|  | /* | 
|  | *  linux/fs/ext2/inode.c | 
|  | * | 
|  | * Copyright (C) 1992, 1993, 1994, 1995 | 
|  | * Remy Card (card@masi.ibp.fr) | 
|  | * Laboratoire MASI - Institut Blaise Pascal | 
|  | * Universite Pierre et Marie Curie (Paris VI) | 
|  | * | 
|  | *  from | 
|  | * | 
|  | *  linux/fs/minix/inode.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  Goal-directed block allocation by Stephen Tweedie | 
|  | * 	(sct@dcs.ed.ac.uk), 1993, 1998 | 
|  | *  Big-endian to little-endian byte-swapping/bitmaps by | 
|  | *        David S. Miller (davem@caip.rutgers.edu), 1995 | 
|  | *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
|  | * 	(jj@sunsite.ms.mff.cuni.cz) | 
|  | * | 
|  | *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000 | 
|  | */ | 
|  |  | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/quotaops.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/mpage.h> | 
|  | #include "ext2.h" | 
|  | #include "acl.h" | 
|  | #include "xip.h" | 
|  |  | 
|  | MODULE_AUTHOR("Remy Card and others"); | 
|  | MODULE_DESCRIPTION("Second Extended Filesystem"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int ext2_update_inode(struct inode * inode, int do_sync); | 
|  |  | 
|  | /* | 
|  | * Test whether an inode is a fast symlink. | 
|  | */ | 
|  | static inline int ext2_inode_is_fast_symlink(struct inode *inode) | 
|  | { | 
|  | int ea_blocks = EXT2_I(inode)->i_file_acl ? | 
|  | (inode->i_sb->s_blocksize >> 9) : 0; | 
|  |  | 
|  | return (S_ISLNK(inode->i_mode) && | 
|  | inode->i_blocks - ea_blocks == 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at each iput(). | 
|  | * | 
|  | * The inode may be "bad" if ext2_read_inode() saw an error from | 
|  | * ext2_get_inode(), so we need to check that to avoid freeing random disk | 
|  | * blocks. | 
|  | */ | 
|  | void ext2_put_inode(struct inode *inode) | 
|  | { | 
|  | if (!is_bad_inode(inode)) | 
|  | ext2_discard_prealloc(inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at the last iput() if i_nlink is zero. | 
|  | */ | 
|  | void ext2_delete_inode (struct inode * inode) | 
|  | { | 
|  | truncate_inode_pages(&inode->i_data, 0); | 
|  |  | 
|  | if (is_bad_inode(inode)) | 
|  | goto no_delete; | 
|  | EXT2_I(inode)->i_dtime	= get_seconds(); | 
|  | mark_inode_dirty(inode); | 
|  | ext2_update_inode(inode, inode_needs_sync(inode)); | 
|  |  | 
|  | inode->i_size = 0; | 
|  | if (inode->i_blocks) | 
|  | ext2_truncate (inode); | 
|  | ext2_free_inode (inode); | 
|  |  | 
|  | return; | 
|  | no_delete: | 
|  | clear_inode(inode);	/* We must guarantee clearing of inode... */ | 
|  | } | 
|  |  | 
|  | void ext2_discard_prealloc (struct inode * inode) | 
|  | { | 
|  | #ifdef EXT2_PREALLOCATE | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | write_lock(&ei->i_meta_lock); | 
|  | if (ei->i_prealloc_count) { | 
|  | unsigned short total = ei->i_prealloc_count; | 
|  | unsigned long block = ei->i_prealloc_block; | 
|  | ei->i_prealloc_count = 0; | 
|  | ei->i_prealloc_block = 0; | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | ext2_free_blocks (inode, block, total); | 
|  | return; | 
|  | } else | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err) | 
|  | { | 
|  | #ifdef EXT2FS_DEBUG | 
|  | static unsigned long alloc_hits, alloc_attempts; | 
|  | #endif | 
|  | unsigned long result; | 
|  |  | 
|  |  | 
|  | #ifdef EXT2_PREALLOCATE | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | write_lock(&ei->i_meta_lock); | 
|  | if (ei->i_prealloc_count && | 
|  | (goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block)) | 
|  | { | 
|  | result = ei->i_prealloc_block++; | 
|  | ei->i_prealloc_count--; | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | ext2_debug ("preallocation hit (%lu/%lu).\n", | 
|  | ++alloc_hits, ++alloc_attempts); | 
|  | } else { | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | ext2_discard_prealloc (inode); | 
|  | ext2_debug ("preallocation miss (%lu/%lu).\n", | 
|  | alloc_hits, ++alloc_attempts); | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | result = ext2_new_block (inode, goal, | 
|  | &ei->i_prealloc_count, | 
|  | &ei->i_prealloc_block, err); | 
|  | else | 
|  | result = ext2_new_block(inode, goal, NULL, NULL, err); | 
|  | } | 
|  | #else | 
|  | result = ext2_new_block (inode, goal, 0, 0, err); | 
|  | #endif | 
|  | return result; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | __le32	*p; | 
|  | __le32	key; | 
|  | struct buffer_head *bh; | 
|  | } Indirect; | 
|  |  | 
|  | static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) | 
|  | { | 
|  | p->key = *(p->p = v); | 
|  | p->bh = bh; | 
|  | } | 
|  |  | 
|  | static inline int verify_chain(Indirect *from, Indirect *to) | 
|  | { | 
|  | while (from <= to && from->key == *from->p) | 
|  | from++; | 
|  | return (from > to); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_block_to_path - parse the block number into array of offsets | 
|  | *	@inode: inode in question (we are only interested in its superblock) | 
|  | *	@i_block: block number to be parsed | 
|  | *	@offsets: array to store the offsets in | 
|  | *      @boundary: set this non-zero if the referred-to block is likely to be | 
|  | *             followed (on disk) by an indirect block. | 
|  | *	To store the locations of file's data ext2 uses a data structure common | 
|  | *	for UNIX filesystems - tree of pointers anchored in the inode, with | 
|  | *	data blocks at leaves and indirect blocks in intermediate nodes. | 
|  | *	This function translates the block number into path in that tree - | 
|  | *	return value is the path length and @offsets[n] is the offset of | 
|  | *	pointer to (n+1)th node in the nth one. If @block is out of range | 
|  | *	(negative or too large) warning is printed and zero returned. | 
|  | * | 
|  | *	Note: function doesn't find node addresses, so no IO is needed. All | 
|  | *	we need to know is the capacity of indirect blocks (taken from the | 
|  | *	inode->i_sb). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Portability note: the last comparison (check that we fit into triple | 
|  | * indirect block) is spelled differently, because otherwise on an | 
|  | * architecture with 32-bit longs and 8Kb pages we might get into trouble | 
|  | * if our filesystem had 8Kb blocks. We might use long long, but that would | 
|  | * kill us on x86. Oh, well, at least the sign propagation does not matter - | 
|  | * i_block would have to be negative in the very beginning, so we would not | 
|  | * get there at all. | 
|  | */ | 
|  |  | 
|  | static int ext2_block_to_path(struct inode *inode, | 
|  | long i_block, int offsets[4], int *boundary) | 
|  | { | 
|  | int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb); | 
|  | const long direct_blocks = EXT2_NDIR_BLOCKS, | 
|  | indirect_blocks = ptrs, | 
|  | double_blocks = (1 << (ptrs_bits * 2)); | 
|  | int n = 0; | 
|  | int final = 0; | 
|  |  | 
|  | if (i_block < 0) { | 
|  | ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0"); | 
|  | } else if (i_block < direct_blocks) { | 
|  | offsets[n++] = i_block; | 
|  | final = direct_blocks; | 
|  | } else if ( (i_block -= direct_blocks) < indirect_blocks) { | 
|  | offsets[n++] = EXT2_IND_BLOCK; | 
|  | offsets[n++] = i_block; | 
|  | final = ptrs; | 
|  | } else if ((i_block -= indirect_blocks) < double_blocks) { | 
|  | offsets[n++] = EXT2_DIND_BLOCK; | 
|  | offsets[n++] = i_block >> ptrs_bits; | 
|  | offsets[n++] = i_block & (ptrs - 1); | 
|  | final = ptrs; | 
|  | } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { | 
|  | offsets[n++] = EXT2_TIND_BLOCK; | 
|  | offsets[n++] = i_block >> (ptrs_bits * 2); | 
|  | offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); | 
|  | offsets[n++] = i_block & (ptrs - 1); | 
|  | final = ptrs; | 
|  | } else { | 
|  | ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big"); | 
|  | } | 
|  | if (boundary) | 
|  | *boundary = (i_block & (ptrs - 1)) == (final - 1); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_get_branch - read the chain of indirect blocks leading to data | 
|  | *	@inode: inode in question | 
|  | *	@depth: depth of the chain (1 - direct pointer, etc.) | 
|  | *	@offsets: offsets of pointers in inode/indirect blocks | 
|  | *	@chain: place to store the result | 
|  | *	@err: here we store the error value | 
|  | * | 
|  | *	Function fills the array of triples <key, p, bh> and returns %NULL | 
|  | *	if everything went OK or the pointer to the last filled triple | 
|  | *	(incomplete one) otherwise. Upon the return chain[i].key contains | 
|  | *	the number of (i+1)-th block in the chain (as it is stored in memory, | 
|  | *	i.e. little-endian 32-bit), chain[i].p contains the address of that | 
|  | *	number (it points into struct inode for i==0 and into the bh->b_data | 
|  | *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect | 
|  | *	block for i>0 and NULL for i==0. In other words, it holds the block | 
|  | *	numbers of the chain, addresses they were taken from (and where we can | 
|  | *	verify that chain did not change) and buffer_heads hosting these | 
|  | *	numbers. | 
|  | * | 
|  | *	Function stops when it stumbles upon zero pointer (absent block) | 
|  | *		(pointer to last triple returned, *@err == 0) | 
|  | *	or when it gets an IO error reading an indirect block | 
|  | *		(ditto, *@err == -EIO) | 
|  | *	or when it notices that chain had been changed while it was reading | 
|  | *		(ditto, *@err == -EAGAIN) | 
|  | *	or when it reads all @depth-1 indirect blocks successfully and finds | 
|  | *	the whole chain, all way to the data (returns %NULL, *err == 0). | 
|  | */ | 
|  | static Indirect *ext2_get_branch(struct inode *inode, | 
|  | int depth, | 
|  | int *offsets, | 
|  | Indirect chain[4], | 
|  | int *err) | 
|  | { | 
|  | struct super_block *sb = inode->i_sb; | 
|  | Indirect *p = chain; | 
|  | struct buffer_head *bh; | 
|  |  | 
|  | *err = 0; | 
|  | /* i_data is not going away, no lock needed */ | 
|  | add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets); | 
|  | if (!p->key) | 
|  | goto no_block; | 
|  | while (--depth) { | 
|  | bh = sb_bread(sb, le32_to_cpu(p->key)); | 
|  | if (!bh) | 
|  | goto failure; | 
|  | read_lock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!verify_chain(chain, p)) | 
|  | goto changed; | 
|  | add_chain(++p, bh, (__le32*)bh->b_data + *++offsets); | 
|  | read_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!p->key) | 
|  | goto no_block; | 
|  | } | 
|  | return NULL; | 
|  |  | 
|  | changed: | 
|  | read_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | brelse(bh); | 
|  | *err = -EAGAIN; | 
|  | goto no_block; | 
|  | failure: | 
|  | *err = -EIO; | 
|  | no_block: | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_near - find a place for allocation with sufficient locality | 
|  | *	@inode: owner | 
|  | *	@ind: descriptor of indirect block. | 
|  | * | 
|  | *	This function returns the prefered place for block allocation. | 
|  | *	It is used when heuristic for sequential allocation fails. | 
|  | *	Rules are: | 
|  | *	  + if there is a block to the left of our position - allocate near it. | 
|  | *	  + if pointer will live in indirect block - allocate near that block. | 
|  | *	  + if pointer will live in inode - allocate in the same cylinder group. | 
|  | * | 
|  | * In the latter case we colour the starting block by the callers PID to | 
|  | * prevent it from clashing with concurrent allocations for a different inode | 
|  | * in the same block group.   The PID is used here so that functionally related | 
|  | * files will be close-by on-disk. | 
|  | * | 
|  | *	Caller must make sure that @ind is valid and will stay that way. | 
|  | */ | 
|  |  | 
|  | static unsigned long ext2_find_near(struct inode *inode, Indirect *ind) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; | 
|  | __le32 *p; | 
|  | unsigned long bg_start; | 
|  | unsigned long colour; | 
|  |  | 
|  | /* Try to find previous block */ | 
|  | for (p = ind->p - 1; p >= start; p--) | 
|  | if (*p) | 
|  | return le32_to_cpu(*p); | 
|  |  | 
|  | /* No such thing, so let's try location of indirect block */ | 
|  | if (ind->bh) | 
|  | return ind->bh->b_blocknr; | 
|  |  | 
|  | /* | 
|  | * It is going to be refered from inode itself? OK, just put it into | 
|  | * the same cylinder group then. | 
|  | */ | 
|  | bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) + | 
|  | le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block); | 
|  | colour = (current->pid % 16) * | 
|  | (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16); | 
|  | return bg_start + colour; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_goal - find a prefered place for allocation. | 
|  | *	@inode: owner | 
|  | *	@block:  block we want | 
|  | *	@chain:  chain of indirect blocks | 
|  | *	@partial: pointer to the last triple within a chain | 
|  | *	@goal:	place to store the result. | 
|  | * | 
|  | *	Normally this function find the prefered place for block allocation, | 
|  | *	stores it in *@goal and returns zero. If the branch had been changed | 
|  | *	under us we return -EAGAIN. | 
|  | */ | 
|  |  | 
|  | static inline int ext2_find_goal(struct inode *inode, | 
|  | long block, | 
|  | Indirect chain[4], | 
|  | Indirect *partial, | 
|  | unsigned long *goal) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | write_lock(&ei->i_meta_lock); | 
|  | if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) { | 
|  | ei->i_next_alloc_block++; | 
|  | ei->i_next_alloc_goal++; | 
|  | } | 
|  | if (verify_chain(chain, partial)) { | 
|  | /* | 
|  | * try the heuristic for sequential allocation, | 
|  | * failing that at least try to get decent locality. | 
|  | */ | 
|  | if (block == ei->i_next_alloc_block) | 
|  | *goal = ei->i_next_alloc_goal; | 
|  | if (!*goal) | 
|  | *goal = ext2_find_near(inode, partial); | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | return 0; | 
|  | } | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_alloc_branch - allocate and set up a chain of blocks. | 
|  | *	@inode: owner | 
|  | *	@num: depth of the chain (number of blocks to allocate) | 
|  | *	@offsets: offsets (in the blocks) to store the pointers to next. | 
|  | *	@branch: place to store the chain in. | 
|  | * | 
|  | *	This function allocates @num blocks, zeroes out all but the last one, | 
|  | *	links them into chain and (if we are synchronous) writes them to disk. | 
|  | *	In other words, it prepares a branch that can be spliced onto the | 
|  | *	inode. It stores the information about that chain in the branch[], in | 
|  | *	the same format as ext2_get_branch() would do. We are calling it after | 
|  | *	we had read the existing part of chain and partial points to the last | 
|  | *	triple of that (one with zero ->key). Upon the exit we have the same | 
|  | *	picture as after the successful ext2_get_block(), excpet that in one | 
|  | *	place chain is disconnected - *branch->p is still zero (we did not | 
|  | *	set the last link), but branch->key contains the number that should | 
|  | *	be placed into *branch->p to fill that gap. | 
|  | * | 
|  | *	If allocation fails we free all blocks we've allocated (and forget | 
|  | *	their buffer_heads) and return the error value the from failed | 
|  | *	ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain | 
|  | *	as described above and return 0. | 
|  | */ | 
|  |  | 
|  | static int ext2_alloc_branch(struct inode *inode, | 
|  | int num, | 
|  | unsigned long goal, | 
|  | int *offsets, | 
|  | Indirect *branch) | 
|  | { | 
|  | int blocksize = inode->i_sb->s_blocksize; | 
|  | int n = 0; | 
|  | int err; | 
|  | int i; | 
|  | int parent = ext2_alloc_block(inode, goal, &err); | 
|  |  | 
|  | branch[0].key = cpu_to_le32(parent); | 
|  | if (parent) for (n = 1; n < num; n++) { | 
|  | struct buffer_head *bh; | 
|  | /* Allocate the next block */ | 
|  | int nr = ext2_alloc_block(inode, parent, &err); | 
|  | if (!nr) | 
|  | break; | 
|  | branch[n].key = cpu_to_le32(nr); | 
|  | /* | 
|  | * Get buffer_head for parent block, zero it out and set | 
|  | * the pointer to new one, then send parent to disk. | 
|  | */ | 
|  | bh = sb_getblk(inode->i_sb, parent); | 
|  | if (!bh) { | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | lock_buffer(bh); | 
|  | memset(bh->b_data, 0, blocksize); | 
|  | branch[n].bh = bh; | 
|  | branch[n].p = (__le32 *) bh->b_data + offsets[n]; | 
|  | *branch[n].p = branch[n].key; | 
|  | set_buffer_uptodate(bh); | 
|  | unlock_buffer(bh); | 
|  | mark_buffer_dirty_inode(bh, inode); | 
|  | /* We used to sync bh here if IS_SYNC(inode). | 
|  | * But we now rely upon generic_osync_inode() | 
|  | * and b_inode_buffers.  But not for directories. | 
|  | */ | 
|  | if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) | 
|  | sync_dirty_buffer(bh); | 
|  | parent = nr; | 
|  | } | 
|  | if (n == num) | 
|  | return 0; | 
|  |  | 
|  | /* Allocation failed, free what we already allocated */ | 
|  | for (i = 1; i < n; i++) | 
|  | bforget(branch[i].bh); | 
|  | for (i = 0; i < n; i++) | 
|  | ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_splice_branch - splice the allocated branch onto inode. | 
|  | *	@inode: owner | 
|  | *	@block: (logical) number of block we are adding | 
|  | *	@chain: chain of indirect blocks (with a missing link - see | 
|  | *		ext2_alloc_branch) | 
|  | *	@where: location of missing link | 
|  | *	@num:   number of blocks we are adding | 
|  | * | 
|  | *	This function verifies that chain (up to the missing link) had not | 
|  | *	changed, fills the missing link and does all housekeeping needed in | 
|  | *	inode (->i_blocks, etc.). In case of success we end up with the full | 
|  | *	chain to new block and return 0. Otherwise (== chain had been changed) | 
|  | *	we free the new blocks (forgetting their buffer_heads, indeed) and | 
|  | *	return -EAGAIN. | 
|  | */ | 
|  |  | 
|  | static inline int ext2_splice_branch(struct inode *inode, | 
|  | long block, | 
|  | Indirect chain[4], | 
|  | Indirect *where, | 
|  | int num) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | int i; | 
|  |  | 
|  | /* Verify that place we are splicing to is still there and vacant */ | 
|  |  | 
|  | write_lock(&ei->i_meta_lock); | 
|  | if (!verify_chain(chain, where-1) || *where->p) | 
|  | goto changed; | 
|  |  | 
|  | /* That's it */ | 
|  |  | 
|  | *where->p = where->key; | 
|  | ei->i_next_alloc_block = block; | 
|  | ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key); | 
|  |  | 
|  | write_unlock(&ei->i_meta_lock); | 
|  |  | 
|  | /* We are done with atomic stuff, now do the rest of housekeeping */ | 
|  |  | 
|  | inode->i_ctime = CURRENT_TIME_SEC; | 
|  |  | 
|  | /* had we spliced it onto indirect block? */ | 
|  | if (where->bh) | 
|  | mark_buffer_dirty_inode(where->bh, inode); | 
|  |  | 
|  | mark_inode_dirty(inode); | 
|  | return 0; | 
|  |  | 
|  | changed: | 
|  | write_unlock(&ei->i_meta_lock); | 
|  | for (i = 1; i < num; i++) | 
|  | bforget(where[i].bh); | 
|  | for (i = 0; i < num; i++) | 
|  | ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocation strategy is simple: if we have to allocate something, we will | 
|  | * have to go the whole way to leaf. So let's do it before attaching anything | 
|  | * to tree, set linkage between the newborn blocks, write them if sync is | 
|  | * required, recheck the path, free and repeat if check fails, otherwise | 
|  | * set the last missing link (that will protect us from any truncate-generated | 
|  | * removals - all blocks on the path are immune now) and possibly force the | 
|  | * write on the parent block. | 
|  | * That has a nice additional property: no special recovery from the failed | 
|  | * allocations is needed - we simply release blocks and do not touch anything | 
|  | * reachable from inode. | 
|  | */ | 
|  |  | 
|  | int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) | 
|  | { | 
|  | int err = -EIO; | 
|  | int offsets[4]; | 
|  | Indirect chain[4]; | 
|  | Indirect *partial; | 
|  | unsigned long goal; | 
|  | int left; | 
|  | int boundary = 0; | 
|  | int depth = ext2_block_to_path(inode, iblock, offsets, &boundary); | 
|  |  | 
|  | if (depth == 0) | 
|  | goto out; | 
|  |  | 
|  | reread: | 
|  | partial = ext2_get_branch(inode, depth, offsets, chain, &err); | 
|  |  | 
|  | /* Simplest case - block found, no allocation needed */ | 
|  | if (!partial) { | 
|  | got_it: | 
|  | map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key)); | 
|  | if (boundary) | 
|  | set_buffer_boundary(bh_result); | 
|  | /* Clean up and exit */ | 
|  | partial = chain+depth-1; /* the whole chain */ | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | /* Next simple case - plain lookup or failed read of indirect block */ | 
|  | if (!create || err == -EIO) { | 
|  | cleanup: | 
|  | while (partial > chain) { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Indirect block might be removed by truncate while we were | 
|  | * reading it. Handling of that case (forget what we've got and | 
|  | * reread) is taken out of the main path. | 
|  | */ | 
|  | if (err == -EAGAIN) | 
|  | goto changed; | 
|  |  | 
|  | goal = 0; | 
|  | if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0) | 
|  | goto changed; | 
|  |  | 
|  | left = (chain + depth) - partial; | 
|  | err = ext2_alloc_branch(inode, left, goal, | 
|  | offsets+(partial-chain), partial); | 
|  | if (err) | 
|  | goto cleanup; | 
|  |  | 
|  | if (ext2_use_xip(inode->i_sb)) { | 
|  | /* | 
|  | * we need to clear the block | 
|  | */ | 
|  | err = ext2_clear_xip_target (inode, | 
|  | le32_to_cpu(chain[depth-1].key)); | 
|  | if (err) | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0) | 
|  | goto changed; | 
|  |  | 
|  | set_buffer_new(bh_result); | 
|  | goto got_it; | 
|  |  | 
|  | changed: | 
|  | while (partial > chain) { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | goto reread; | 
|  | } | 
|  |  | 
|  | static int ext2_writepage(struct page *page, struct writeback_control *wbc) | 
|  | { | 
|  | return block_write_full_page(page, ext2_get_block, wbc); | 
|  | } | 
|  |  | 
|  | static int ext2_readpage(struct file *file, struct page *page) | 
|  | { | 
|  | return mpage_readpage(page, ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_readpages(struct file *file, struct address_space *mapping, | 
|  | struct list_head *pages, unsigned nr_pages) | 
|  | { | 
|  | return mpage_readpages(mapping, pages, nr_pages, ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_prepare_write(struct file *file, struct page *page, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | return block_prepare_write(page,from,to,ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_nobh_prepare_write(struct file *file, struct page *page, | 
|  | unsigned from, unsigned to) | 
|  | { | 
|  | return nobh_prepare_write(page,from,to,ext2_get_block); | 
|  | } | 
|  |  | 
|  | static int ext2_nobh_writepage(struct page *page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | return nobh_writepage(page, ext2_get_block, wbc); | 
|  | } | 
|  |  | 
|  | static sector_t ext2_bmap(struct address_space *mapping, sector_t block) | 
|  | { | 
|  | return generic_block_bmap(mapping,block,ext2_get_block); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, | 
|  | loff_t offset, unsigned long nr_segs) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct inode *inode = file->f_mapping->host; | 
|  |  | 
|  | return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, | 
|  | offset, nr_segs, ext2_get_block, NULL); | 
|  | } | 
|  |  | 
|  | static int | 
|  | ext2_writepages(struct address_space *mapping, struct writeback_control *wbc) | 
|  | { | 
|  | return mpage_writepages(mapping, wbc, ext2_get_block); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations ext2_aops = { | 
|  | .readpage		= ext2_readpage, | 
|  | .readpages		= ext2_readpages, | 
|  | .writepage		= ext2_writepage, | 
|  | .sync_page		= block_sync_page, | 
|  | .prepare_write		= ext2_prepare_write, | 
|  | .commit_write		= generic_commit_write, | 
|  | .bmap			= ext2_bmap, | 
|  | .direct_IO		= ext2_direct_IO, | 
|  | .writepages		= ext2_writepages, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | }; | 
|  |  | 
|  | const struct address_space_operations ext2_aops_xip = { | 
|  | .bmap			= ext2_bmap, | 
|  | .get_xip_page		= ext2_get_xip_page, | 
|  | }; | 
|  |  | 
|  | const struct address_space_operations ext2_nobh_aops = { | 
|  | .readpage		= ext2_readpage, | 
|  | .readpages		= ext2_readpages, | 
|  | .writepage		= ext2_nobh_writepage, | 
|  | .sync_page		= block_sync_page, | 
|  | .prepare_write		= ext2_nobh_prepare_write, | 
|  | .commit_write		= nobh_commit_write, | 
|  | .bmap			= ext2_bmap, | 
|  | .direct_IO		= ext2_direct_IO, | 
|  | .writepages		= ext2_writepages, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Probably it should be a library function... search for first non-zero word | 
|  | * or memcmp with zero_page, whatever is better for particular architecture. | 
|  | * Linus? | 
|  | */ | 
|  | static inline int all_zeroes(__le32 *p, __le32 *q) | 
|  | { | 
|  | while (p < q) | 
|  | if (*p++) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_find_shared - find the indirect blocks for partial truncation. | 
|  | *	@inode:	  inode in question | 
|  | *	@depth:	  depth of the affected branch | 
|  | *	@offsets: offsets of pointers in that branch (see ext2_block_to_path) | 
|  | *	@chain:	  place to store the pointers to partial indirect blocks | 
|  | *	@top:	  place to the (detached) top of branch | 
|  | * | 
|  | *	This is a helper function used by ext2_truncate(). | 
|  | * | 
|  | *	When we do truncate() we may have to clean the ends of several indirect | 
|  | *	blocks but leave the blocks themselves alive. Block is partially | 
|  | *	truncated if some data below the new i_size is refered from it (and | 
|  | *	it is on the path to the first completely truncated data block, indeed). | 
|  | *	We have to free the top of that path along with everything to the right | 
|  | *	of the path. Since no allocation past the truncation point is possible | 
|  | *	until ext2_truncate() finishes, we may safely do the latter, but top | 
|  | *	of branch may require special attention - pageout below the truncation | 
|  | *	point might try to populate it. | 
|  | * | 
|  | *	We atomically detach the top of branch from the tree, store the block | 
|  | *	number of its root in *@top, pointers to buffer_heads of partially | 
|  | *	truncated blocks - in @chain[].bh and pointers to their last elements | 
|  | *	that should not be removed - in @chain[].p. Return value is the pointer | 
|  | *	to last filled element of @chain. | 
|  | * | 
|  | *	The work left to caller to do the actual freeing of subtrees: | 
|  | *		a) free the subtree starting from *@top | 
|  | *		b) free the subtrees whose roots are stored in | 
|  | *			(@chain[i].p+1 .. end of @chain[i].bh->b_data) | 
|  | *		c) free the subtrees growing from the inode past the @chain[0].p | 
|  | *			(no partially truncated stuff there). | 
|  | */ | 
|  |  | 
|  | static Indirect *ext2_find_shared(struct inode *inode, | 
|  | int depth, | 
|  | int offsets[4], | 
|  | Indirect chain[4], | 
|  | __le32 *top) | 
|  | { | 
|  | Indirect *partial, *p; | 
|  | int k, err; | 
|  |  | 
|  | *top = 0; | 
|  | for (k = depth; k > 1 && !offsets[k-1]; k--) | 
|  | ; | 
|  | partial = ext2_get_branch(inode, k, offsets, chain, &err); | 
|  | if (!partial) | 
|  | partial = chain + k-1; | 
|  | /* | 
|  | * If the branch acquired continuation since we've looked at it - | 
|  | * fine, it should all survive and (new) top doesn't belong to us. | 
|  | */ | 
|  | write_lock(&EXT2_I(inode)->i_meta_lock); | 
|  | if (!partial->key && *partial->p) { | 
|  | write_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  | goto no_top; | 
|  | } | 
|  | for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--) | 
|  | ; | 
|  | /* | 
|  | * OK, we've found the last block that must survive. The rest of our | 
|  | * branch should be detached before unlocking. However, if that rest | 
|  | * of branch is all ours and does not grow immediately from the inode | 
|  | * it's easier to cheat and just decrement partial->p. | 
|  | */ | 
|  | if (p == chain + k - 1 && p > chain) { | 
|  | p->p--; | 
|  | } else { | 
|  | *top = *p->p; | 
|  | *p->p = 0; | 
|  | } | 
|  | write_unlock(&EXT2_I(inode)->i_meta_lock); | 
|  |  | 
|  | while(partial > p) | 
|  | { | 
|  | brelse(partial->bh); | 
|  | partial--; | 
|  | } | 
|  | no_top: | 
|  | return partial; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_free_data - free a list of data blocks | 
|  | *	@inode:	inode we are dealing with | 
|  | *	@p:	array of block numbers | 
|  | *	@q:	points immediately past the end of array | 
|  | * | 
|  | *	We are freeing all blocks refered from that array (numbers are | 
|  | *	stored as little-endian 32-bit) and updating @inode->i_blocks | 
|  | *	appropriately. | 
|  | */ | 
|  | static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q) | 
|  | { | 
|  | unsigned long block_to_free = 0, count = 0; | 
|  | unsigned long nr; | 
|  |  | 
|  | for ( ; p < q ; p++) { | 
|  | nr = le32_to_cpu(*p); | 
|  | if (nr) { | 
|  | *p = 0; | 
|  | /* accumulate blocks to free if they're contiguous */ | 
|  | if (count == 0) | 
|  | goto free_this; | 
|  | else if (block_to_free == nr - count) | 
|  | count++; | 
|  | else { | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_blocks (inode, block_to_free, count); | 
|  | free_this: | 
|  | block_to_free = nr; | 
|  | count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (count > 0) { | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_blocks (inode, block_to_free, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ext2_free_branches - free an array of branches | 
|  | *	@inode:	inode we are dealing with | 
|  | *	@p:	array of block numbers | 
|  | *	@q:	pointer immediately past the end of array | 
|  | *	@depth:	depth of the branches to free | 
|  | * | 
|  | *	We are freeing all blocks refered from these branches (numbers are | 
|  | *	stored as little-endian 32-bit) and updating @inode->i_blocks | 
|  | *	appropriately. | 
|  | */ | 
|  | static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth) | 
|  | { | 
|  | struct buffer_head * bh; | 
|  | unsigned long nr; | 
|  |  | 
|  | if (depth--) { | 
|  | int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | for ( ; p < q ; p++) { | 
|  | nr = le32_to_cpu(*p); | 
|  | if (!nr) | 
|  | continue; | 
|  | *p = 0; | 
|  | bh = sb_bread(inode->i_sb, nr); | 
|  | /* | 
|  | * A read failure? Report error and clear slot | 
|  | * (should be rare). | 
|  | */ | 
|  | if (!bh) { | 
|  | ext2_error(inode->i_sb, "ext2_free_branches", | 
|  | "Read failure, inode=%ld, block=%ld", | 
|  | inode->i_ino, nr); | 
|  | continue; | 
|  | } | 
|  | ext2_free_branches(inode, | 
|  | (__le32*)bh->b_data, | 
|  | (__le32*)bh->b_data + addr_per_block, | 
|  | depth); | 
|  | bforget(bh); | 
|  | ext2_free_blocks(inode, nr, 1); | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | } else | 
|  | ext2_free_data(inode, p, q); | 
|  | } | 
|  |  | 
|  | void ext2_truncate (struct inode * inode) | 
|  | { | 
|  | __le32 *i_data = EXT2_I(inode)->i_data; | 
|  | int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); | 
|  | int offsets[4]; | 
|  | Indirect chain[4]; | 
|  | Indirect *partial; | 
|  | __le32 nr = 0; | 
|  | int n; | 
|  | long iblock; | 
|  | unsigned blocksize; | 
|  |  | 
|  | if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
|  | S_ISLNK(inode->i_mode))) | 
|  | return; | 
|  | if (ext2_inode_is_fast_symlink(inode)) | 
|  | return; | 
|  | if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) | 
|  | return; | 
|  |  | 
|  | ext2_discard_prealloc(inode); | 
|  |  | 
|  | blocksize = inode->i_sb->s_blocksize; | 
|  | iblock = (inode->i_size + blocksize-1) | 
|  | >> EXT2_BLOCK_SIZE_BITS(inode->i_sb); | 
|  |  | 
|  | if (mapping_is_xip(inode->i_mapping)) | 
|  | xip_truncate_page(inode->i_mapping, inode->i_size); | 
|  | else if (test_opt(inode->i_sb, NOBH)) | 
|  | nobh_truncate_page(inode->i_mapping, inode->i_size); | 
|  | else | 
|  | block_truncate_page(inode->i_mapping, | 
|  | inode->i_size, ext2_get_block); | 
|  |  | 
|  | n = ext2_block_to_path(inode, iblock, offsets, NULL); | 
|  | if (n == 0) | 
|  | return; | 
|  |  | 
|  | if (n == 1) { | 
|  | ext2_free_data(inode, i_data+offsets[0], | 
|  | i_data + EXT2_NDIR_BLOCKS); | 
|  | goto do_indirects; | 
|  | } | 
|  |  | 
|  | partial = ext2_find_shared(inode, n, offsets, chain, &nr); | 
|  | /* Kill the top of shared branch (already detached) */ | 
|  | if (nr) { | 
|  | if (partial == chain) | 
|  | mark_inode_dirty(inode); | 
|  | else | 
|  | mark_buffer_dirty_inode(partial->bh, inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial); | 
|  | } | 
|  | /* Clear the ends of indirect blocks on the shared branch */ | 
|  | while (partial > chain) { | 
|  | ext2_free_branches(inode, | 
|  | partial->p + 1, | 
|  | (__le32*)partial->bh->b_data+addr_per_block, | 
|  | (chain+n-1) - partial); | 
|  | mark_buffer_dirty_inode(partial->bh, inode); | 
|  | brelse (partial->bh); | 
|  | partial--; | 
|  | } | 
|  | do_indirects: | 
|  | /* Kill the remaining (whole) subtrees */ | 
|  | switch (offsets[0]) { | 
|  | default: | 
|  | nr = i_data[EXT2_IND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_IND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 1); | 
|  | } | 
|  | case EXT2_IND_BLOCK: | 
|  | nr = i_data[EXT2_DIND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_DIND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 2); | 
|  | } | 
|  | case EXT2_DIND_BLOCK: | 
|  | nr = i_data[EXT2_TIND_BLOCK]; | 
|  | if (nr) { | 
|  | i_data[EXT2_TIND_BLOCK] = 0; | 
|  | mark_inode_dirty(inode); | 
|  | ext2_free_branches(inode, &nr, &nr+1, 3); | 
|  | } | 
|  | case EXT2_TIND_BLOCK: | 
|  | ; | 
|  | } | 
|  | inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC; | 
|  | if (inode_needs_sync(inode)) { | 
|  | sync_mapping_buffers(inode->i_mapping); | 
|  | ext2_sync_inode (inode); | 
|  | } else { | 
|  | mark_inode_dirty(inode); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino, | 
|  | struct buffer_head **p) | 
|  | { | 
|  | struct buffer_head * bh; | 
|  | unsigned long block_group; | 
|  | unsigned long block; | 
|  | unsigned long offset; | 
|  | struct ext2_group_desc * gdp; | 
|  |  | 
|  | *p = NULL; | 
|  | if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) || | 
|  | ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count)) | 
|  | goto Einval; | 
|  |  | 
|  | block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb); | 
|  | gdp = ext2_get_group_desc(sb, block_group, &bh); | 
|  | if (!gdp) | 
|  | goto Egdp; | 
|  | /* | 
|  | * Figure out the offset within the block group inode table | 
|  | */ | 
|  | offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb); | 
|  | block = le32_to_cpu(gdp->bg_inode_table) + | 
|  | (offset >> EXT2_BLOCK_SIZE_BITS(sb)); | 
|  | if (!(bh = sb_bread(sb, block))) | 
|  | goto Eio; | 
|  |  | 
|  | *p = bh; | 
|  | offset &= (EXT2_BLOCK_SIZE(sb) - 1); | 
|  | return (struct ext2_inode *) (bh->b_data + offset); | 
|  |  | 
|  | Einval: | 
|  | ext2_error(sb, "ext2_get_inode", "bad inode number: %lu", | 
|  | (unsigned long) ino); | 
|  | return ERR_PTR(-EINVAL); | 
|  | Eio: | 
|  | ext2_error(sb, "ext2_get_inode", | 
|  | "unable to read inode block - inode=%lu, block=%lu", | 
|  | (unsigned long) ino, block); | 
|  | Egdp: | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  |  | 
|  | void ext2_set_inode_flags(struct inode *inode) | 
|  | { | 
|  | unsigned int flags = EXT2_I(inode)->i_flags; | 
|  |  | 
|  | inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); | 
|  | if (flags & EXT2_SYNC_FL) | 
|  | inode->i_flags |= S_SYNC; | 
|  | if (flags & EXT2_APPEND_FL) | 
|  | inode->i_flags |= S_APPEND; | 
|  | if (flags & EXT2_IMMUTABLE_FL) | 
|  | inode->i_flags |= S_IMMUTABLE; | 
|  | if (flags & EXT2_NOATIME_FL) | 
|  | inode->i_flags |= S_NOATIME; | 
|  | if (flags & EXT2_DIRSYNC_FL) | 
|  | inode->i_flags |= S_DIRSYNC; | 
|  | } | 
|  |  | 
|  | void ext2_read_inode (struct inode * inode) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | ino_t ino = inode->i_ino; | 
|  | struct buffer_head * bh; | 
|  | struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); | 
|  | int n; | 
|  |  | 
|  | #ifdef CONFIG_EXT2_FS_POSIX_ACL | 
|  | ei->i_acl = EXT2_ACL_NOT_CACHED; | 
|  | ei->i_default_acl = EXT2_ACL_NOT_CACHED; | 
|  | #endif | 
|  | if (IS_ERR(raw_inode)) | 
|  | goto bad_inode; | 
|  |  | 
|  | inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
|  | inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
|  | inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
|  | if (!(test_opt (inode->i_sb, NO_UID32))) { | 
|  | inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
|  | inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
|  | } | 
|  | inode->i_nlink = le16_to_cpu(raw_inode->i_links_count); | 
|  | inode->i_size = le32_to_cpu(raw_inode->i_size); | 
|  | inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime); | 
|  | inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime); | 
|  | inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime); | 
|  | inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0; | 
|  | ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
|  | /* We now have enough fields to check if the inode was active or not. | 
|  | * This is needed because nfsd might try to access dead inodes | 
|  | * the test is that same one that e2fsck uses | 
|  | * NeilBrown 1999oct15 | 
|  | */ | 
|  | if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) { | 
|  | /* this inode is deleted */ | 
|  | brelse (bh); | 
|  | goto bad_inode; | 
|  | } | 
|  | inode->i_blocks = le32_to_cpu(raw_inode->i_blocks); | 
|  | ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
|  | ei->i_faddr = le32_to_cpu(raw_inode->i_faddr); | 
|  | ei->i_frag_no = raw_inode->i_frag; | 
|  | ei->i_frag_size = raw_inode->i_fsize; | 
|  | ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl); | 
|  | ei->i_dir_acl = 0; | 
|  | if (S_ISREG(inode->i_mode)) | 
|  | inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32; | 
|  | else | 
|  | ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl); | 
|  | ei->i_dtime = 0; | 
|  | inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
|  | ei->i_state = 0; | 
|  | ei->i_next_alloc_block = 0; | 
|  | ei->i_next_alloc_goal = 0; | 
|  | ei->i_prealloc_count = 0; | 
|  | ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb); | 
|  | ei->i_dir_start_lookup = 0; | 
|  |  | 
|  | /* | 
|  | * NOTE! The in-memory inode i_data array is in little-endian order | 
|  | * even on big-endian machines: we do NOT byteswap the block numbers! | 
|  | */ | 
|  | for (n = 0; n < EXT2_N_BLOCKS; n++) | 
|  | ei->i_data[n] = raw_inode->i_block[n]; | 
|  |  | 
|  | if (S_ISREG(inode->i_mode)) { | 
|  | inode->i_op = &ext2_file_inode_operations; | 
|  | if (ext2_use_xip(inode->i_sb)) { | 
|  | inode->i_mapping->a_ops = &ext2_aops_xip; | 
|  | inode->i_fop = &ext2_xip_file_operations; | 
|  | } else if (test_opt(inode->i_sb, NOBH)) { | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | inode->i_fop = &ext2_file_operations; | 
|  | } else { | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | inode->i_fop = &ext2_file_operations; | 
|  | } | 
|  | } else if (S_ISDIR(inode->i_mode)) { | 
|  | inode->i_op = &ext2_dir_inode_operations; | 
|  | inode->i_fop = &ext2_dir_operations; | 
|  | if (test_opt(inode->i_sb, NOBH)) | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | } else if (S_ISLNK(inode->i_mode)) { | 
|  | if (ext2_inode_is_fast_symlink(inode)) | 
|  | inode->i_op = &ext2_fast_symlink_inode_operations; | 
|  | else { | 
|  | inode->i_op = &ext2_symlink_inode_operations; | 
|  | if (test_opt(inode->i_sb, NOBH)) | 
|  | inode->i_mapping->a_ops = &ext2_nobh_aops; | 
|  | else | 
|  | inode->i_mapping->a_ops = &ext2_aops; | 
|  | } | 
|  | } else { | 
|  | inode->i_op = &ext2_special_inode_operations; | 
|  | if (raw_inode->i_block[0]) | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
|  | else | 
|  | init_special_inode(inode, inode->i_mode, | 
|  | new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
|  | } | 
|  | brelse (bh); | 
|  | ext2_set_inode_flags(inode); | 
|  | return; | 
|  |  | 
|  | bad_inode: | 
|  | make_bad_inode(inode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int ext2_update_inode(struct inode * inode, int do_sync) | 
|  | { | 
|  | struct ext2_inode_info *ei = EXT2_I(inode); | 
|  | struct super_block *sb = inode->i_sb; | 
|  | ino_t ino = inode->i_ino; | 
|  | uid_t uid = inode->i_uid; | 
|  | gid_t gid = inode->i_gid; | 
|  | struct buffer_head * bh; | 
|  | struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh); | 
|  | int n; | 
|  | int err = 0; | 
|  |  | 
|  | if (IS_ERR(raw_inode)) | 
|  | return -EIO; | 
|  |  | 
|  | /* For fields not not tracking in the in-memory inode, | 
|  | * initialise them to zero for new inodes. */ | 
|  | if (ei->i_state & EXT2_STATE_NEW) | 
|  | memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size); | 
|  |  | 
|  | raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
|  | if (!(test_opt(sb, NO_UID32))) { | 
|  | raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid)); | 
|  | /* | 
|  | * Fix up interoperability with old kernels. Otherwise, old inodes get | 
|  | * re-used with the upper 16 bits of the uid/gid intact | 
|  | */ | 
|  | if (!ei->i_dtime) { | 
|  | raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid)); | 
|  | raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid)); | 
|  | } else { | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | } else { | 
|  | raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid)); | 
|  | raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid)); | 
|  | raw_inode->i_uid_high = 0; | 
|  | raw_inode->i_gid_high = 0; | 
|  | } | 
|  | raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
|  | raw_inode->i_size = cpu_to_le32(inode->i_size); | 
|  | raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec); | 
|  | raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); | 
|  | raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); | 
|  |  | 
|  | raw_inode->i_blocks = cpu_to_le32(inode->i_blocks); | 
|  | raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
|  | raw_inode->i_flags = cpu_to_le32(ei->i_flags); | 
|  | raw_inode->i_faddr = cpu_to_le32(ei->i_faddr); | 
|  | raw_inode->i_frag = ei->i_frag_no; | 
|  | raw_inode->i_fsize = ei->i_frag_size; | 
|  | raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl); | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl); | 
|  | else { | 
|  | raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32); | 
|  | if (inode->i_size > 0x7fffffffULL) { | 
|  | if (!EXT2_HAS_RO_COMPAT_FEATURE(sb, | 
|  | EXT2_FEATURE_RO_COMPAT_LARGE_FILE) || | 
|  | EXT2_SB(sb)->s_es->s_rev_level == | 
|  | cpu_to_le32(EXT2_GOOD_OLD_REV)) { | 
|  | /* If this is the first large file | 
|  | * created, add a flag to the superblock. | 
|  | */ | 
|  | lock_kernel(); | 
|  | ext2_update_dynamic_rev(sb); | 
|  | EXT2_SET_RO_COMPAT_FEATURE(sb, | 
|  | EXT2_FEATURE_RO_COMPAT_LARGE_FILE); | 
|  | unlock_kernel(); | 
|  | ext2_write_super(sb); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
|  | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
|  | if (old_valid_dev(inode->i_rdev)) { | 
|  | raw_inode->i_block[0] = | 
|  | cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[1] = 0; | 
|  | } else { | 
|  | raw_inode->i_block[0] = 0; | 
|  | raw_inode->i_block[1] = | 
|  | cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
|  | raw_inode->i_block[2] = 0; | 
|  | } | 
|  | } else for (n = 0; n < EXT2_N_BLOCKS; n++) | 
|  | raw_inode->i_block[n] = ei->i_data[n]; | 
|  | mark_buffer_dirty(bh); | 
|  | if (do_sync) { | 
|  | sync_dirty_buffer(bh); | 
|  | if (buffer_req(bh) && !buffer_uptodate(bh)) { | 
|  | printk ("IO error syncing ext2 inode [%s:%08lx]\n", | 
|  | sb->s_id, (unsigned long) ino); | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | ei->i_state &= ~EXT2_STATE_NEW; | 
|  | brelse (bh); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int ext2_write_inode(struct inode *inode, int wait) | 
|  | { | 
|  | return ext2_update_inode(inode, wait); | 
|  | } | 
|  |  | 
|  | int ext2_sync_inode(struct inode *inode) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_ALL, | 
|  | .nr_to_write = 0,	/* sys_fsync did this */ | 
|  | }; | 
|  | return sync_inode(inode, &wbc); | 
|  | } | 
|  |  | 
|  | int ext2_setattr(struct dentry *dentry, struct iattr *iattr) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  | int error; | 
|  |  | 
|  | error = inode_change_ok(inode, iattr); | 
|  | if (error) | 
|  | return error; | 
|  | if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) || | 
|  | (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) { | 
|  | error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0; | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  | error = inode_setattr(inode, iattr); | 
|  | if (!error && (iattr->ia_valid & ATTR_MODE)) | 
|  | error = ext2_acl_chmod(inode); | 
|  | return error; | 
|  | } |