|  | /* | 
|  | * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_extfree_item.h" | 
|  |  | 
|  |  | 
|  | kmem_zone_t	*xfs_efi_zone; | 
|  | kmem_zone_t	*xfs_efd_zone; | 
|  |  | 
|  | STATIC void	xfs_efi_item_unlock(xfs_efi_log_item_t *); | 
|  |  | 
|  | void | 
|  | xfs_efi_item_free(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | int nexts = efip->efi_format.efi_nextents; | 
|  |  | 
|  | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | kmem_free(efip, sizeof(xfs_efi_log_item_t) + | 
|  | (nexts - 1) * sizeof(xfs_extent_t)); | 
|  | } else { | 
|  | kmem_zone_free(xfs_efi_zone, efip); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efi item. | 
|  | * We only need 1 iovec for an efi item.  It just logs the efi_log_format | 
|  | * structure. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC uint | 
|  | xfs_efi_item_size(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efi log item. We use only 1 iovec, and we point that | 
|  | * at the efi_log_format structure embedded in the efi item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efi item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_format(xfs_efi_log_item_t	*efip, | 
|  | xfs_log_iovec_t	*log_vector) | 
|  | { | 
|  | uint	size; | 
|  |  | 
|  | ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents); | 
|  |  | 
|  | efip->efi_format.efi_type = XFS_LI_EFI; | 
|  |  | 
|  | size = sizeof(xfs_efi_log_format_t); | 
|  | size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | efip->efi_format.efi_size = 1; | 
|  |  | 
|  | log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format); | 
|  | log_vector->i_len = size; | 
|  | XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT); | 
|  | ASSERT(size >= sizeof(xfs_efi_log_format_t)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an efi item, so just return. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efi_item_pin(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * While EFIs cannot really be pinned, the unpin operation is the | 
|  | * last place at which the EFI is manipulated during a transaction. | 
|  | * Here we coordinate with xfs_efi_cancel() to determine who gets to | 
|  | * free the EFI. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale) | 
|  | { | 
|  | xfs_mount_t	*mp; | 
|  | SPLDECL(s); | 
|  |  | 
|  | mp = efip->efi_item.li_mountp; | 
|  | AIL_LOCK(mp, s); | 
|  | if (efip->efi_flags & XFS_EFI_CANCELED) { | 
|  | /* | 
|  | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | */ | 
|  | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | xfs_efi_item_free(efip); | 
|  | } else { | 
|  | efip->efi_flags |= XFS_EFI_COMMITTED; | 
|  | AIL_UNLOCK(mp, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * like unpin only we have to also clear the xaction descriptor | 
|  | * pointing the log item if we free the item.  This routine duplicates | 
|  | * unpin because efi_flags is protected by the AIL lock.  Freeing | 
|  | * the descriptor and then calling unpin would force us to drop the AIL | 
|  | * lock which would open up a race condition. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp) | 
|  | { | 
|  | xfs_mount_t	*mp; | 
|  | xfs_log_item_desc_t	*lidp; | 
|  | SPLDECL(s); | 
|  |  | 
|  | mp = efip->efi_item.li_mountp; | 
|  | AIL_LOCK(mp, s); | 
|  | if (efip->efi_flags & XFS_EFI_CANCELED) { | 
|  | /* | 
|  | * free the xaction descriptor pointing to this item | 
|  | */ | 
|  | lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip); | 
|  | xfs_trans_free_item(tp, lidp); | 
|  | /* | 
|  | * pull the item off the AIL. | 
|  | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | */ | 
|  | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | xfs_efi_item_free(efip); | 
|  | } else { | 
|  | efip->efi_flags |= XFS_EFI_COMMITTED; | 
|  | AIL_UNLOCK(mp, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Efi items have no locking or pushing.  However, since EFIs are | 
|  | * pulled from the AIL when their corresponding EFDs are committed | 
|  | * to disk, their situation is very similar to being pinned.  Return | 
|  | * XFS_ITEM_PINNED so that the caller will eventually flush the log. | 
|  | * This should help in getting the EFI out of the AIL. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC uint | 
|  | xfs_efi_item_trylock(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Efi items have no locking, so just return. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efi_item_unlock(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | if (efip->efi_item.li_flags & XFS_LI_ABORTED) | 
|  | xfs_efi_item_free(efip); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI is logged only once and cannot be moved in the log, so | 
|  | * simply return the lsn at which it's been logged.  The canceled | 
|  | * flag is not paid any attention here.  Checking for that is delayed | 
|  | * until the EFI is unpinned. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) | 
|  | { | 
|  | return lsn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There isn't much you can do to push on an efi item.  It is simply | 
|  | * stuck waiting for all of its corresponding efd items to be | 
|  | * committed to disk. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efi_item_push(xfs_efi_log_item_t *efip) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFI dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all efi log items. | 
|  | */ | 
|  | STATIC struct xfs_item_ops xfs_efi_item_ops = { | 
|  | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_efi_item_size, | 
|  | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | xfs_efi_item_format, | 
|  | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_efi_item_pin, | 
|  | .iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin, | 
|  | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *)) | 
|  | xfs_efi_item_unpin_remove, | 
|  | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock, | 
|  | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efi_item_unlock, | 
|  | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_efi_item_committed, | 
|  | .iop_push	= (void(*)(xfs_log_item_t*))xfs_efi_item_push, | 
|  | .iop_pushbuf	= NULL, | 
|  | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_efi_item_committing | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efi item with the given number of extents. | 
|  | */ | 
|  | xfs_efi_log_item_t * | 
|  | xfs_efi_init(xfs_mount_t	*mp, | 
|  | uint		nextents) | 
|  |  | 
|  | { | 
|  | xfs_efi_log_item_t	*efip; | 
|  | uint			size; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { | 
|  | size = (uint)(sizeof(xfs_efi_log_item_t) + | 
|  | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP); | 
|  | } else { | 
|  | efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone, | 
|  | KM_SLEEP); | 
|  | } | 
|  |  | 
|  | efip->efi_item.li_type = XFS_LI_EFI; | 
|  | efip->efi_item.li_ops = &xfs_efi_item_ops; | 
|  | efip->efi_item.li_mountp = mp; | 
|  | efip->efi_format.efi_nextents = nextents; | 
|  | efip->efi_format.efi_id = (__psint_t)(void*)efip; | 
|  |  | 
|  | return (efip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy an EFI format buffer from the given buf, and into the destination | 
|  | * EFI format structure. | 
|  | * The given buffer can be in 32 bit or 64 bit form (which has different padding), | 
|  | * one of which will be the native format for this kernel. | 
|  | * It will handle the conversion of formats if necessary. | 
|  | */ | 
|  | int | 
|  | xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) | 
|  | { | 
|  | xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr; | 
|  | uint i; | 
|  | uint len = sizeof(xfs_efi_log_format_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t); | 
|  | uint len32 = sizeof(xfs_efi_log_format_32_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t); | 
|  | uint len64 = sizeof(xfs_efi_log_format_64_t) + | 
|  | (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t); | 
|  |  | 
|  | if (buf->i_len == len) { | 
|  | memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len); | 
|  | return 0; | 
|  | } else if (buf->i_len == len32) { | 
|  | xfs_efi_log_format_32_t *src_efi_fmt_32 = | 
|  | (xfs_efi_log_format_32_t *)buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_32->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_32->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } else if (buf->i_len == len64) { | 
|  | xfs_efi_log_format_64_t *src_efi_fmt_64 = | 
|  | (xfs_efi_log_format_64_t *)buf->i_addr; | 
|  |  | 
|  | dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type; | 
|  | dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size; | 
|  | dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; | 
|  | dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id; | 
|  | for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { | 
|  | dst_efi_fmt->efi_extents[i].ext_start = | 
|  | src_efi_fmt_64->efi_extents[i].ext_start; | 
|  | dst_efi_fmt->efi_extents[i].ext_len = | 
|  | src_efi_fmt_64->efi_extents[i].ext_len; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called by the efd item code below to release references to | 
|  | * the given efi item.  Each efd calls this with the number of | 
|  | * extents that it has logged, and when the sum of these reaches | 
|  | * the total number of extents logged by this efi item we can free | 
|  | * the efi item. | 
|  | * | 
|  | * Freeing the efi item requires that we remove it from the AIL. | 
|  | * We'll use the AIL lock to protect our counters as well as | 
|  | * the removal from the AIL. | 
|  | */ | 
|  | void | 
|  | xfs_efi_release(xfs_efi_log_item_t	*efip, | 
|  | uint			nextents) | 
|  | { | 
|  | xfs_mount_t	*mp; | 
|  | int		extents_left; | 
|  | SPLDECL(s); | 
|  |  | 
|  | mp = efip->efi_item.li_mountp; | 
|  | ASSERT(efip->efi_next_extent > 0); | 
|  | ASSERT(efip->efi_flags & XFS_EFI_COMMITTED); | 
|  |  | 
|  | AIL_LOCK(mp, s); | 
|  | ASSERT(efip->efi_next_extent >= nextents); | 
|  | efip->efi_next_extent -= nextents; | 
|  | extents_left = efip->efi_next_extent; | 
|  | if (extents_left == 0) { | 
|  | /* | 
|  | * xfs_trans_delete_ail() drops the AIL lock. | 
|  | */ | 
|  | xfs_trans_delete_ail(mp, (xfs_log_item_t *)efip, s); | 
|  | xfs_efi_item_free(efip); | 
|  | } else { | 
|  | AIL_UNLOCK(mp, s); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_efd_item_free(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | int nexts = efdp->efd_format.efd_nextents; | 
|  |  | 
|  | if (nexts > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | kmem_free(efdp, sizeof(xfs_efd_log_item_t) + | 
|  | (nexts - 1) * sizeof(xfs_extent_t)); | 
|  | } else { | 
|  | kmem_zone_free(xfs_efd_zone, efdp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given efd item. | 
|  | * We only need 1 iovec for an efd item.  It just logs the efd_log_format | 
|  | * structure. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC uint | 
|  | xfs_efd_item_size(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given efd log item. We use only 1 iovec, and we point that | 
|  | * at the efd_log_format structure embedded in the efd item. | 
|  | * It is at this point that we assert that all of the extent | 
|  | * slots in the efd item have been filled. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_efd_item_format(xfs_efd_log_item_t	*efdp, | 
|  | xfs_log_iovec_t	*log_vector) | 
|  | { | 
|  | uint	size; | 
|  |  | 
|  | ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); | 
|  |  | 
|  | efdp->efd_format.efd_type = XFS_LI_EFD; | 
|  |  | 
|  | size = sizeof(xfs_efd_log_format_t); | 
|  | size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t); | 
|  | efdp->efd_format.efd_size = 1; | 
|  |  | 
|  | log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format); | 
|  | log_vector->i_len = size; | 
|  | XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT); | 
|  | ASSERT(size >= sizeof(xfs_efd_log_format_t)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Pinning has no meaning for an efd item, so just return. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_pin(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Since pinning has no meaning for an efd item, unpinning does | 
|  | * not either. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Efd items have no locking, so just return success. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC uint | 
|  | xfs_efd_item_trylock(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | return XFS_ITEM_LOCKED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Efd items have no locking or pushing, so return failure | 
|  | * so that the caller doesn't bother with us. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_unlock(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | if (efdp->efd_item.li_flags & XFS_LI_ABORTED) | 
|  | xfs_efd_item_free(efdp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When the efd item is committed to disk, all we need to do | 
|  | * is delete our reference to our partner efi item and then | 
|  | * free ourselves.  Since we're freeing ourselves we must | 
|  | * return -1 to keep the transaction code from further referencing | 
|  | * this item. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn) | 
|  | { | 
|  | /* | 
|  | * If we got a log I/O error, it's always the case that the LR with the | 
|  | * EFI got unpinned and freed before the EFD got aborted. | 
|  | */ | 
|  | if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0) | 
|  | xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents); | 
|  |  | 
|  | xfs_efd_item_free(efdp); | 
|  | return (xfs_lsn_t)-1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There isn't much you can do to push on an efd item.  It is simply | 
|  | * stuck waiting for the log to be flushed to disk. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_push(xfs_efd_log_item_t *efdp) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The EFD dependency tracking op doesn't do squat.  It can't because | 
|  | * it doesn't know where the free extent is coming from.  The dependency | 
|  | * tracking has to be handled by the "enclosing" metadata object.  For | 
|  | * example, for inodes, the inode is locked throughout the extent freeing | 
|  | * so the dependency should be recorded there. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all efd log items. | 
|  | */ | 
|  | STATIC struct xfs_item_ops xfs_efd_item_ops = { | 
|  | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_efd_item_size, | 
|  | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | xfs_efd_item_format, | 
|  | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_efd_item_pin, | 
|  | .iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin, | 
|  | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) | 
|  | xfs_efd_item_unpin_remove, | 
|  | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock, | 
|  | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_efd_item_unlock, | 
|  | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_efd_item_committed, | 
|  | .iop_push	= (void(*)(xfs_log_item_t*))xfs_efd_item_push, | 
|  | .iop_pushbuf	= NULL, | 
|  | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_efd_item_committing | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize an efd item with the given number of extents. | 
|  | */ | 
|  | xfs_efd_log_item_t * | 
|  | xfs_efd_init(xfs_mount_t	*mp, | 
|  | xfs_efi_log_item_t	*efip, | 
|  | uint		nextents) | 
|  |  | 
|  | { | 
|  | xfs_efd_log_item_t	*efdp; | 
|  | uint			size; | 
|  |  | 
|  | ASSERT(nextents > 0); | 
|  | if (nextents > XFS_EFD_MAX_FAST_EXTENTS) { | 
|  | size = (uint)(sizeof(xfs_efd_log_item_t) + | 
|  | ((nextents - 1) * sizeof(xfs_extent_t))); | 
|  | efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP); | 
|  | } else { | 
|  | efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone, | 
|  | KM_SLEEP); | 
|  | } | 
|  |  | 
|  | efdp->efd_item.li_type = XFS_LI_EFD; | 
|  | efdp->efd_item.li_ops = &xfs_efd_item_ops; | 
|  | efdp->efd_item.li_mountp = mp; | 
|  | efdp->efd_efip = efip; | 
|  | efdp->efd_format.efd_nextents = nextents; | 
|  | efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; | 
|  |  | 
|  | return (efdp); | 
|  | } |