| /*---------------------------------------------------------------------------+ | 
 |  |  errors.c                                                                 | | 
 |  |                                                                           | | 
 |  |  The error handling functions for wm-FPU-emu                              | | 
 |  |                                                                           | | 
 |  | Copyright (C) 1992,1993,1994,1996                                         | | 
 |  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
 |  |                  E-mail   billm@jacobi.maths.monash.edu.au                | | 
 |  |                                                                           | | 
 |  |                                                                           | | 
 |  +---------------------------------------------------------------------------*/ | 
 |  | 
 | /*---------------------------------------------------------------------------+ | 
 |  | Note:                                                                     | | 
 |  |    The file contains code which accesses user memory.                     | | 
 |  |    Emulator static data may change when user memory is accessed, due to   | | 
 |  |    other processes using the emulator while swapping is in progress.      | | 
 |  +---------------------------------------------------------------------------*/ | 
 |  | 
 | #include <linux/signal.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #include "fpu_emu.h" | 
 | #include "fpu_system.h" | 
 | #include "exception.h" | 
 | #include "status_w.h" | 
 | #include "control_w.h" | 
 | #include "reg_constant.h" | 
 | #include "version.h" | 
 |  | 
 | /* */ | 
 | #undef PRINT_MESSAGES | 
 | /* */ | 
 |  | 
 |  | 
 | #if 0 | 
 | void Un_impl(void) | 
 | { | 
 |   u_char byte1, FPU_modrm; | 
 |   unsigned long address = FPU_ORIG_EIP; | 
 |  | 
 |   RE_ENTRANT_CHECK_OFF; | 
 |   /* No need to check access_ok(), we have previously fetched these bytes. */ | 
 |   printk("Unimplemented FPU Opcode at eip=%p : ", (void __user *) address); | 
 |   if ( FPU_CS == __USER_CS ) | 
 |     { | 
 |       while ( 1 ) | 
 | 	{ | 
 | 	  FPU_get_user(byte1, (u_char __user *) address); | 
 | 	  if ( (byte1 & 0xf8) == 0xd8 ) break; | 
 | 	  printk("[%02x]", byte1); | 
 | 	  address++; | 
 | 	} | 
 |       printk("%02x ", byte1); | 
 |       FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | 
 |        | 
 |       if (FPU_modrm >= 0300) | 
 | 	printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); | 
 |       else | 
 | 	printk("/%d\n", (FPU_modrm >> 3) & 7); | 
 |     } | 
 |   else | 
 |     { | 
 |       printk("cs selector = %04x\n", FPU_CS); | 
 |     } | 
 |  | 
 |   RE_ENTRANT_CHECK_ON; | 
 |  | 
 |   EXCEPTION(EX_Invalid); | 
 |  | 
 | } | 
 | #endif  /*  0  */ | 
 |  | 
 |  | 
 | /* | 
 |    Called for opcodes which are illegal and which are known to result in a | 
 |    SIGILL with a real 80486. | 
 |    */ | 
 | void FPU_illegal(void) | 
 | { | 
 |   math_abort(FPU_info,SIGILL); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | void FPU_printall(void) | 
 | { | 
 |   int i; | 
 |   static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty", | 
 |                               "DeNorm", "Inf", "NaN" }; | 
 |   u_char byte1, FPU_modrm; | 
 |   unsigned long address = FPU_ORIG_EIP; | 
 |  | 
 |   RE_ENTRANT_CHECK_OFF; | 
 |   /* No need to check access_ok(), we have previously fetched these bytes. */ | 
 |   printk("At %p:", (void *) address); | 
 |   if ( FPU_CS == __USER_CS ) | 
 |     { | 
 | #define MAX_PRINTED_BYTES 20 | 
 |       for ( i = 0; i < MAX_PRINTED_BYTES; i++ ) | 
 | 	{ | 
 | 	  FPU_get_user(byte1, (u_char __user *) address); | 
 | 	  if ( (byte1 & 0xf8) == 0xd8 ) | 
 | 	    { | 
 | 	      printk(" %02x", byte1); | 
 | 	      break; | 
 | 	    } | 
 | 	  printk(" [%02x]", byte1); | 
 | 	  address++; | 
 | 	} | 
 |       if ( i == MAX_PRINTED_BYTES ) | 
 | 	printk(" [more..]\n"); | 
 |       else | 
 | 	{ | 
 | 	  FPU_get_user(FPU_modrm, 1 + (u_char __user *) address); | 
 | 	   | 
 | 	  if (FPU_modrm >= 0300) | 
 | 	    printk(" %02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7); | 
 | 	  else | 
 | 	    printk(" /%d, mod=%d rm=%d\n", | 
 | 		   (FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       printk("%04x\n", FPU_CS); | 
 |     } | 
 |  | 
 |   partial_status = status_word(); | 
 |  | 
 | #ifdef DEBUGGING | 
 | if ( partial_status & SW_Backward )    printk("SW: backward compatibility\n"); | 
 | if ( partial_status & SW_C3 )          printk("SW: condition bit 3\n"); | 
 | if ( partial_status & SW_C2 )          printk("SW: condition bit 2\n"); | 
 | if ( partial_status & SW_C1 )          printk("SW: condition bit 1\n"); | 
 | if ( partial_status & SW_C0 )          printk("SW: condition bit 0\n"); | 
 | if ( partial_status & SW_Summary )     printk("SW: exception summary\n"); | 
 | if ( partial_status & SW_Stack_Fault ) printk("SW: stack fault\n"); | 
 | if ( partial_status & SW_Precision )   printk("SW: loss of precision\n"); | 
 | if ( partial_status & SW_Underflow )   printk("SW: underflow\n"); | 
 | if ( partial_status & SW_Overflow )    printk("SW: overflow\n"); | 
 | if ( partial_status & SW_Zero_Div )    printk("SW: divide by zero\n"); | 
 | if ( partial_status & SW_Denorm_Op )   printk("SW: denormalized operand\n"); | 
 | if ( partial_status & SW_Invalid )     printk("SW: invalid operation\n"); | 
 | #endif /* DEBUGGING */ | 
 |  | 
 |   printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n", | 
 | 	 partial_status & 0x8000 ? 1 : 0,   /* busy */ | 
 | 	 (partial_status & 0x3800) >> 11,   /* stack top pointer */ | 
 | 	 partial_status & 0x80 ? 1 : 0,     /* Error summary status */ | 
 | 	 partial_status & 0x40 ? 1 : 0,     /* Stack flag */ | 
 | 	 partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */ | 
 | 	 partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */ | 
 | 	 partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0, | 
 | 	 partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0, | 
 | 	 partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0); | 
 |    | 
 | printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d     ef=%d%d%d%d%d%d\n", | 
 | 	 control_word & 0x1000 ? 1 : 0, | 
 | 	 (control_word & 0x800) >> 11, (control_word & 0x400) >> 10, | 
 | 	 (control_word & 0x200) >> 9, (control_word & 0x100) >> 8, | 
 | 	 control_word & 0x80 ? 1 : 0, | 
 | 	 control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0, | 
 | 	 control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0, | 
 | 	 control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0); | 
 |  | 
 |   for ( i = 0; i < 8; i++ ) | 
 |     { | 
 |       FPU_REG *r = &st(i); | 
 |       u_char tagi = FPU_gettagi(i); | 
 |       switch (tagi) | 
 | 	{ | 
 | 	case TAG_Empty: | 
 | 	  continue; | 
 | 	  break; | 
 | 	case TAG_Zero: | 
 | 	case TAG_Special: | 
 | 	  tagi = FPU_Special(r); | 
 | 	case TAG_Valid: | 
 | 	  printk("st(%d)  %c .%04lx %04lx %04lx %04lx e%+-6d ", i, | 
 | 		 getsign(r) ? '-' : '+', | 
 | 		 (long)(r->sigh >> 16), | 
 | 		 (long)(r->sigh & 0xFFFF), | 
 | 		 (long)(r->sigl >> 16), | 
 | 		 (long)(r->sigl & 0xFFFF), | 
 | 		 exponent(r) - EXP_BIAS + 1); | 
 | 	  break; | 
 | 	default: | 
 | 	  printk("Whoops! Error in errors.c: tag%d is %d ", i, tagi); | 
 | 	  continue; | 
 | 	  break; | 
 | 	} | 
 |       printk("%s\n", tag_desc[(int) (unsigned) tagi]); | 
 |     } | 
 |  | 
 |   RE_ENTRANT_CHECK_ON; | 
 |  | 
 | } | 
 |  | 
 | static struct { | 
 |   int type; | 
 |   const char *name; | 
 | } exception_names[] = { | 
 |   { EX_StackOver, "stack overflow" }, | 
 |   { EX_StackUnder, "stack underflow" }, | 
 |   { EX_Precision, "loss of precision" }, | 
 |   { EX_Underflow, "underflow" }, | 
 |   { EX_Overflow, "overflow" }, | 
 |   { EX_ZeroDiv, "divide by zero" }, | 
 |   { EX_Denormal, "denormalized operand" }, | 
 |   { EX_Invalid, "invalid operation" }, | 
 |   { EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION }, | 
 |   { 0, NULL } | 
 | }; | 
 |  | 
 | /* | 
 |  EX_INTERNAL is always given with a code which indicates where the | 
 |  error was detected. | 
 |  | 
 |  Internal error types: | 
 |        0x14   in fpu_etc.c | 
 |        0x1nn  in a *.c file: | 
 |               0x101  in reg_add_sub.c | 
 |               0x102  in reg_mul.c | 
 |               0x104  in poly_atan.c | 
 |               0x105  in reg_mul.c | 
 |               0x107  in fpu_trig.c | 
 | 	      0x108  in reg_compare.c | 
 | 	      0x109  in reg_compare.c | 
 | 	      0x110  in reg_add_sub.c | 
 | 	      0x111  in fpe_entry.c | 
 | 	      0x112  in fpu_trig.c | 
 | 	      0x113  in errors.c | 
 | 	      0x115  in fpu_trig.c | 
 | 	      0x116  in fpu_trig.c | 
 | 	      0x117  in fpu_trig.c | 
 | 	      0x118  in fpu_trig.c | 
 | 	      0x119  in fpu_trig.c | 
 | 	      0x120  in poly_atan.c | 
 | 	      0x121  in reg_compare.c | 
 | 	      0x122  in reg_compare.c | 
 | 	      0x123  in reg_compare.c | 
 | 	      0x125  in fpu_trig.c | 
 | 	      0x126  in fpu_entry.c | 
 | 	      0x127  in poly_2xm1.c | 
 | 	      0x128  in fpu_entry.c | 
 | 	      0x129  in fpu_entry.c | 
 | 	      0x130  in get_address.c | 
 | 	      0x131  in get_address.c | 
 | 	      0x132  in get_address.c | 
 | 	      0x133  in get_address.c | 
 | 	      0x140  in load_store.c | 
 | 	      0x141  in load_store.c | 
 |               0x150  in poly_sin.c | 
 |               0x151  in poly_sin.c | 
 | 	      0x160  in reg_ld_str.c | 
 | 	      0x161  in reg_ld_str.c | 
 | 	      0x162  in reg_ld_str.c | 
 | 	      0x163  in reg_ld_str.c | 
 | 	      0x164  in reg_ld_str.c | 
 | 	      0x170  in fpu_tags.c | 
 | 	      0x171  in fpu_tags.c | 
 | 	      0x172  in fpu_tags.c | 
 | 	      0x180  in reg_convert.c | 
 |        0x2nn  in an *.S file: | 
 |               0x201  in reg_u_add.S | 
 |               0x202  in reg_u_div.S | 
 |               0x203  in reg_u_div.S | 
 |               0x204  in reg_u_div.S | 
 |               0x205  in reg_u_mul.S | 
 |               0x206  in reg_u_sub.S | 
 |               0x207  in wm_sqrt.S | 
 | 	      0x208  in reg_div.S | 
 |               0x209  in reg_u_sub.S | 
 |               0x210  in reg_u_sub.S | 
 |               0x211  in reg_u_sub.S | 
 |               0x212  in reg_u_sub.S | 
 | 	      0x213  in wm_sqrt.S | 
 | 	      0x214  in wm_sqrt.S | 
 | 	      0x215  in wm_sqrt.S | 
 | 	      0x220  in reg_norm.S | 
 | 	      0x221  in reg_norm.S | 
 | 	      0x230  in reg_round.S | 
 | 	      0x231  in reg_round.S | 
 | 	      0x232  in reg_round.S | 
 | 	      0x233  in reg_round.S | 
 | 	      0x234  in reg_round.S | 
 | 	      0x235  in reg_round.S | 
 | 	      0x236  in reg_round.S | 
 | 	      0x240  in div_Xsig.S | 
 | 	      0x241  in div_Xsig.S | 
 | 	      0x242  in div_Xsig.S | 
 |  */ | 
 |  | 
 | asmlinkage void FPU_exception(int n) | 
 | { | 
 |   int i, int_type; | 
 |  | 
 |   int_type = 0;         /* Needed only to stop compiler warnings */ | 
 |   if ( n & EX_INTERNAL ) | 
 |     { | 
 |       int_type = n - EX_INTERNAL; | 
 |       n = EX_INTERNAL; | 
 |       /* Set lots of exception bits! */ | 
 |       partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward); | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Extract only the bits which we use to set the status word */ | 
 |       n &= (SW_Exc_Mask); | 
 |       /* Set the corresponding exception bit */ | 
 |       partial_status |= n; | 
 |       /* Set summary bits iff exception isn't masked */ | 
 |       if ( partial_status & ~control_word & CW_Exceptions ) | 
 | 	partial_status |= (SW_Summary | SW_Backward); | 
 |       if ( n & (SW_Stack_Fault | EX_Precision) ) | 
 | 	{ | 
 | 	  if ( !(n & SW_C1) ) | 
 | 	    /* This bit distinguishes over- from underflow for a stack fault, | 
 | 	       and roundup from round-down for precision loss. */ | 
 | 	    partial_status &= ~SW_C1; | 
 | 	} | 
 |     } | 
 |  | 
 |   RE_ENTRANT_CHECK_OFF; | 
 |   if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) ) | 
 |     { | 
 | #ifdef PRINT_MESSAGES | 
 |       /* My message from the sponsor */ | 
 |       printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n"); | 
 | #endif /* PRINT_MESSAGES */ | 
 |        | 
 |       /* Get a name string for error reporting */ | 
 |       for (i=0; exception_names[i].type; i++) | 
 | 	if ( (exception_names[i].type & n) == exception_names[i].type ) | 
 | 	  break; | 
 |        | 
 |       if (exception_names[i].type) | 
 | 	{ | 
 | #ifdef PRINT_MESSAGES | 
 | 	  printk("FP Exception: %s!\n", exception_names[i].name); | 
 | #endif /* PRINT_MESSAGES */ | 
 | 	} | 
 |       else | 
 | 	printk("FPU emulator: Unknown Exception: 0x%04x!\n", n); | 
 |        | 
 |       if ( n == EX_INTERNAL ) | 
 | 	{ | 
 | 	  printk("FPU emulator: Internal error type 0x%04x\n", int_type); | 
 | 	  FPU_printall(); | 
 | 	} | 
 | #ifdef PRINT_MESSAGES | 
 |       else | 
 | 	FPU_printall(); | 
 | #endif /* PRINT_MESSAGES */ | 
 |  | 
 |       /* | 
 |        * The 80486 generates an interrupt on the next non-control FPU | 
 |        * instruction. So we need some means of flagging it. | 
 |        * We use the ES (Error Summary) bit for this. | 
 |        */ | 
 |     } | 
 |   RE_ENTRANT_CHECK_ON; | 
 |  | 
 | #ifdef __DEBUG__ | 
 |   math_abort(FPU_info,SIGFPE); | 
 | #endif /* __DEBUG__ */ | 
 |  | 
 | } | 
 |  | 
 |  | 
 | /* Real operation attempted on a NaN. */ | 
 | /* Returns < 0 if the exception is unmasked */ | 
 | int real_1op_NaN(FPU_REG *a) | 
 | { | 
 |   int signalling, isNaN; | 
 |  | 
 |   isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000); | 
 |  | 
 |   /* The default result for the case of two "equal" NaNs (signs may | 
 |      differ) is chosen to reproduce 80486 behaviour */ | 
 |   signalling = isNaN && !(a->sigh & 0x40000000); | 
 |  | 
 |   if ( !signalling ) | 
 |     { | 
 |       if ( !isNaN )  /* pseudo-NaN, or other unsupported? */ | 
 | 	{ | 
 | 	  if ( control_word & CW_Invalid ) | 
 | 	    { | 
 | 	      /* Masked response */ | 
 | 	      reg_copy(&CONST_QNaN, a); | 
 | 	    } | 
 | 	  EXCEPTION(EX_Invalid); | 
 | 	  return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
 | 	} | 
 |       return TAG_Special; | 
 |     } | 
 |  | 
 |   if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       if ( !(a->sigh & 0x80000000) )  /* pseudo-NaN ? */ | 
 | 	{ | 
 | 	  reg_copy(&CONST_QNaN, a); | 
 | 	} | 
 |       /* ensure a Quiet NaN */ | 
 |       a->sigh |= 0x40000000; | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_Invalid); | 
 |  | 
 |   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
 | } | 
 |  | 
 |  | 
 | /* Real operation attempted on two operands, one a NaN. */ | 
 | /* Returns < 0 if the exception is unmasked */ | 
 | int real_2op_NaN(FPU_REG const *b, u_char tagb, | 
 | 		 int deststnr, | 
 | 		 FPU_REG const *defaultNaN) | 
 | { | 
 |   FPU_REG *dest = &st(deststnr); | 
 |   FPU_REG const *a = dest; | 
 |   u_char taga = FPU_gettagi(deststnr); | 
 |   FPU_REG const *x; | 
 |   int signalling, unsupported; | 
 |  | 
 |   if ( taga == TAG_Special ) | 
 |     taga = FPU_Special(a); | 
 |   if ( tagb == TAG_Special ) | 
 |     tagb = FPU_Special(b); | 
 |  | 
 |   /* TW_NaN is also used for unsupported data types. */ | 
 |   unsupported = ((taga == TW_NaN) | 
 | 		 && !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000))) | 
 |     || ((tagb == TW_NaN) | 
 | 	&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000))); | 
 |   if ( unsupported ) | 
 |     { | 
 |       if ( control_word & CW_Invalid ) | 
 | 	{ | 
 | 	  /* Masked response */ | 
 | 	  FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | 
 | 	} | 
 |       EXCEPTION(EX_Invalid); | 
 |       return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
 |     } | 
 |  | 
 |   if (taga == TW_NaN) | 
 |     { | 
 |       x = a; | 
 |       if (tagb == TW_NaN) | 
 | 	{ | 
 | 	  signalling = !(a->sigh & b->sigh & 0x40000000); | 
 | 	  if ( significand(b) > significand(a) ) | 
 | 	    x = b; | 
 | 	  else if ( significand(b) == significand(a) ) | 
 | 	    { | 
 | 	      /* The default result for the case of two "equal" NaNs (signs may | 
 | 		 differ) is chosen to reproduce 80486 behaviour */ | 
 | 	      x = defaultNaN; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* return the quiet version of the NaN in a */ | 
 | 	  signalling = !(a->sigh & 0x40000000); | 
 | 	} | 
 |     } | 
 |   else | 
 | #ifdef PARANOID | 
 |     if (tagb == TW_NaN) | 
 | #endif /* PARANOID */ | 
 |     { | 
 |       signalling = !(b->sigh & 0x40000000); | 
 |       x = b; | 
 |     } | 
 | #ifdef PARANOID | 
 |   else | 
 |     { | 
 |       signalling = 0; | 
 |       EXCEPTION(EX_INTERNAL|0x113); | 
 |       x = &CONST_QNaN; | 
 |     } | 
 | #endif /* PARANOID */ | 
 |  | 
 |   if ( (!signalling) || (control_word & CW_Invalid) ) | 
 |     { | 
 |       if ( ! x ) | 
 | 	x = b; | 
 |  | 
 |       if ( !(x->sigh & 0x80000000) )  /* pseudo-NaN ? */ | 
 | 	x = &CONST_QNaN; | 
 |  | 
 |       FPU_copy_to_regi(x, TAG_Special, deststnr); | 
 |  | 
 |       if ( !signalling ) | 
 | 	return TAG_Special; | 
 |  | 
 |       /* ensure a Quiet NaN */ | 
 |       dest->sigh |= 0x40000000; | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_Invalid); | 
 |  | 
 |   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special; | 
 | } | 
 |  | 
 |  | 
 | /* Invalid arith operation on Valid registers */ | 
 | /* Returns < 0 if the exception is unmasked */ | 
 | asmlinkage int arith_invalid(int deststnr) | 
 | { | 
 |  | 
 |   EXCEPTION(EX_Invalid); | 
 |    | 
 |   if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr); | 
 |     } | 
 |    | 
 |   return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | /* Divide a finite number by zero */ | 
 | asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign) | 
 | { | 
 |   FPU_REG *dest = &st(deststnr); | 
 |   int tag = TAG_Valid; | 
 |  | 
 |   if ( control_word & CW_ZeroDiv ) | 
 |     { | 
 |       /* The masked response */ | 
 |       FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr); | 
 |       setsign(dest, sign); | 
 |       tag = TAG_Special; | 
 |     } | 
 |   | 
 |   EXCEPTION(EX_ZeroDiv); | 
 |  | 
 |   return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | /* This may be called often, so keep it lean */ | 
 | int set_precision_flag(int flags) | 
 | { | 
 |   if ( control_word & CW_Precision ) | 
 |     { | 
 |       partial_status &= ~(SW_C1 & flags); | 
 |       partial_status |= flags;   /* The masked response */ | 
 |       return 0; | 
 |     } | 
 |   else | 
 |     { | 
 |       EXCEPTION(flags); | 
 |       return 1; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | /* This may be called often, so keep it lean */ | 
 | asmlinkage void set_precision_flag_up(void) | 
 | { | 
 |   if ( control_word & CW_Precision ) | 
 |     partial_status |= (SW_Precision | SW_C1);   /* The masked response */ | 
 |   else | 
 |     EXCEPTION(EX_Precision | SW_C1); | 
 | } | 
 |  | 
 |  | 
 | /* This may be called often, so keep it lean */ | 
 | asmlinkage void set_precision_flag_down(void) | 
 | { | 
 |   if ( control_word & CW_Precision ) | 
 |     {   /* The masked response */ | 
 |       partial_status &= ~SW_C1; | 
 |       partial_status |= SW_Precision; | 
 |     } | 
 |   else | 
 |     EXCEPTION(EX_Precision); | 
 | } | 
 |  | 
 |  | 
 | asmlinkage int denormal_operand(void) | 
 | { | 
 |   if ( control_word & CW_Denormal ) | 
 |     {   /* The masked response */ | 
 |       partial_status |= SW_Denorm_Op; | 
 |       return TAG_Special; | 
 |     } | 
 |   else | 
 |     { | 
 |       EXCEPTION(EX_Denormal); | 
 |       return TAG_Special | FPU_Exception; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | asmlinkage int arith_overflow(FPU_REG *dest) | 
 | { | 
 |   int tag = TAG_Valid; | 
 |  | 
 |   if ( control_word & CW_Overflow ) | 
 |     { | 
 |       /* The masked response */ | 
 | /* ###### The response here depends upon the rounding mode */ | 
 |       reg_copy(&CONST_INF, dest); | 
 |       tag = TAG_Special; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Subtract the magic number from the exponent */ | 
 |       addexponent(dest, (-3 * (1 << 13))); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_Overflow); | 
 |   if ( control_word & CW_Overflow ) | 
 |     { | 
 |       /* The overflow exception is masked. */ | 
 |       /* By definition, precision is lost. | 
 | 	 The roundup bit (C1) is also set because we have | 
 | 	 "rounded" upwards to Infinity. */ | 
 |       EXCEPTION(EX_Precision | SW_C1); | 
 |       return tag; | 
 |     } | 
 |  | 
 |   return tag; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | asmlinkage int arith_underflow(FPU_REG *dest) | 
 | { | 
 |   int tag = TAG_Valid; | 
 |  | 
 |   if ( control_word & CW_Underflow ) | 
 |     { | 
 |       /* The masked response */ | 
 |       if ( exponent16(dest) <= EXP_UNDER - 63 ) | 
 | 	{ | 
 | 	  reg_copy(&CONST_Z, dest); | 
 | 	  partial_status &= ~SW_C1;       /* Round down. */ | 
 | 	  tag = TAG_Zero; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  stdexp(dest); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Add the magic number to the exponent. */ | 
 |       addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_Underflow); | 
 |   if ( control_word & CW_Underflow ) | 
 |     { | 
 |       /* The underflow exception is masked. */ | 
 |       EXCEPTION(EX_Precision); | 
 |       return tag; | 
 |     } | 
 |  | 
 |   return tag; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | void FPU_stack_overflow(void) | 
 | { | 
 |  | 
 |  if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       top--; | 
 |       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_StackOver); | 
 |  | 
 |   return; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | void FPU_stack_underflow(void) | 
 | { | 
 |  | 
 |  if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_StackUnder); | 
 |  | 
 |   return; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | void FPU_stack_underflow_i(int i) | 
 | { | 
 |  | 
 |  if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_StackUnder); | 
 |  | 
 |   return; | 
 |  | 
 | } | 
 |  | 
 |  | 
 | void FPU_stack_underflow_pop(int i) | 
 | { | 
 |  | 
 |  if ( control_word & CW_Invalid ) | 
 |     { | 
 |       /* The masked response */ | 
 |       FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i); | 
 |       FPU_pop(); | 
 |     } | 
 |  | 
 |   EXCEPTION(EX_StackUnder); | 
 |  | 
 |   return; | 
 |  | 
 | } | 
 |  |