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | retry: | 
 | 	addr = ALIGN(vstart, align); | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	if (addr + size - 1 < addr) | 
 | 		goto overflow; | 
 |  | 
 | 	/* XXX: could have a last_hole cache */ | 
 | 	n = vmap_area_root.rb_node; | 
 | 	if (n) { | 
 | 		struct vmap_area *first = NULL; | 
 |  | 
 | 		do { | 
 | 			struct vmap_area *tmp; | 
 | 			tmp = rb_entry(n, struct vmap_area, rb_node); | 
 | 			if (tmp->va_end >= addr) { | 
 | 				if (!first && tmp->va_start < addr + size) | 
 | 					first = tmp; | 
 | 				n = n->rb_left; | 
 | 			} else { | 
 | 				first = tmp; | 
 | 				n = n->rb_right; | 
 | 			} | 
 | 		} while (n); | 
 |  | 
 | 		if (!first) | 
 | 			goto found; | 
 |  | 
 | 		if (first->va_end < addr) { | 
 | 			n = rb_next(&first->rb_node); | 
 | 			if (n) | 
 | 				first = rb_entry(n, struct vmap_area, rb_node); | 
 | 			else | 
 | 				goto found; | 
 | 		} | 
 |  | 
 | 		while (addr + size > first->va_start && addr + size <= vend) { | 
 | 			addr = ALIGN(first->va_end + PAGE_SIZE, align); | 
 | 			if (addr + size - 1 < addr) | 
 | 				goto overflow; | 
 |  | 
 | 			n = rb_next(&first->rb_node); | 
 | 			if (n) | 
 | 				first = rb_entry(n, struct vmap_area, rb_node); | 
 | 			else | 
 | 				goto found; | 
 | 		} | 
 | 	} | 
 | found: | 
 | 	if (addr + size > vend) { | 
 | overflow: | 
 | 		spin_unlock(&vmap_area_lock); | 
 | 		if (!purged) { | 
 | 			purge_vmap_area_lazy(); | 
 | 			purged = 1; | 
 | 			goto retry; | 
 | 		} | 
 | 		if (printk_ratelimit()) | 
 | 			printk(KERN_WARNING | 
 | 				"vmap allocation for size %lu failed: " | 
 | 				"use vmalloc=<size> to increase size.\n", size); | 
 | 		kfree(va); | 
 | 		return ERR_PTR(-EBUSY); | 
 | 	} | 
 |  | 
 | 	BUG_ON(addr & (align-1)); | 
 |  | 
 | 	va->va_start = addr; | 
 | 	va->va_end = addr + size; | 
 | 	va->flags = 0; | 
 | 	__insert_vmap_area(va); | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static void rcu_free_va(struct rcu_head *head) | 
 | { | 
 | 	struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | 
 |  | 
 | 	kfree(va); | 
 | } | 
 |  | 
 | static void __free_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | 
 | 	rb_erase(&va->rb_node, &vmap_area_root); | 
 | 	RB_CLEAR_NODE(&va->rb_node); | 
 | 	list_del_rcu(&va->list); | 
 |  | 
 | 	/* | 
 | 	 * Track the highest possible candidate for pcpu area | 
 | 	 * allocation.  Areas outside of vmalloc area can be returned | 
 | 	 * here too, consider only end addresses which fall inside | 
 | 	 * vmalloc area proper. | 
 | 	 */ | 
 | 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | 
 | 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | 
 |  | 
 | 	call_rcu(&va->rcu_head, rcu_free_va); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a region of KVA allocated by alloc_vmap_area | 
 |  */ | 
 | static void free_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	__free_vmap_area(va); | 
 | 	spin_unlock(&vmap_area_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the pagetable entries of a given vmap_area | 
 |  */ | 
 | static void unmap_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	vunmap_page_range(va->va_start, va->va_end); | 
 | } | 
 |  | 
 | static void vmap_debug_free_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	/* | 
 | 	 * Unmap page tables and force a TLB flush immediately if | 
 | 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | 
 | 	 * bugs similarly to those in linear kernel virtual address | 
 | 	 * space after a page has been freed. | 
 | 	 * | 
 | 	 * All the lazy freeing logic is still retained, in order to | 
 | 	 * minimise intrusiveness of this debugging feature. | 
 | 	 * | 
 | 	 * This is going to be *slow* (linear kernel virtual address | 
 | 	 * debugging doesn't do a broadcast TLB flush so it is a lot | 
 | 	 * faster). | 
 | 	 */ | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	vunmap_page_range(start, end); | 
 | 	flush_tlb_kernel_range(start, end); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * lazy_max_pages is the maximum amount of virtual address space we gather up | 
 |  * before attempting to purge with a TLB flush. | 
 |  * | 
 |  * There is a tradeoff here: a larger number will cover more kernel page tables | 
 |  * and take slightly longer to purge, but it will linearly reduce the number of | 
 |  * global TLB flushes that must be performed. It would seem natural to scale | 
 |  * this number up linearly with the number of CPUs (because vmapping activity | 
 |  * could also scale linearly with the number of CPUs), however it is likely | 
 |  * that in practice, workloads might be constrained in other ways that mean | 
 |  * vmap activity will not scale linearly with CPUs. Also, I want to be | 
 |  * conservative and not introduce a big latency on huge systems, so go with | 
 |  * a less aggressive log scale. It will still be an improvement over the old | 
 |  * code, and it will be simple to change the scale factor if we find that it | 
 |  * becomes a problem on bigger systems. | 
 |  */ | 
 | static unsigned long lazy_max_pages(void) | 
 | { | 
 | 	unsigned int log; | 
 |  | 
 | 	if (!vmap_lazy_unmap) | 
 | 		return 0; | 
 |  | 
 | 	log = fls(num_online_cpus()); | 
 |  | 
 | 	return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 
 | } | 
 |  | 
 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | 
 |  | 
 | /* for per-CPU blocks */ | 
 | static void purge_fragmented_blocks_allcpus(void); | 
 |  | 
 | /* | 
 |  * Purges all lazily-freed vmap areas. | 
 |  * | 
 |  * If sync is 0 then don't purge if there is already a purge in progress. | 
 |  * If force_flush is 1, then flush kernel TLBs between *start and *end even | 
 |  * if we found no lazy vmap areas to unmap (callers can use this to optimise | 
 |  * their own TLB flushing). | 
 |  * Returns with *start = min(*start, lowest purged address) | 
 |  *              *end = max(*end, highest purged address) | 
 |  */ | 
 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | 
 | 					int sync, int force_flush) | 
 | { | 
 | 	static DEFINE_SPINLOCK(purge_lock); | 
 | 	LIST_HEAD(valist); | 
 | 	struct vmap_area *va; | 
 | 	struct vmap_area *n_va; | 
 | 	int nr = 0; | 
 |  | 
 | 	/* | 
 | 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | 
 | 	 * should not expect such behaviour. This just simplifies locking for | 
 | 	 * the case that isn't actually used at the moment anyway. | 
 | 	 */ | 
 | 	if (!sync && !force_flush) { | 
 | 		if (!spin_trylock(&purge_lock)) | 
 | 			return; | 
 | 	} else | 
 | 		spin_lock(&purge_lock); | 
 |  | 
 | 	if (sync) | 
 | 		purge_fragmented_blocks_allcpus(); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(va, &vmap_area_list, list) { | 
 | 		if (va->flags & VM_LAZY_FREE) { | 
 | 			if (va->va_start < *start) | 
 | 				*start = va->va_start; | 
 | 			if (va->va_end > *end) | 
 | 				*end = va->va_end; | 
 | 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | 
 | 			unmap_vmap_area(va); | 
 | 			list_add_tail(&va->purge_list, &valist); | 
 | 			va->flags |= VM_LAZY_FREEING; | 
 | 			va->flags &= ~VM_LAZY_FREE; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (nr) | 
 | 		atomic_sub(nr, &vmap_lazy_nr); | 
 |  | 
 | 	if (nr || force_flush) | 
 | 		flush_tlb_kernel_range(*start, *end); | 
 |  | 
 | 	if (nr) { | 
 | 		spin_lock(&vmap_area_lock); | 
 | 		list_for_each_entry_safe(va, n_va, &valist, purge_list) | 
 | 			__free_vmap_area(va); | 
 | 		spin_unlock(&vmap_area_lock); | 
 | 	} | 
 | 	spin_unlock(&purge_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | 
 |  * is already purging. | 
 |  */ | 
 | static void try_purge_vmap_area_lazy(void) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 |  | 
 | 	__purge_vmap_area_lazy(&start, &end, 0, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Kick off a purge of the outstanding lazy areas. | 
 |  */ | 
 | static void purge_vmap_area_lazy(void) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 |  | 
 | 	__purge_vmap_area_lazy(&start, &end, 1, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been | 
 |  * called for the correct range previously. | 
 |  */ | 
 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) | 
 | { | 
 | 	va->flags |= VM_LAZY_FREE; | 
 | 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | 
 | 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | 
 | 		try_purge_vmap_area_lazy(); | 
 | } | 
 |  | 
 | /* | 
 |  * Free and unmap a vmap area | 
 |  */ | 
 | static void free_unmap_vmap_area(struct vmap_area *va) | 
 | { | 
 | 	flush_cache_vunmap(va->va_start, va->va_end); | 
 | 	free_unmap_vmap_area_noflush(va); | 
 | } | 
 |  | 
 | static struct vmap_area *find_vmap_area(unsigned long addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	spin_lock(&vmap_area_lock); | 
 | 	va = __find_vmap_area(addr); | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	return va; | 
 | } | 
 |  | 
 | static void free_unmap_vmap_area_addr(unsigned long addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = find_vmap_area(addr); | 
 | 	BUG_ON(!va); | 
 | 	free_unmap_vmap_area(va); | 
 | } | 
 |  | 
 |  | 
 | /*** Per cpu kva allocator ***/ | 
 |  | 
 | /* | 
 |  * vmap space is limited especially on 32 bit architectures. Ensure there is | 
 |  * room for at least 16 percpu vmap blocks per CPU. | 
 |  */ | 
 | /* | 
 |  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | 
 |  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess | 
 |  * instead (we just need a rough idea) | 
 |  */ | 
 | #if BITS_PER_LONG == 32 | 
 | #define VMALLOC_SPACE		(128UL*1024*1024) | 
 | #else | 
 | #define VMALLOC_SPACE		(128UL*1024*1024*1024) | 
 | #endif | 
 |  | 
 | #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE) | 
 | #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */ | 
 | #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2) | 
 | #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */ | 
 | #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */ | 
 | #define VMAP_BBMAP_BITS		VMAP_MIN(VMAP_BBMAP_BITS_MAX,		\ | 
 | 					VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\ | 
 | 						VMALLOC_PAGES / NR_CPUS / 16)) | 
 |  | 
 | #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE) | 
 |  | 
 | static bool vmap_initialized __read_mostly = false; | 
 |  | 
 | struct vmap_block_queue { | 
 | 	spinlock_t lock; | 
 | 	struct list_head free; | 
 | }; | 
 |  | 
 | struct vmap_block { | 
 | 	spinlock_t lock; | 
 | 	struct vmap_area *va; | 
 | 	struct vmap_block_queue *vbq; | 
 | 	unsigned long free, dirty; | 
 | 	DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | 
 | 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | 
 | 	struct list_head free_list; | 
 | 	struct rcu_head rcu_head; | 
 | 	struct list_head purge; | 
 | }; | 
 |  | 
 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | 
 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | 
 |  | 
 | /* | 
 |  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | 
 |  * in the free path. Could get rid of this if we change the API to return a | 
 |  * "cookie" from alloc, to be passed to free. But no big deal yet. | 
 |  */ | 
 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | 
 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | 
 |  | 
 | /* | 
 |  * We should probably have a fallback mechanism to allocate virtual memory | 
 |  * out of partially filled vmap blocks. However vmap block sizing should be | 
 |  * fairly reasonable according to the vmalloc size, so it shouldn't be a | 
 |  * big problem. | 
 |  */ | 
 |  | 
 | static unsigned long addr_to_vb_idx(unsigned long addr) | 
 | { | 
 | 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | 
 | 	addr /= VMAP_BLOCK_SIZE; | 
 | 	return addr; | 
 | } | 
 |  | 
 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_area *va; | 
 | 	unsigned long vb_idx; | 
 | 	int node, err; | 
 |  | 
 | 	node = numa_node_id(); | 
 |  | 
 | 	vb = kmalloc_node(sizeof(struct vmap_block), | 
 | 			gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!vb)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | 
 | 					VMALLOC_START, VMALLOC_END, | 
 | 					node, gfp_mask); | 
 | 	if (unlikely(IS_ERR(va))) { | 
 | 		kfree(vb); | 
 | 		return ERR_CAST(va); | 
 | 	} | 
 |  | 
 | 	err = radix_tree_preload(gfp_mask); | 
 | 	if (unlikely(err)) { | 
 | 		kfree(vb); | 
 | 		free_vmap_area(va); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&vb->lock); | 
 | 	vb->va = va; | 
 | 	vb->free = VMAP_BBMAP_BITS; | 
 | 	vb->dirty = 0; | 
 | 	bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | 
 | 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | 
 | 	INIT_LIST_HEAD(&vb->free_list); | 
 |  | 
 | 	vb_idx = addr_to_vb_idx(va->va_start); | 
 | 	spin_lock(&vmap_block_tree_lock); | 
 | 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | 
 | 	spin_unlock(&vmap_block_tree_lock); | 
 | 	BUG_ON(err); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	vbq = &get_cpu_var(vmap_block_queue); | 
 | 	vb->vbq = vbq; | 
 | 	spin_lock(&vbq->lock); | 
 | 	list_add_rcu(&vb->free_list, &vbq->free); | 
 | 	spin_unlock(&vbq->lock); | 
 | 	put_cpu_var(vmap_block_queue); | 
 |  | 
 | 	return vb; | 
 | } | 
 |  | 
 | static void rcu_free_vb(struct rcu_head *head) | 
 | { | 
 | 	struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | 
 |  | 
 | 	kfree(vb); | 
 | } | 
 |  | 
 | static void free_vmap_block(struct vmap_block *vb) | 
 | { | 
 | 	struct vmap_block *tmp; | 
 | 	unsigned long vb_idx; | 
 |  | 
 | 	vb_idx = addr_to_vb_idx(vb->va->va_start); | 
 | 	spin_lock(&vmap_block_tree_lock); | 
 | 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | 
 | 	spin_unlock(&vmap_block_tree_lock); | 
 | 	BUG_ON(tmp != vb); | 
 |  | 
 | 	free_unmap_vmap_area_noflush(vb->va); | 
 | 	call_rcu(&vb->rcu_head, rcu_free_vb); | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks(int cpu) | 
 | { | 
 | 	LIST_HEAD(purge); | 
 | 	struct vmap_block *vb; | 
 | 	struct vmap_block *n_vb; | 
 | 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 |  | 
 | 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | 
 | 			vb->free = 0; /* prevent further allocs after releasing lock */ | 
 | 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | 
 | 			bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); | 
 | 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); | 
 | 			spin_lock(&vbq->lock); | 
 | 			list_del_rcu(&vb->free_list); | 
 | 			spin_unlock(&vbq->lock); | 
 | 			spin_unlock(&vb->lock); | 
 | 			list_add_tail(&vb->purge, &purge); | 
 | 		} else | 
 | 			spin_unlock(&vb->lock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	list_for_each_entry_safe(vb, n_vb, &purge, purge) { | 
 | 		list_del(&vb->purge); | 
 | 		free_vmap_block(vb); | 
 | 	} | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks_thiscpu(void) | 
 | { | 
 | 	purge_fragmented_blocks(smp_processor_id()); | 
 | } | 
 |  | 
 | static void purge_fragmented_blocks_allcpus(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		purge_fragmented_blocks(cpu); | 
 | } | 
 |  | 
 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | 
 | { | 
 | 	struct vmap_block_queue *vbq; | 
 | 	struct vmap_block *vb; | 
 | 	unsigned long addr = 0; | 
 | 	unsigned int order; | 
 | 	int purge = 0; | 
 |  | 
 | 	BUG_ON(size & ~PAGE_MASK); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 | 	order = get_order(size); | 
 |  | 
 | again: | 
 | 	rcu_read_lock(); | 
 | 	vbq = &get_cpu_var(vmap_block_queue); | 
 | 	list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 		int i; | 
 |  | 
 | 		spin_lock(&vb->lock); | 
 | 		if (vb->free < 1UL << order) | 
 | 			goto next; | 
 |  | 
 | 		i = bitmap_find_free_region(vb->alloc_map, | 
 | 						VMAP_BBMAP_BITS, order); | 
 |  | 
 | 		if (i < 0) { | 
 | 			if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { | 
 | 				/* fragmented and no outstanding allocations */ | 
 | 				BUG_ON(vb->dirty != VMAP_BBMAP_BITS); | 
 | 				purge = 1; | 
 | 			} | 
 | 			goto next; | 
 | 		} | 
 | 		addr = vb->va->va_start + (i << PAGE_SHIFT); | 
 | 		BUG_ON(addr_to_vb_idx(addr) != | 
 | 				addr_to_vb_idx(vb->va->va_start)); | 
 | 		vb->free -= 1UL << order; | 
 | 		if (vb->free == 0) { | 
 | 			spin_lock(&vbq->lock); | 
 | 			list_del_rcu(&vb->free_list); | 
 | 			spin_unlock(&vbq->lock); | 
 | 		} | 
 | 		spin_unlock(&vb->lock); | 
 | 		break; | 
 | next: | 
 | 		spin_unlock(&vb->lock); | 
 | 	} | 
 |  | 
 | 	if (purge) | 
 | 		purge_fragmented_blocks_thiscpu(); | 
 |  | 
 | 	put_cpu_var(vmap_block_queue); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!addr) { | 
 | 		vb = new_vmap_block(gfp_mask); | 
 | 		if (IS_ERR(vb)) | 
 | 			return vb; | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	return (void *)addr; | 
 | } | 
 |  | 
 | static void vb_free(const void *addr, unsigned long size) | 
 | { | 
 | 	unsigned long offset; | 
 | 	unsigned long vb_idx; | 
 | 	unsigned int order; | 
 | 	struct vmap_block *vb; | 
 |  | 
 | 	BUG_ON(size & ~PAGE_MASK); | 
 | 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | 
 |  | 
 | 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | 
 |  | 
 | 	order = get_order(size); | 
 |  | 
 | 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | 
 |  | 
 | 	vb_idx = addr_to_vb_idx((unsigned long)addr); | 
 | 	rcu_read_lock(); | 
 | 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | 
 | 	rcu_read_unlock(); | 
 | 	BUG_ON(!vb); | 
 |  | 
 | 	spin_lock(&vb->lock); | 
 | 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); | 
 |  | 
 | 	vb->dirty += 1UL << order; | 
 | 	if (vb->dirty == VMAP_BBMAP_BITS) { | 
 | 		BUG_ON(vb->free); | 
 | 		spin_unlock(&vb->lock); | 
 | 		free_vmap_block(vb); | 
 | 	} else | 
 | 		spin_unlock(&vb->lock); | 
 | } | 
 |  | 
 | /** | 
 |  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | 
 |  * | 
 |  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | 
 |  * to amortize TLB flushing overheads. What this means is that any page you | 
 |  * have now, may, in a former life, have been mapped into kernel virtual | 
 |  * address by the vmap layer and so there might be some CPUs with TLB entries | 
 |  * still referencing that page (additional to the regular 1:1 kernel mapping). | 
 |  * | 
 |  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | 
 |  * be sure that none of the pages we have control over will have any aliases | 
 |  * from the vmap layer. | 
 |  */ | 
 | void vm_unmap_aliases(void) | 
 | { | 
 | 	unsigned long start = ULONG_MAX, end = 0; | 
 | 	int cpu; | 
 | 	int flush = 0; | 
 |  | 
 | 	if (unlikely(!vmap_initialized)) | 
 | 		return; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | 
 | 		struct vmap_block *vb; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		list_for_each_entry_rcu(vb, &vbq->free, free_list) { | 
 | 			int i; | 
 |  | 
 | 			spin_lock(&vb->lock); | 
 | 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | 
 | 			while (i < VMAP_BBMAP_BITS) { | 
 | 				unsigned long s, e; | 
 | 				int j; | 
 | 				j = find_next_zero_bit(vb->dirty_map, | 
 | 					VMAP_BBMAP_BITS, i); | 
 |  | 
 | 				s = vb->va->va_start + (i << PAGE_SHIFT); | 
 | 				e = vb->va->va_start + (j << PAGE_SHIFT); | 
 | 				vunmap_page_range(s, e); | 
 | 				flush = 1; | 
 |  | 
 | 				if (s < start) | 
 | 					start = s; | 
 | 				if (e > end) | 
 | 					end = e; | 
 |  | 
 | 				i = j; | 
 | 				i = find_next_bit(vb->dirty_map, | 
 | 							VMAP_BBMAP_BITS, i); | 
 | 			} | 
 | 			spin_unlock(&vb->lock); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 |  | 
 | 	__purge_vmap_area_lazy(&start, &end, 1, flush); | 
 | } | 
 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | 
 |  | 
 | /** | 
 |  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | 
 |  * @mem: the pointer returned by vm_map_ram | 
 |  * @count: the count passed to that vm_map_ram call (cannot unmap partial) | 
 |  */ | 
 | void vm_unmap_ram(const void *mem, unsigned int count) | 
 | { | 
 | 	unsigned long size = count << PAGE_SHIFT; | 
 | 	unsigned long addr = (unsigned long)mem; | 
 |  | 
 | 	BUG_ON(!addr); | 
 | 	BUG_ON(addr < VMALLOC_START); | 
 | 	BUG_ON(addr > VMALLOC_END); | 
 | 	BUG_ON(addr & (PAGE_SIZE-1)); | 
 |  | 
 | 	debug_check_no_locks_freed(mem, size); | 
 | 	vmap_debug_free_range(addr, addr+size); | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) | 
 | 		vb_free(mem, size); | 
 | 	else | 
 | 		free_unmap_vmap_area_addr(addr); | 
 | } | 
 | EXPORT_SYMBOL(vm_unmap_ram); | 
 |  | 
 | /** | 
 |  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | 
 |  * @pages: an array of pointers to the pages to be mapped | 
 |  * @count: number of pages | 
 |  * @node: prefer to allocate data structures on this node | 
 |  * @prot: memory protection to use. PAGE_KERNEL for regular RAM | 
 |  * | 
 |  * Returns: a pointer to the address that has been mapped, or %NULL on failure | 
 |  */ | 
 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | 
 | { | 
 | 	unsigned long size = count << PAGE_SHIFT; | 
 | 	unsigned long addr; | 
 | 	void *mem; | 
 |  | 
 | 	if (likely(count <= VMAP_MAX_ALLOC)) { | 
 | 		mem = vb_alloc(size, GFP_KERNEL); | 
 | 		if (IS_ERR(mem)) | 
 | 			return NULL; | 
 | 		addr = (unsigned long)mem; | 
 | 	} else { | 
 | 		struct vmap_area *va; | 
 | 		va = alloc_vmap_area(size, PAGE_SIZE, | 
 | 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | 
 | 		if (IS_ERR(va)) | 
 | 			return NULL; | 
 |  | 
 | 		addr = va->va_start; | 
 | 		mem = (void *)addr; | 
 | 	} | 
 | 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | 
 | 		vm_unmap_ram(mem, count); | 
 | 		return NULL; | 
 | 	} | 
 | 	return mem; | 
 | } | 
 | EXPORT_SYMBOL(vm_map_ram); | 
 |  | 
 | /** | 
 |  * vm_area_register_early - register vmap area early during boot | 
 |  * @vm: vm_struct to register | 
 |  * @align: requested alignment | 
 |  * | 
 |  * This function is used to register kernel vm area before | 
 |  * vmalloc_init() is called.  @vm->size and @vm->flags should contain | 
 |  * proper values on entry and other fields should be zero.  On return, | 
 |  * vm->addr contains the allocated address. | 
 |  * | 
 |  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | 
 |  */ | 
 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) | 
 | { | 
 | 	static size_t vm_init_off __initdata; | 
 | 	unsigned long addr; | 
 |  | 
 | 	addr = ALIGN(VMALLOC_START + vm_init_off, align); | 
 | 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | 
 |  | 
 | 	vm->addr = (void *)addr; | 
 |  | 
 | 	vm->next = vmlist; | 
 | 	vmlist = vm; | 
 | } | 
 |  | 
 | void __init vmalloc_init(void) | 
 | { | 
 | 	struct vmap_area *va; | 
 | 	struct vm_struct *tmp; | 
 | 	int i; | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		struct vmap_block_queue *vbq; | 
 |  | 
 | 		vbq = &per_cpu(vmap_block_queue, i); | 
 | 		spin_lock_init(&vbq->lock); | 
 | 		INIT_LIST_HEAD(&vbq->free); | 
 | 	} | 
 |  | 
 | 	/* Import existing vmlist entries. */ | 
 | 	for (tmp = vmlist; tmp; tmp = tmp->next) { | 
 | 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); | 
 | 		va->flags = tmp->flags | VM_VM_AREA; | 
 | 		va->va_start = (unsigned long)tmp->addr; | 
 | 		va->va_end = va->va_start + tmp->size; | 
 | 		__insert_vmap_area(va); | 
 | 	} | 
 |  | 
 | 	vmap_area_pcpu_hole = VMALLOC_END; | 
 |  | 
 | 	vmap_initialized = true; | 
 | } | 
 |  | 
 | /** | 
 |  * map_kernel_range_noflush - map kernel VM area with the specified pages | 
 |  * @addr: start of the VM area to map | 
 |  * @size: size of the VM area to map | 
 |  * @prot: page protection flags to use | 
 |  * @pages: pages to map | 
 |  * | 
 |  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
 |  * specify should have been allocated using get_vm_area() and its | 
 |  * friends. | 
 |  * | 
 |  * NOTE: | 
 |  * This function does NOT do any cache flushing.  The caller is | 
 |  * responsible for calling flush_cache_vmap() on to-be-mapped areas | 
 |  * before calling this function. | 
 |  * | 
 |  * RETURNS: | 
 |  * The number of pages mapped on success, -errno on failure. | 
 |  */ | 
 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | 
 | 			     pgprot_t prot, struct page **pages) | 
 | { | 
 | 	return vmap_page_range_noflush(addr, addr + size, prot, pages); | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_kernel_range_noflush - unmap kernel VM area | 
 |  * @addr: start of the VM area to unmap | 
 |  * @size: size of the VM area to unmap | 
 |  * | 
 |  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size | 
 |  * specify should have been allocated using get_vm_area() and its | 
 |  * friends. | 
 |  * | 
 |  * NOTE: | 
 |  * This function does NOT do any cache flushing.  The caller is | 
 |  * responsible for calling flush_cache_vunmap() on to-be-mapped areas | 
 |  * before calling this function and flush_tlb_kernel_range() after. | 
 |  */ | 
 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | 
 | { | 
 | 	vunmap_page_range(addr, addr + size); | 
 | } | 
 |  | 
 | /** | 
 |  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | 
 |  * @addr: start of the VM area to unmap | 
 |  * @size: size of the VM area to unmap | 
 |  * | 
 |  * Similar to unmap_kernel_range_noflush() but flushes vcache before | 
 |  * the unmapping and tlb after. | 
 |  */ | 
 | void unmap_kernel_range(unsigned long addr, unsigned long size) | 
 | { | 
 | 	unsigned long end = addr + size; | 
 |  | 
 | 	flush_cache_vunmap(addr, end); | 
 | 	vunmap_page_range(addr, end); | 
 | 	flush_tlb_kernel_range(addr, end); | 
 | } | 
 |  | 
 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | 
 | { | 
 | 	unsigned long addr = (unsigned long)area->addr; | 
 | 	unsigned long end = addr + area->size - PAGE_SIZE; | 
 | 	int err; | 
 |  | 
 | 	err = vmap_page_range(addr, end, prot, *pages); | 
 | 	if (err > 0) { | 
 | 		*pages += err; | 
 | 		err = 0; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(map_vm_area); | 
 |  | 
 | /*** Old vmalloc interfaces ***/ | 
 | DEFINE_RWLOCK(vmlist_lock); | 
 | struct vm_struct *vmlist; | 
 |  | 
 | static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | 
 | 			      unsigned long flags, void *caller) | 
 | { | 
 | 	struct vm_struct *tmp, **p; | 
 |  | 
 | 	vm->flags = flags; | 
 | 	vm->addr = (void *)va->va_start; | 
 | 	vm->size = va->va_end - va->va_start; | 
 | 	vm->caller = caller; | 
 | 	va->private = vm; | 
 | 	va->flags |= VM_VM_AREA; | 
 |  | 
 | 	write_lock(&vmlist_lock); | 
 | 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | 
 | 		if (tmp->addr >= vm->addr) | 
 | 			break; | 
 | 	} | 
 | 	vm->next = *p; | 
 | 	*p = vm; | 
 | 	write_unlock(&vmlist_lock); | 
 | } | 
 |  | 
 | static struct vm_struct *__get_vm_area_node(unsigned long size, | 
 | 		unsigned long align, unsigned long flags, unsigned long start, | 
 | 		unsigned long end, int node, gfp_t gfp_mask, void *caller) | 
 | { | 
 | 	static struct vmap_area *va; | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	BUG_ON(in_interrupt()); | 
 | 	if (flags & VM_IOREMAP) { | 
 | 		int bit = fls(size); | 
 |  | 
 | 		if (bit > IOREMAP_MAX_ORDER) | 
 | 			bit = IOREMAP_MAX_ORDER; | 
 | 		else if (bit < PAGE_SHIFT) | 
 | 			bit = PAGE_SHIFT; | 
 |  | 
 | 		align = 1ul << bit; | 
 | 	} | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (unlikely(!size)) | 
 | 		return NULL; | 
 |  | 
 | 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); | 
 | 	if (unlikely(!area)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * We always allocate a guard page. | 
 | 	 */ | 
 | 	size += PAGE_SIZE; | 
 |  | 
 | 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask); | 
 | 	if (IS_ERR(va)) { | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	insert_vmalloc_vm(area, va, flags, caller); | 
 | 	return area; | 
 | } | 
 |  | 
 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, | 
 | 				unsigned long start, unsigned long end) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, | 
 | 						__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(__get_vm_area); | 
 |  | 
 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				       unsigned long start, unsigned long end, | 
 | 				       void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, | 
 | 				  caller); | 
 | } | 
 |  | 
 | /** | 
 |  *	get_vm_area  -  reserve a contiguous kernel virtual area | 
 |  *	@size:		size of the area | 
 |  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC | 
 |  * | 
 |  *	Search an area of @size in the kernel virtual mapping area, | 
 |  *	and reserved it for out purposes.  Returns the area descriptor | 
 |  *	on success or %NULL on failure. | 
 |  */ | 
 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
 | 				-1, GFP_KERNEL, __builtin_return_address(0)); | 
 | } | 
 |  | 
 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | 
 | 				void *caller) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
 | 						-1, GFP_KERNEL, caller); | 
 | } | 
 |  | 
 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, | 
 | 				   int node, gfp_t gfp_mask) | 
 | { | 
 | 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, | 
 | 				  node, gfp_mask, __builtin_return_address(0)); | 
 | } | 
 |  | 
 | static struct vm_struct *find_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = find_vmap_area((unsigned long)addr); | 
 | 	if (va && va->flags & VM_VM_AREA) | 
 | 		return va->private; | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  *	remove_vm_area  -  find and remove a continuous kernel virtual area | 
 |  *	@addr:		base address | 
 |  * | 
 |  *	Search for the kernel VM area starting at @addr, and remove it. | 
 |  *	This function returns the found VM area, but using it is NOT safe | 
 |  *	on SMP machines, except for its size or flags. | 
 |  */ | 
 | struct vm_struct *remove_vm_area(const void *addr) | 
 | { | 
 | 	struct vmap_area *va; | 
 |  | 
 | 	va = find_vmap_area((unsigned long)addr); | 
 | 	if (va && va->flags & VM_VM_AREA) { | 
 | 		struct vm_struct *vm = va->private; | 
 | 		struct vm_struct *tmp, **p; | 
 | 		/* | 
 | 		 * remove from list and disallow access to this vm_struct | 
 | 		 * before unmap. (address range confliction is maintained by | 
 | 		 * vmap.) | 
 | 		 */ | 
 | 		write_lock(&vmlist_lock); | 
 | 		for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | 
 | 			; | 
 | 		*p = tmp->next; | 
 | 		write_unlock(&vmlist_lock); | 
 |  | 
 | 		vmap_debug_free_range(va->va_start, va->va_end); | 
 | 		free_unmap_vmap_area(va); | 
 | 		vm->size -= PAGE_SIZE; | 
 |  | 
 | 		return vm; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __vunmap(const void *addr, int deallocate_pages) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	if (!addr) | 
 | 		return; | 
 |  | 
 | 	if ((PAGE_SIZE-1) & (unsigned long)addr) { | 
 | 		WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	area = remove_vm_area(addr); | 
 | 	if (unlikely(!area)) { | 
 | 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | 
 | 				addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	debug_check_no_locks_freed(addr, area->size); | 
 | 	debug_check_no_obj_freed(addr, area->size); | 
 |  | 
 | 	if (deallocate_pages) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < area->nr_pages; i++) { | 
 | 			struct page *page = area->pages[i]; | 
 |  | 
 | 			BUG_ON(!page); | 
 | 			__free_page(page); | 
 | 		} | 
 |  | 
 | 		if (area->flags & VM_VPAGES) | 
 | 			vfree(area->pages); | 
 | 		else | 
 | 			kfree(area->pages); | 
 | 	} | 
 |  | 
 | 	kfree(area); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *	vfree  -  release memory allocated by vmalloc() | 
 |  *	@addr:		memory base address | 
 |  * | 
 |  *	Free the virtually continuous memory area starting at @addr, as | 
 |  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is | 
 |  *	NULL, no operation is performed. | 
 |  * | 
 |  *	Must not be called in interrupt context. | 
 |  */ | 
 | void vfree(const void *addr) | 
 | { | 
 | 	BUG_ON(in_interrupt()); | 
 |  | 
 | 	kmemleak_free(addr); | 
 |  | 
 | 	__vunmap(addr, 1); | 
 | } | 
 | EXPORT_SYMBOL(vfree); | 
 |  | 
 | /** | 
 |  *	vunmap  -  release virtual mapping obtained by vmap() | 
 |  *	@addr:		memory base address | 
 |  * | 
 |  *	Free the virtually contiguous memory area starting at @addr, | 
 |  *	which was created from the page array passed to vmap(). | 
 |  * | 
 |  *	Must not be called in interrupt context. | 
 |  */ | 
 | void vunmap(const void *addr) | 
 | { | 
 | 	BUG_ON(in_interrupt()); | 
 | 	might_sleep(); | 
 | 	__vunmap(addr, 0); | 
 | } | 
 | EXPORT_SYMBOL(vunmap); | 
 |  | 
 | /** | 
 |  *	vmap  -  map an array of pages into virtually contiguous space | 
 |  *	@pages:		array of page pointers | 
 |  *	@count:		number of pages to map | 
 |  *	@flags:		vm_area->flags | 
 |  *	@prot:		page protection for the mapping | 
 |  * | 
 |  *	Maps @count pages from @pages into contiguous kernel virtual | 
 |  *	space. | 
 |  */ | 
 | void *vmap(struct page **pages, unsigned int count, | 
 | 		unsigned long flags, pgprot_t prot) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	if (count > totalram_pages) | 
 | 		return NULL; | 
 |  | 
 | 	area = get_vm_area_caller((count << PAGE_SHIFT), flags, | 
 | 					__builtin_return_address(0)); | 
 | 	if (!area) | 
 | 		return NULL; | 
 |  | 
 | 	if (map_vm_area(area, prot, &pages)) { | 
 | 		vunmap(area->addr); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	return area->addr; | 
 | } | 
 | EXPORT_SYMBOL(vmap); | 
 |  | 
 | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
 | 			    gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node, void *caller); | 
 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, | 
 | 				 pgprot_t prot, int node, void *caller) | 
 | { | 
 | 	struct page **pages; | 
 | 	unsigned int nr_pages, array_size, i; | 
 | 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; | 
 |  | 
 | 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | 
 | 	array_size = (nr_pages * sizeof(struct page *)); | 
 |  | 
 | 	area->nr_pages = nr_pages; | 
 | 	/* Please note that the recursion is strictly bounded. */ | 
 | 	if (array_size > PAGE_SIZE) { | 
 | 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, | 
 | 				PAGE_KERNEL, node, caller); | 
 | 		area->flags |= VM_VPAGES; | 
 | 	} else { | 
 | 		pages = kmalloc_node(array_size, nested_gfp, node); | 
 | 	} | 
 | 	area->pages = pages; | 
 | 	area->caller = caller; | 
 | 	if (!area->pages) { | 
 | 		remove_vm_area(area->addr); | 
 | 		kfree(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < area->nr_pages; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		if (node < 0) | 
 | 			page = alloc_page(gfp_mask); | 
 | 		else | 
 | 			page = alloc_pages_node(node, gfp_mask, 0); | 
 |  | 
 | 		if (unlikely(!page)) { | 
 | 			/* Successfully allocated i pages, free them in __vunmap() */ | 
 | 			area->nr_pages = i; | 
 | 			goto fail; | 
 | 		} | 
 | 		area->pages[i] = page; | 
 | 	} | 
 |  | 
 | 	if (map_vm_area(area, prot, &pages)) | 
 | 		goto fail; | 
 | 	return area->addr; | 
 |  | 
 | fail: | 
 | 	vfree(area->addr); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) | 
 | { | 
 | 	void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1, | 
 | 					 __builtin_return_address(0)); | 
 |  | 
 | 	/* | 
 | 	 * A ref_count = 3 is needed because the vm_struct and vmap_area | 
 | 	 * structures allocated in the __get_vm_area_node() function contain | 
 | 	 * references to the virtual address of the vmalloc'ed block. | 
 | 	 */ | 
 | 	kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /** | 
 |  *	__vmalloc_node  -  allocate virtually contiguous memory | 
 |  *	@size:		allocation size | 
 |  *	@align:		desired alignment | 
 |  *	@gfp_mask:	flags for the page level allocator | 
 |  *	@prot:		protection mask for the allocated pages | 
 |  *	@node:		node to use for allocation or -1 | 
 |  *	@caller:	caller's return address | 
 |  * | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator with @gfp_mask flags.  Map them into contiguous | 
 |  *	kernel virtual space, using a pagetable protection of @prot. | 
 |  */ | 
 | static void *__vmalloc_node(unsigned long size, unsigned long align, | 
 | 			    gfp_t gfp_mask, pgprot_t prot, | 
 | 			    int node, void *caller) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *addr; | 
 | 	unsigned long real_size = size; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	if (!size || (size >> PAGE_SHIFT) > totalram_pages) | 
 | 		return NULL; | 
 |  | 
 | 	area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START, | 
 | 				  VMALLOC_END, node, gfp_mask, caller); | 
 |  | 
 | 	if (!area) | 
 | 		return NULL; | 
 |  | 
 | 	addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); | 
 |  | 
 | 	/* | 
 | 	 * A ref_count = 3 is needed because the vm_struct and vmap_area | 
 | 	 * structures allocated in the __get_vm_area_node() function contain | 
 | 	 * references to the virtual address of the vmalloc'ed block. | 
 | 	 */ | 
 | 	kmemleak_alloc(addr, real_size, 3, gfp_mask); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) | 
 | { | 
 | 	return __vmalloc_node(size, 1, gfp_mask, prot, -1, | 
 | 				__builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(__vmalloc); | 
 |  | 
 | /** | 
 |  *	vmalloc  -  allocate virtually contiguous memory | 
 |  *	@size:		allocation size | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 | void *vmalloc(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, | 
 | 					-1, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc); | 
 |  | 
 | /** | 
 |  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 
 |  * @size: allocation size | 
 |  * | 
 |  * The resulting memory area is zeroed so it can be mapped to userspace | 
 |  * without leaking data. | 
 |  */ | 
 | void *vmalloc_user(unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *ret; | 
 |  | 
 | 	ret = __vmalloc_node(size, SHMLBA, | 
 | 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | 
 | 			     PAGE_KERNEL, -1, __builtin_return_address(0)); | 
 | 	if (ret) { | 
 | 		area = find_vm_area(ret); | 
 | 		area->flags |= VM_USERMAP; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_user); | 
 |  | 
 | /** | 
 |  *	vmalloc_node  -  allocate memory on a specific node | 
 |  *	@size:		allocation size | 
 |  *	@node:		numa node | 
 |  * | 
 |  *	Allocate enough pages to cover @size from the page level | 
 |  *	allocator and map them into contiguous kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 | void *vmalloc_node(unsigned long size, int node) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, | 
 | 					node, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_node); | 
 |  | 
 | #ifndef PAGE_KERNEL_EXEC | 
 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | 
 | #endif | 
 |  | 
 | /** | 
 |  *	vmalloc_exec  -  allocate virtually contiguous, executable memory | 
 |  *	@size:		allocation size | 
 |  * | 
 |  *	Kernel-internal function to allocate enough pages to cover @size | 
 |  *	the page level allocator and map them into contiguous and | 
 |  *	executable kernel virtual space. | 
 |  * | 
 |  *	For tight control over page level allocator and protection flags | 
 |  *	use __vmalloc() instead. | 
 |  */ | 
 |  | 
 | void *vmalloc_exec(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, | 
 | 			      -1, __builtin_return_address(0)); | 
 | } | 
 |  | 
 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) | 
 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL | 
 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) | 
 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL | 
 | #else | 
 | #define GFP_VMALLOC32 GFP_KERNEL | 
 | #endif | 
 |  | 
 | /** | 
 |  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable) | 
 |  *	@size:		allocation size | 
 |  * | 
 |  *	Allocate enough 32bit PA addressable pages to cover @size from the | 
 |  *	page level allocator and map them into contiguous kernel virtual space. | 
 |  */ | 
 | void *vmalloc_32(unsigned long size) | 
 | { | 
 | 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, | 
 | 			      -1, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32); | 
 |  | 
 | /** | 
 |  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory | 
 |  *	@size:		allocation size | 
 |  * | 
 |  * The resulting memory area is 32bit addressable and zeroed so it can be | 
 |  * mapped to userspace without leaking data. | 
 |  */ | 
 | void *vmalloc_32_user(unsigned long size) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	void *ret; | 
 |  | 
 | 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | 
 | 			     -1, __builtin_return_address(0)); | 
 | 	if (ret) { | 
 | 		area = find_vm_area(ret); | 
 | 		area->flags |= VM_USERMAP; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(vmalloc_32_user); | 
 |  | 
 | /* | 
 |  * small helper routine , copy contents to buf from addr. | 
 |  * If the page is not present, fill zero. | 
 |  */ | 
 |  | 
 | static int aligned_vread(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct page *p; | 
 | 	int copied = 0; | 
 |  | 
 | 	while (count) { | 
 | 		unsigned long offset, length; | 
 |  | 
 | 		offset = (unsigned long)addr & ~PAGE_MASK; | 
 | 		length = PAGE_SIZE - offset; | 
 | 		if (length > count) | 
 | 			length = count; | 
 | 		p = vmalloc_to_page(addr); | 
 | 		/* | 
 | 		 * To do safe access to this _mapped_ area, we need | 
 | 		 * lock. But adding lock here means that we need to add | 
 | 		 * overhead of vmalloc()/vfree() calles for this _debug_ | 
 | 		 * interface, rarely used. Instead of that, we'll use | 
 | 		 * kmap() and get small overhead in this access function. | 
 | 		 */ | 
 | 		if (p) { | 
 | 			/* | 
 | 			 * we can expect USER0 is not used (see vread/vwrite's | 
 | 			 * function description) | 
 | 			 */ | 
 | 			void *map = kmap_atomic(p, KM_USER0); | 
 | 			memcpy(buf, map + offset, length); | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 		} else | 
 | 			memset(buf, 0, length); | 
 |  | 
 | 		addr += length; | 
 | 		buf += length; | 
 | 		copied += length; | 
 | 		count -= length; | 
 | 	} | 
 | 	return copied; | 
 | } | 
 |  | 
 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct page *p; | 
 | 	int copied = 0; | 
 |  | 
 | 	while (count) { | 
 | 		unsigned long offset, length; | 
 |  | 
 | 		offset = (unsigned long)addr & ~PAGE_MASK; | 
 | 		length = PAGE_SIZE - offset; | 
 | 		if (length > count) | 
 | 			length = count; | 
 | 		p = vmalloc_to_page(addr); | 
 | 		/* | 
 | 		 * To do safe access to this _mapped_ area, we need | 
 | 		 * lock. But adding lock here means that we need to add | 
 | 		 * overhead of vmalloc()/vfree() calles for this _debug_ | 
 | 		 * interface, rarely used. Instead of that, we'll use | 
 | 		 * kmap() and get small overhead in this access function. | 
 | 		 */ | 
 | 		if (p) { | 
 | 			/* | 
 | 			 * we can expect USER0 is not used (see vread/vwrite's | 
 | 			 * function description) | 
 | 			 */ | 
 | 			void *map = kmap_atomic(p, KM_USER0); | 
 | 			memcpy(map + offset, buf, length); | 
 | 			kunmap_atomic(map, KM_USER0); | 
 | 		} | 
 | 		addr += length; | 
 | 		buf += length; | 
 | 		copied += length; | 
 | 		count -= length; | 
 | 	} | 
 | 	return copied; | 
 | } | 
 |  | 
 | /** | 
 |  *	vread() -  read vmalloc area in a safe way. | 
 |  *	@buf:		buffer for reading data | 
 |  *	@addr:		vm address. | 
 |  *	@count:		number of bytes to be read. | 
 |  * | 
 |  *	Returns # of bytes which addr and buf should be increased. | 
 |  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't | 
 |  *	includes any intersect with alive vmalloc area. | 
 |  * | 
 |  *	This function checks that addr is a valid vmalloc'ed area, and | 
 |  *	copy data from that area to a given buffer. If the given memory range | 
 |  *	of [addr...addr+count) includes some valid address, data is copied to | 
 |  *	proper area of @buf. If there are memory holes, they'll be zero-filled. | 
 |  *	IOREMAP area is treated as memory hole and no copy is done. | 
 |  * | 
 |  *	If [addr...addr+count) doesn't includes any intersects with alive | 
 |  *	vm_struct area, returns 0. | 
 |  *	@buf should be kernel's buffer. Because	this function uses KM_USER0, | 
 |  *	the caller should guarantee KM_USER0 is not used. | 
 |  * | 
 |  *	Note: In usual ops, vread() is never necessary because the caller | 
 |  *	should know vmalloc() area is valid and can use memcpy(). | 
 |  *	This is for routines which have to access vmalloc area without | 
 |  *	any informaion, as /dev/kmem. | 
 |  * | 
 |  */ | 
 |  | 
 | long vread(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vm_struct *tmp; | 
 | 	char *vaddr, *buf_start = buf; | 
 | 	unsigned long buflen = count; | 
 | 	unsigned long n; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	for (tmp = vmlist; count && tmp; tmp = tmp->next) { | 
 | 		vaddr = (char *) tmp->addr; | 
 | 		if (addr >= vaddr + tmp->size - PAGE_SIZE) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			*buf = '\0'; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + tmp->size - PAGE_SIZE - addr; | 
 | 		if (n > count) | 
 | 			n = count; | 
 | 		if (!(tmp->flags & VM_IOREMAP)) | 
 | 			aligned_vread(buf, addr, n); | 
 | 		else /* IOREMAP area is treated as memory hole */ | 
 | 			memset(buf, 0, n); | 
 | 		buf += n; | 
 | 		addr += n; | 
 | 		count -= n; | 
 | 	} | 
 | finished: | 
 | 	read_unlock(&vmlist_lock); | 
 |  | 
 | 	if (buf == buf_start) | 
 | 		return 0; | 
 | 	/* zero-fill memory holes */ | 
 | 	if (buf != buf_start + buflen) | 
 | 		memset(buf, 0, buflen - (buf - buf_start)); | 
 |  | 
 | 	return buflen; | 
 | } | 
 |  | 
 | /** | 
 |  *	vwrite() -  write vmalloc area in a safe way. | 
 |  *	@buf:		buffer for source data | 
 |  *	@addr:		vm address. | 
 |  *	@count:		number of bytes to be read. | 
 |  * | 
 |  *	Returns # of bytes which addr and buf should be incresed. | 
 |  *	(same number to @count). | 
 |  *	If [addr...addr+count) doesn't includes any intersect with valid | 
 |  *	vmalloc area, returns 0. | 
 |  * | 
 |  *	This function checks that addr is a valid vmalloc'ed area, and | 
 |  *	copy data from a buffer to the given addr. If specified range of | 
 |  *	[addr...addr+count) includes some valid address, data is copied from | 
 |  *	proper area of @buf. If there are memory holes, no copy to hole. | 
 |  *	IOREMAP area is treated as memory hole and no copy is done. | 
 |  * | 
 |  *	If [addr...addr+count) doesn't includes any intersects with alive | 
 |  *	vm_struct area, returns 0. | 
 |  *	@buf should be kernel's buffer. Because	this function uses KM_USER0, | 
 |  *	the caller should guarantee KM_USER0 is not used. | 
 |  * | 
 |  *	Note: In usual ops, vwrite() is never necessary because the caller | 
 |  *	should know vmalloc() area is valid and can use memcpy(). | 
 |  *	This is for routines which have to access vmalloc area without | 
 |  *	any informaion, as /dev/kmem. | 
 |  * | 
 |  *	The caller should guarantee KM_USER1 is not used. | 
 |  */ | 
 |  | 
 | long vwrite(char *buf, char *addr, unsigned long count) | 
 | { | 
 | 	struct vm_struct *tmp; | 
 | 	char *vaddr; | 
 | 	unsigned long n, buflen; | 
 | 	int copied = 0; | 
 |  | 
 | 	/* Don't allow overflow */ | 
 | 	if ((unsigned long) addr + count < count) | 
 | 		count = -(unsigned long) addr; | 
 | 	buflen = count; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	for (tmp = vmlist; count && tmp; tmp = tmp->next) { | 
 | 		vaddr = (char *) tmp->addr; | 
 | 		if (addr >= vaddr + tmp->size - PAGE_SIZE) | 
 | 			continue; | 
 | 		while (addr < vaddr) { | 
 | 			if (count == 0) | 
 | 				goto finished; | 
 | 			buf++; | 
 | 			addr++; | 
 | 			count--; | 
 | 		} | 
 | 		n = vaddr + tmp->size - PAGE_SIZE - addr; | 
 | 		if (n > count) | 
 | 			n = count; | 
 | 		if (!(tmp->flags & VM_IOREMAP)) { | 
 | 			aligned_vwrite(buf, addr, n); | 
 | 			copied++; | 
 | 		} | 
 | 		buf += n; | 
 | 		addr += n; | 
 | 		count -= n; | 
 | 	} | 
 | finished: | 
 | 	read_unlock(&vmlist_lock); | 
 | 	if (!copied) | 
 | 		return 0; | 
 | 	return buflen; | 
 | } | 
 |  | 
 | /** | 
 |  *	remap_vmalloc_range  -  map vmalloc pages to userspace | 
 |  *	@vma:		vma to cover (map full range of vma) | 
 |  *	@addr:		vmalloc memory | 
 |  *	@pgoff:		number of pages into addr before first page to map | 
 |  * | 
 |  *	Returns:	0 for success, -Exxx on failure | 
 |  * | 
 |  *	This function checks that addr is a valid vmalloc'ed area, and | 
 |  *	that it is big enough to cover the vma. Will return failure if | 
 |  *	that criteria isn't met. | 
 |  * | 
 |  *	Similar to remap_pfn_range() (see mm/memory.c) | 
 |  */ | 
 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | 
 | 						unsigned long pgoff) | 
 | { | 
 | 	struct vm_struct *area; | 
 | 	unsigned long uaddr = vma->vm_start; | 
 | 	unsigned long usize = vma->vm_end - vma->vm_start; | 
 |  | 
 | 	if ((PAGE_SIZE-1) & (unsigned long)addr) | 
 | 		return -EINVAL; | 
 |  | 
 | 	area = find_vm_area(addr); | 
 | 	if (!area) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!(area->flags & VM_USERMAP)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	addr += pgoff << PAGE_SHIFT; | 
 | 	do { | 
 | 		struct page *page = vmalloc_to_page(addr); | 
 | 		int ret; | 
 |  | 
 | 		ret = vm_insert_page(vma, uaddr, page); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		uaddr += PAGE_SIZE; | 
 | 		addr += PAGE_SIZE; | 
 | 		usize -= PAGE_SIZE; | 
 | 	} while (usize > 0); | 
 |  | 
 | 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */ | 
 | 	vma->vm_flags |= VM_RESERVED; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(remap_vmalloc_range); | 
 |  | 
 | /* | 
 |  * Implement a stub for vmalloc_sync_all() if the architecture chose not to | 
 |  * have one. | 
 |  */ | 
 | void  __attribute__((weak)) vmalloc_sync_all(void) | 
 | { | 
 | } | 
 |  | 
 |  | 
 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) | 
 | { | 
 | 	/* apply_to_page_range() does all the hard work. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	alloc_vm_area - allocate a range of kernel address space | 
 |  *	@size:		size of the area | 
 |  * | 
 |  *	Returns:	NULL on failure, vm_struct on success | 
 |  * | 
 |  *	This function reserves a range of kernel address space, and | 
 |  *	allocates pagetables to map that range.  No actual mappings | 
 |  *	are created.  If the kernel address space is not shared | 
 |  *	between processes, it syncs the pagetable across all | 
 |  *	processes. | 
 |  */ | 
 | struct vm_struct *alloc_vm_area(size_t size) | 
 | { | 
 | 	struct vm_struct *area; | 
 |  | 
 | 	area = get_vm_area_caller(size, VM_IOREMAP, | 
 | 				__builtin_return_address(0)); | 
 | 	if (area == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * This ensures that page tables are constructed for this region | 
 | 	 * of kernel virtual address space and mapped into init_mm. | 
 | 	 */ | 
 | 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | 
 | 				area->size, f, NULL)) { | 
 | 		free_vm_area(area); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* Make sure the pagetables are constructed in process kernel | 
 | 	   mappings */ | 
 | 	vmalloc_sync_all(); | 
 |  | 
 | 	return area; | 
 | } | 
 | EXPORT_SYMBOL_GPL(alloc_vm_area); | 
 |  | 
 | void free_vm_area(struct vm_struct *area) | 
 | { | 
 | 	struct vm_struct *ret; | 
 | 	ret = remove_vm_area(area->addr); | 
 | 	BUG_ON(ret != area); | 
 | 	kfree(area); | 
 | } | 
 | EXPORT_SYMBOL_GPL(free_vm_area); | 
 |  | 
 | static struct vmap_area *node_to_va(struct rb_node *n) | 
 | { | 
 | 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | 
 |  * @end: target address | 
 |  * @pnext: out arg for the next vmap_area | 
 |  * @pprev: out arg for the previous vmap_area | 
 |  * | 
 |  * Returns: %true if either or both of next and prev are found, | 
 |  *	    %false if no vmap_area exists | 
 |  * | 
 |  * Find vmap_areas end addresses of which enclose @end.  ie. if not | 
 |  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | 
 |  */ | 
 | static bool pvm_find_next_prev(unsigned long end, | 
 | 			       struct vmap_area **pnext, | 
 | 			       struct vmap_area **pprev) | 
 | { | 
 | 	struct rb_node *n = vmap_area_root.rb_node; | 
 | 	struct vmap_area *va = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		va = rb_entry(n, struct vmap_area, rb_node); | 
 | 		if (end < va->va_end) | 
 | 			n = n->rb_left; | 
 | 		else if (end > va->va_end) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (!va) | 
 | 		return false; | 
 |  | 
 | 	if (va->va_end > end) { | 
 | 		*pnext = va; | 
 | 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | 
 | 	} else { | 
 | 		*pprev = va; | 
 | 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | 
 | 	} | 
 | 	return true; | 
 | } | 
 |  | 
 | /** | 
 |  * pvm_determine_end - find the highest aligned address between two vmap_areas | 
 |  * @pnext: in/out arg for the next vmap_area | 
 |  * @pprev: in/out arg for the previous vmap_area | 
 |  * @align: alignment | 
 |  * | 
 |  * Returns: determined end address | 
 |  * | 
 |  * Find the highest aligned address between *@pnext and *@pprev below | 
 |  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned | 
 |  * down address is between the end addresses of the two vmap_areas. | 
 |  * | 
 |  * Please note that the address returned by this function may fall | 
 |  * inside *@pnext vmap_area.  The caller is responsible for checking | 
 |  * that. | 
 |  */ | 
 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | 
 | 				       struct vmap_area **pprev, | 
 | 				       unsigned long align) | 
 | { | 
 | 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	unsigned long addr; | 
 |  | 
 | 	if (*pnext) | 
 | 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | 
 | 	else | 
 | 		addr = vmalloc_end; | 
 |  | 
 | 	while (*pprev && (*pprev)->va_end > addr) { | 
 | 		*pnext = *pprev; | 
 | 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | 
 | 	} | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | 
 |  * @offsets: array containing offset of each area | 
 |  * @sizes: array containing size of each area | 
 |  * @nr_vms: the number of areas to allocate | 
 |  * @align: alignment, all entries in @offsets and @sizes must be aligned to this | 
 |  * @gfp_mask: allocation mask | 
 |  * | 
 |  * Returns: kmalloc'd vm_struct pointer array pointing to allocated | 
 |  *	    vm_structs on success, %NULL on failure | 
 |  * | 
 |  * Percpu allocator wants to use congruent vm areas so that it can | 
 |  * maintain the offsets among percpu areas.  This function allocates | 
 |  * congruent vmalloc areas for it.  These areas tend to be scattered | 
 |  * pretty far, distance between two areas easily going up to | 
 |  * gigabytes.  To avoid interacting with regular vmallocs, these areas | 
 |  * are allocated from top. | 
 |  * | 
 |  * Despite its complicated look, this allocator is rather simple.  It | 
 |  * does everything top-down and scans areas from the end looking for | 
 |  * matching slot.  While scanning, if any of the areas overlaps with | 
 |  * existing vmap_area, the base address is pulled down to fit the | 
 |  * area.  Scanning is repeated till all the areas fit and then all | 
 |  * necessary data structres are inserted and the result is returned. | 
 |  */ | 
 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | 
 | 				     const size_t *sizes, int nr_vms, | 
 | 				     size_t align, gfp_t gfp_mask) | 
 | { | 
 | 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | 
 | 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | 
 | 	struct vmap_area **vas, *prev, *next; | 
 | 	struct vm_struct **vms; | 
 | 	int area, area2, last_area, term_area; | 
 | 	unsigned long base, start, end, last_end; | 
 | 	bool purged = false; | 
 |  | 
 | 	gfp_mask &= GFP_RECLAIM_MASK; | 
 |  | 
 | 	/* verify parameters and allocate data structures */ | 
 | 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | 
 | 	for (last_area = 0, area = 0; area < nr_vms; area++) { | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 |  | 
 | 		/* is everything aligned properly? */ | 
 | 		BUG_ON(!IS_ALIGNED(offsets[area], align)); | 
 | 		BUG_ON(!IS_ALIGNED(sizes[area], align)); | 
 |  | 
 | 		/* detect the area with the highest address */ | 
 | 		if (start > offsets[last_area]) | 
 | 			last_area = area; | 
 |  | 
 | 		for (area2 = 0; area2 < nr_vms; area2++) { | 
 | 			unsigned long start2 = offsets[area2]; | 
 | 			unsigned long end2 = start2 + sizes[area2]; | 
 |  | 
 | 			if (area2 == area) | 
 | 				continue; | 
 |  | 
 | 			BUG_ON(start2 >= start && start2 < end); | 
 | 			BUG_ON(end2 <= end && end2 > start); | 
 | 		} | 
 | 	} | 
 | 	last_end = offsets[last_area] + sizes[last_area]; | 
 |  | 
 | 	if (vmalloc_end - vmalloc_start < last_end) { | 
 | 		WARN_ON(true); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask); | 
 | 	vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask); | 
 | 	if (!vas || !vms) | 
 | 		goto err_free; | 
 |  | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask); | 
 | 		vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask); | 
 | 		if (!vas[area] || !vms[area]) | 
 | 			goto err_free; | 
 | 	} | 
 | retry: | 
 | 	spin_lock(&vmap_area_lock); | 
 |  | 
 | 	/* start scanning - we scan from the top, begin with the last area */ | 
 | 	area = term_area = last_area; | 
 | 	start = offsets[area]; | 
 | 	end = start + sizes[area]; | 
 |  | 
 | 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | 
 | 		base = vmalloc_end - last_end; | 
 | 		goto found; | 
 | 	} | 
 | 	base = pvm_determine_end(&next, &prev, align) - end; | 
 |  | 
 | 	while (true) { | 
 | 		BUG_ON(next && next->va_end <= base + end); | 
 | 		BUG_ON(prev && prev->va_end > base + end); | 
 |  | 
 | 		/* | 
 | 		 * base might have underflowed, add last_end before | 
 | 		 * comparing. | 
 | 		 */ | 
 | 		if (base + last_end < vmalloc_start + last_end) { | 
 | 			spin_unlock(&vmap_area_lock); | 
 | 			if (!purged) { | 
 | 				purge_vmap_area_lazy(); | 
 | 				purged = true; | 
 | 				goto retry; | 
 | 			} | 
 | 			goto err_free; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If next overlaps, move base downwards so that it's | 
 | 		 * right below next and then recheck. | 
 | 		 */ | 
 | 		if (next && next->va_start < base + end) { | 
 | 			base = pvm_determine_end(&next, &prev, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If prev overlaps, shift down next and prev and move | 
 | 		 * base so that it's right below new next and then | 
 | 		 * recheck. | 
 | 		 */ | 
 | 		if (prev && prev->va_end > base + start)  { | 
 | 			next = prev; | 
 | 			prev = node_to_va(rb_prev(&next->rb_node)); | 
 | 			base = pvm_determine_end(&next, &prev, align) - end; | 
 | 			term_area = area; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This area fits, move on to the previous one.  If | 
 | 		 * the previous one is the terminal one, we're done. | 
 | 		 */ | 
 | 		area = (area + nr_vms - 1) % nr_vms; | 
 | 		if (area == term_area) | 
 | 			break; | 
 | 		start = offsets[area]; | 
 | 		end = start + sizes[area]; | 
 | 		pvm_find_next_prev(base + end, &next, &prev); | 
 | 	} | 
 | found: | 
 | 	/* we've found a fitting base, insert all va's */ | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		struct vmap_area *va = vas[area]; | 
 |  | 
 | 		va->va_start = base + offsets[area]; | 
 | 		va->va_end = va->va_start + sizes[area]; | 
 | 		__insert_vmap_area(va); | 
 | 	} | 
 |  | 
 | 	vmap_area_pcpu_hole = base + offsets[last_area]; | 
 |  | 
 | 	spin_unlock(&vmap_area_lock); | 
 |  | 
 | 	/* insert all vm's */ | 
 | 	for (area = 0; area < nr_vms; area++) | 
 | 		insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, | 
 | 				  pcpu_get_vm_areas); | 
 |  | 
 | 	kfree(vas); | 
 | 	return vms; | 
 |  | 
 | err_free: | 
 | 	for (area = 0; area < nr_vms; area++) { | 
 | 		if (vas) | 
 | 			kfree(vas[area]); | 
 | 		if (vms) | 
 | 			kfree(vms[area]); | 
 | 	} | 
 | 	kfree(vas); | 
 | 	kfree(vms); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | 
 |  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | 
 |  * @nr_vms: the number of allocated areas | 
 |  * | 
 |  * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | 
 |  */ | 
 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < nr_vms; i++) | 
 | 		free_vm_area(vms[i]); | 
 | 	kfree(vms); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | static void *s_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	loff_t n = *pos; | 
 | 	struct vm_struct *v; | 
 |  | 
 | 	read_lock(&vmlist_lock); | 
 | 	v = vmlist; | 
 | 	while (n > 0 && v) { | 
 | 		n--; | 
 | 		v = v->next; | 
 | 	} | 
 | 	if (!n) | 
 | 		return v; | 
 |  | 
 | 	return NULL; | 
 |  | 
 | } | 
 |  | 
 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	struct vm_struct *v = p; | 
 |  | 
 | 	++*pos; | 
 | 	return v->next; | 
 | } | 
 |  | 
 | static void s_stop(struct seq_file *m, void *p) | 
 | { | 
 | 	read_unlock(&vmlist_lock); | 
 | } | 
 |  | 
 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) | 
 | { | 
 | 	if (NUMA_BUILD) { | 
 | 		unsigned int nr, *counters = m->private; | 
 |  | 
 | 		if (!counters) | 
 | 			return; | 
 |  | 
 | 		memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | 
 |  | 
 | 		for (nr = 0; nr < v->nr_pages; nr++) | 
 | 			counters[page_to_nid(v->pages[nr])]++; | 
 |  | 
 | 		for_each_node_state(nr, N_HIGH_MEMORY) | 
 | 			if (counters[nr]) | 
 | 				seq_printf(m, " N%u=%u", nr, counters[nr]); | 
 | 	} | 
 | } | 
 |  | 
 | static int s_show(struct seq_file *m, void *p) | 
 | { | 
 | 	struct vm_struct *v = p; | 
 |  | 
 | 	seq_printf(m, "0x%p-0x%p %7ld", | 
 | 		v->addr, v->addr + v->size, v->size); | 
 |  | 
 | 	if (v->caller) { | 
 | 		char buff[KSYM_SYMBOL_LEN]; | 
 |  | 
 | 		seq_putc(m, ' '); | 
 | 		sprint_symbol(buff, (unsigned long)v->caller); | 
 | 		seq_puts(m, buff); | 
 | 	} | 
 |  | 
 | 	if (v->nr_pages) | 
 | 		seq_printf(m, " pages=%d", v->nr_pages); | 
 |  | 
 | 	if (v->phys_addr) | 
 | 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); | 
 |  | 
 | 	if (v->flags & VM_IOREMAP) | 
 | 		seq_printf(m, " ioremap"); | 
 |  | 
 | 	if (v->flags & VM_ALLOC) | 
 | 		seq_printf(m, " vmalloc"); | 
 |  | 
 | 	if (v->flags & VM_MAP) | 
 | 		seq_printf(m, " vmap"); | 
 |  | 
 | 	if (v->flags & VM_USERMAP) | 
 | 		seq_printf(m, " user"); | 
 |  | 
 | 	if (v->flags & VM_VPAGES) | 
 | 		seq_printf(m, " vpages"); | 
 |  | 
 | 	show_numa_info(m, v); | 
 | 	seq_putc(m, '\n'); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct seq_operations vmalloc_op = { | 
 | 	.start = s_start, | 
 | 	.next = s_next, | 
 | 	.stop = s_stop, | 
 | 	.show = s_show, | 
 | }; | 
 |  | 
 | static int vmalloc_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	unsigned int *ptr = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (NUMA_BUILD) { | 
 | 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | 
 | 		if (ptr == NULL) | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	ret = seq_open(file, &vmalloc_op); | 
 | 	if (!ret) { | 
 | 		struct seq_file *m = file->private_data; | 
 | 		m->private = ptr; | 
 | 	} else | 
 | 		kfree(ptr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static const struct file_operations proc_vmalloc_operations = { | 
 | 	.open		= vmalloc_open, | 
 | 	.read		= seq_read, | 
 | 	.llseek		= seq_lseek, | 
 | 	.release	= seq_release_private, | 
 | }; | 
 |  | 
 | static int __init proc_vmalloc_init(void) | 
 | { | 
 | 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | 
 | 	return 0; | 
 | } | 
 | module_init(proc_vmalloc_init); | 
 | #endif | 
 |  |