| /* | 
 |  * This code largely moved from arch/i386/kernel/timer/timer_tsc.c | 
 |  * which was originally moved from arch/i386/kernel/time.c. | 
 |  * See comments there for proper credits. | 
 |  */ | 
 |  | 
 | #include <linux/clocksource.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/init.h> | 
 | #include <linux/dmi.h> | 
 |  | 
 | #include <asm/delay.h> | 
 | #include <asm/tsc.h> | 
 | #include <asm/delay.h> | 
 | #include <asm/io.h> | 
 |  | 
 | #include "mach_timer.h" | 
 |  | 
 | /* | 
 |  * On some systems the TSC frequency does not | 
 |  * change with the cpu frequency. So we need | 
 |  * an extra value to store the TSC freq | 
 |  */ | 
 | unsigned int tsc_khz; | 
 |  | 
 | int tsc_disable __cpuinitdata = 0; | 
 |  | 
 | #ifdef CONFIG_X86_TSC | 
 | static int __init tsc_setup(char *str) | 
 | { | 
 | 	printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " | 
 | 				"cannot disable TSC.\n"); | 
 | 	return 1; | 
 | } | 
 | #else | 
 | /* | 
 |  * disable flag for tsc. Takes effect by clearing the TSC cpu flag | 
 |  * in cpu/common.c | 
 |  */ | 
 | static int __init tsc_setup(char *str) | 
 | { | 
 | 	tsc_disable = 1; | 
 |  | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | __setup("notsc", tsc_setup); | 
 |  | 
 | /* | 
 |  * code to mark and check if the TSC is unstable | 
 |  * due to cpufreq or due to unsynced TSCs | 
 |  */ | 
 | static int tsc_unstable; | 
 |  | 
 | static inline int check_tsc_unstable(void) | 
 | { | 
 | 	return tsc_unstable; | 
 | } | 
 |  | 
 | void mark_tsc_unstable(void) | 
 | { | 
 | 	tsc_unstable = 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); | 
 |  | 
 | /* Accellerators for sched_clock() | 
 |  * convert from cycles(64bits) => nanoseconds (64bits) | 
 |  *  basic equation: | 
 |  *		ns = cycles / (freq / ns_per_sec) | 
 |  *		ns = cycles * (ns_per_sec / freq) | 
 |  *		ns = cycles * (10^9 / (cpu_khz * 10^3)) | 
 |  *		ns = cycles * (10^6 / cpu_khz) | 
 |  * | 
 |  *	Then we use scaling math (suggested by george@mvista.com) to get: | 
 |  *		ns = cycles * (10^6 * SC / cpu_khz) / SC | 
 |  *		ns = cycles * cyc2ns_scale / SC | 
 |  * | 
 |  *	And since SC is a constant power of two, we can convert the div | 
 |  *  into a shift. | 
 |  * | 
 |  *  We can use khz divisor instead of mhz to keep a better percision, since | 
 |  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. | 
 |  *  (mathieu.desnoyers@polymtl.ca) | 
 |  * | 
 |  *			-johnstul@us.ibm.com "math is hard, lets go shopping!" | 
 |  */ | 
 | static unsigned long cyc2ns_scale __read_mostly; | 
 |  | 
 | #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ | 
 |  | 
 | static inline void set_cyc2ns_scale(unsigned long cpu_khz) | 
 | { | 
 | 	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; | 
 | } | 
 |  | 
 | static inline unsigned long long cycles_2_ns(unsigned long long cyc) | 
 | { | 
 | 	return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; | 
 | } | 
 |  | 
 | /* | 
 |  * Scheduler clock - returns current time in nanosec units. | 
 |  */ | 
 | unsigned long long sched_clock(void) | 
 | { | 
 | 	unsigned long long this_offset; | 
 |  | 
 | 	/* | 
 | 	 * in the NUMA case we dont use the TSC as they are not | 
 | 	 * synchronized across all CPUs. | 
 | 	 */ | 
 | #ifndef CONFIG_NUMA | 
 | 	if (!cpu_khz || check_tsc_unstable()) | 
 | #endif | 
 | 		/* no locking but a rare wrong value is not a big deal */ | 
 | 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); | 
 |  | 
 | 	/* read the Time Stamp Counter: */ | 
 | 	rdtscll(this_offset); | 
 |  | 
 | 	/* return the value in ns */ | 
 | 	return cycles_2_ns(this_offset); | 
 | } | 
 |  | 
 | static unsigned long calculate_cpu_khz(void) | 
 | { | 
 | 	unsigned long long start, end; | 
 | 	unsigned long count; | 
 | 	u64 delta64; | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	/* run 3 times to ensure the cache is warm */ | 
 | 	for (i = 0; i < 3; i++) { | 
 | 		mach_prepare_counter(); | 
 | 		rdtscll(start); | 
 | 		mach_countup(&count); | 
 | 		rdtscll(end); | 
 | 	} | 
 | 	/* | 
 | 	 * Error: ECTCNEVERSET | 
 | 	 * The CTC wasn't reliable: we got a hit on the very first read, | 
 | 	 * or the CPU was so fast/slow that the quotient wouldn't fit in | 
 | 	 * 32 bits.. | 
 | 	 */ | 
 | 	if (count <= 1) | 
 | 		goto err; | 
 |  | 
 | 	delta64 = end - start; | 
 |  | 
 | 	/* cpu freq too fast: */ | 
 | 	if (delta64 > (1ULL<<32)) | 
 | 		goto err; | 
 |  | 
 | 	/* cpu freq too slow: */ | 
 | 	if (delta64 <= CALIBRATE_TIME_MSEC) | 
 | 		goto err; | 
 |  | 
 | 	delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */ | 
 | 	do_div(delta64,CALIBRATE_TIME_MSEC); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | 	return (unsigned long)delta64; | 
 | err: | 
 | 	local_irq_restore(flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int recalibrate_cpu_khz(void) | 
 | { | 
 | #ifndef CONFIG_SMP | 
 | 	unsigned long cpu_khz_old = cpu_khz; | 
 |  | 
 | 	if (cpu_has_tsc) { | 
 | 		cpu_khz = calculate_cpu_khz(); | 
 | 		tsc_khz = cpu_khz; | 
 | 		cpu_data[0].loops_per_jiffy = | 
 | 			cpufreq_scale(cpu_data[0].loops_per_jiffy, | 
 | 					cpu_khz_old, cpu_khz); | 
 | 		return 0; | 
 | 	} else | 
 | 		return -ENODEV; | 
 | #else | 
 | 	return -ENODEV; | 
 | #endif | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(recalibrate_cpu_khz); | 
 |  | 
 | void __init tsc_init(void) | 
 | { | 
 | 	if (!cpu_has_tsc || tsc_disable) | 
 | 		return; | 
 |  | 
 | 	cpu_khz = calculate_cpu_khz(); | 
 | 	tsc_khz = cpu_khz; | 
 |  | 
 | 	if (!cpu_khz) | 
 | 		return; | 
 |  | 
 | 	printk("Detected %lu.%03lu MHz processor.\n", | 
 | 				(unsigned long)cpu_khz / 1000, | 
 | 				(unsigned long)cpu_khz % 1000); | 
 |  | 
 | 	set_cyc2ns_scale(cpu_khz); | 
 | 	use_tsc_delay(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CPU_FREQ | 
 |  | 
 | static unsigned int cpufreq_delayed_issched = 0; | 
 | static unsigned int cpufreq_init = 0; | 
 | static struct work_struct cpufreq_delayed_get_work; | 
 |  | 
 | static void handle_cpufreq_delayed_get(void *v) | 
 | { | 
 | 	unsigned int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		cpufreq_get(cpu); | 
 |  | 
 | 	cpufreq_delayed_issched = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries | 
 |  * to verify the CPU frequency the timing core thinks the CPU is running | 
 |  * at is still correct. | 
 |  */ | 
 | static inline void cpufreq_delayed_get(void) | 
 | { | 
 | 	if (cpufreq_init && !cpufreq_delayed_issched) { | 
 | 		cpufreq_delayed_issched = 1; | 
 | 		printk(KERN_DEBUG "Checking if CPU frequency changed.\n"); | 
 | 		schedule_work(&cpufreq_delayed_get_work); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * if the CPU frequency is scaled, TSC-based delays will need a different | 
 |  * loops_per_jiffy value to function properly. | 
 |  */ | 
 | static unsigned int ref_freq = 0; | 
 | static unsigned long loops_per_jiffy_ref = 0; | 
 | static unsigned long cpu_khz_ref = 0; | 
 |  | 
 | static int | 
 | time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data) | 
 | { | 
 | 	struct cpufreq_freqs *freq = data; | 
 |  | 
 | 	if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE) | 
 | 		write_seqlock_irq(&xtime_lock); | 
 |  | 
 | 	if (!ref_freq) { | 
 | 		if (!freq->old){ | 
 | 			ref_freq = freq->new; | 
 | 			goto end; | 
 | 		} | 
 | 		ref_freq = freq->old; | 
 | 		loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy; | 
 | 		cpu_khz_ref = cpu_khz; | 
 | 	} | 
 |  | 
 | 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) || | 
 | 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || | 
 | 	    (val == CPUFREQ_RESUMECHANGE)) { | 
 | 		if (!(freq->flags & CPUFREQ_CONST_LOOPS)) | 
 | 			cpu_data[freq->cpu].loops_per_jiffy = | 
 | 				cpufreq_scale(loops_per_jiffy_ref, | 
 | 						ref_freq, freq->new); | 
 |  | 
 | 		if (cpu_khz) { | 
 |  | 
 | 			if (num_online_cpus() == 1) | 
 | 				cpu_khz = cpufreq_scale(cpu_khz_ref, | 
 | 						ref_freq, freq->new); | 
 | 			if (!(freq->flags & CPUFREQ_CONST_LOOPS)) { | 
 | 				tsc_khz = cpu_khz; | 
 | 				set_cyc2ns_scale(cpu_khz); | 
 | 				/* | 
 | 				 * TSC based sched_clock turns | 
 | 				 * to junk w/ cpufreq | 
 | 				 */ | 
 | 				mark_tsc_unstable(); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | end: | 
 | 	if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE) | 
 | 		write_sequnlock_irq(&xtime_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block time_cpufreq_notifier_block = { | 
 | 	.notifier_call	= time_cpufreq_notifier | 
 | }; | 
 |  | 
 | static int __init cpufreq_tsc(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL); | 
 | 	ret = cpufreq_register_notifier(&time_cpufreq_notifier_block, | 
 | 					CPUFREQ_TRANSITION_NOTIFIER); | 
 | 	if (!ret) | 
 | 		cpufreq_init = 1; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | core_initcall(cpufreq_tsc); | 
 |  | 
 | #endif | 
 |  | 
 | /* clock source code */ | 
 |  | 
 | static unsigned long current_tsc_khz = 0; | 
 | static int tsc_update_callback(void); | 
 |  | 
 | static cycle_t read_tsc(void) | 
 | { | 
 | 	cycle_t ret; | 
 |  | 
 | 	rdtscll(ret); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct clocksource clocksource_tsc = { | 
 | 	.name			= "tsc", | 
 | 	.rating			= 300, | 
 | 	.read			= read_tsc, | 
 | 	.mask			= CLOCKSOURCE_MASK(64), | 
 | 	.mult			= 0, /* to be set */ | 
 | 	.shift			= 22, | 
 | 	.update_callback	= tsc_update_callback, | 
 | 	.is_continuous		= 1, | 
 | }; | 
 |  | 
 | static int tsc_update_callback(void) | 
 | { | 
 | 	int change = 0; | 
 |  | 
 | 	/* check to see if we should switch to the safe clocksource: */ | 
 | 	if (clocksource_tsc.rating != 50 && check_tsc_unstable()) { | 
 | 		clocksource_tsc.rating = 50; | 
 | 		clocksource_reselect(); | 
 | 		change = 1; | 
 | 	} | 
 |  | 
 | 	/* only update if tsc_khz has changed: */ | 
 | 	if (current_tsc_khz != tsc_khz) { | 
 | 		current_tsc_khz = tsc_khz; | 
 | 		clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz, | 
 | 							clocksource_tsc.shift); | 
 | 		change = 1; | 
 | 	} | 
 |  | 
 | 	return change; | 
 | } | 
 |  | 
 | static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d) | 
 | { | 
 | 	printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", | 
 | 		       d->ident); | 
 | 	mark_tsc_unstable(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* List of systems that have known TSC problems */ | 
 | static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { | 
 | 	{ | 
 | 	 .callback = dmi_mark_tsc_unstable, | 
 | 	 .ident = "IBM Thinkpad 380XD", | 
 | 	 .matches = { | 
 | 		     DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), | 
 | 		     DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), | 
 | 		     }, | 
 | 	 }, | 
 | 	 {} | 
 | }; | 
 |  | 
 | #define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */ | 
 | static struct timer_list verify_tsc_freq_timer; | 
 |  | 
 | /* XXX - Probably should add locking */ | 
 | static void verify_tsc_freq(unsigned long unused) | 
 | { | 
 | 	static u64 last_tsc; | 
 | 	static unsigned long last_jiffies; | 
 |  | 
 | 	u64 now_tsc, interval_tsc; | 
 | 	unsigned long now_jiffies, interval_jiffies; | 
 |  | 
 |  | 
 | 	if (check_tsc_unstable()) | 
 | 		return; | 
 |  | 
 | 	rdtscll(now_tsc); | 
 | 	now_jiffies = jiffies; | 
 |  | 
 | 	if (!last_jiffies) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	interval_jiffies = now_jiffies - last_jiffies; | 
 | 	interval_tsc = now_tsc - last_tsc; | 
 | 	interval_tsc *= HZ; | 
 | 	do_div(interval_tsc, cpu_khz*1000); | 
 |  | 
 | 	if (interval_tsc < (interval_jiffies * 3 / 4)) { | 
 | 		printk("TSC appears to be running slowly. " | 
 | 			"Marking it as unstable\n"); | 
 | 		mark_tsc_unstable(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | out: | 
 | 	last_tsc = now_tsc; | 
 | 	last_jiffies = now_jiffies; | 
 | 	/* set us up to go off on the next interval: */ | 
 | 	mod_timer(&verify_tsc_freq_timer, | 
 | 		jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL)); | 
 | } | 
 |  | 
 | /* | 
 |  * Make an educated guess if the TSC is trustworthy and synchronized | 
 |  * over all CPUs. | 
 |  */ | 
 | static __init int unsynchronized_tsc(void) | 
 | { | 
 | 	/* | 
 | 	 * Intel systems are normally all synchronized. | 
 | 	 * Exceptions must mark TSC as unstable: | 
 | 	 */ | 
 | 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) | 
 |  		return 0; | 
 |  | 
 | 	/* assume multi socket systems are not synchronized: */ | 
 |  	return num_possible_cpus() > 1; | 
 | } | 
 |  | 
 | static int __init init_tsc_clocksource(void) | 
 | { | 
 |  | 
 | 	if (cpu_has_tsc && tsc_khz && !tsc_disable) { | 
 | 		/* check blacklist */ | 
 | 		dmi_check_system(bad_tsc_dmi_table); | 
 |  | 
 | 		if (unsynchronized_tsc()) /* mark unstable if unsynced */ | 
 | 			mark_tsc_unstable(); | 
 | 		current_tsc_khz = tsc_khz; | 
 | 		clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz, | 
 | 							clocksource_tsc.shift); | 
 | 		/* lower the rating if we already know its unstable: */ | 
 | 		if (check_tsc_unstable()) | 
 | 			clocksource_tsc.rating = 50; | 
 |  | 
 | 		init_timer(&verify_tsc_freq_timer); | 
 | 		verify_tsc_freq_timer.function = verify_tsc_freq; | 
 | 		verify_tsc_freq_timer.expires = | 
 | 			jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL); | 
 | 		add_timer(&verify_tsc_freq_timer); | 
 |  | 
 | 		return clocksource_register(&clocksource_tsc); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(init_tsc_clocksource); |