| /* memcontrol.c - Memory Controller | 
 |  * | 
 |  * Copyright IBM Corporation, 2007 | 
 |  * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
 |  * | 
 |  * Copyright 2007 OpenVZ SWsoft Inc | 
 |  * Author: Pavel Emelianov <xemul@openvz.org> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  */ | 
 |  | 
 | #include <linux/res_counter.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/cgroup.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/page-flags.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/limits.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/page_cgroup.h> | 
 | #include <linux/cpu.h> | 
 | #include "internal.h" | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 
 | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
 | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ | 
 | int do_swap_account __read_mostly; | 
 | static int really_do_swap_account __initdata = 1; /* for remember boot option*/ | 
 | #else | 
 | #define do_swap_account		(0) | 
 | #endif | 
 |  | 
 | #define SOFTLIMIT_EVENTS_THRESH (1000) | 
 |  | 
 | /* | 
 |  * Statistics for memory cgroup. | 
 |  */ | 
 | enum mem_cgroup_stat_index { | 
 | 	/* | 
 | 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | 
 | 	 */ | 
 | 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */ | 
 | 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */ | 
 | 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */ | 
 | 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */ | 
 | 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */ | 
 | 	MEM_CGROUP_STAT_EVENTS,	/* sum of pagein + pageout for internal use */ | 
 | 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ | 
 |  | 
 | 	MEM_CGROUP_STAT_NSTATS, | 
 | }; | 
 |  | 
 | struct mem_cgroup_stat_cpu { | 
 | 	s64 count[MEM_CGROUP_STAT_NSTATS]; | 
 | } ____cacheline_aligned_in_smp; | 
 |  | 
 | struct mem_cgroup_stat { | 
 | 	struct mem_cgroup_stat_cpu cpustat[0]; | 
 | }; | 
 |  | 
 | static inline void | 
 | __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat, | 
 | 				enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	stat->count[idx] = 0; | 
 | } | 
 |  | 
 | static inline s64 | 
 | __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat, | 
 | 				enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	return stat->count[idx]; | 
 | } | 
 |  | 
 | /* | 
 |  * For accounting under irq disable, no need for increment preempt count. | 
 |  */ | 
 | static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, | 
 | 		enum mem_cgroup_stat_index idx, int val) | 
 | { | 
 | 	stat->count[idx] += val; | 
 | } | 
 |  | 
 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | 
 | 		enum mem_cgroup_stat_index idx) | 
 | { | 
 | 	int cpu; | 
 | 	s64 ret = 0; | 
 | 	for_each_possible_cpu(cpu) | 
 | 		ret += stat->cpustat[cpu].count[idx]; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) | 
 | { | 
 | 	s64 ret; | 
 |  | 
 | 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); | 
 | 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * per-zone information in memory controller. | 
 |  */ | 
 | struct mem_cgroup_per_zone { | 
 | 	/* | 
 | 	 * spin_lock to protect the per cgroup LRU | 
 | 	 */ | 
 | 	struct list_head	lists[NR_LRU_LISTS]; | 
 | 	unsigned long		count[NR_LRU_LISTS]; | 
 |  | 
 | 	struct zone_reclaim_stat reclaim_stat; | 
 | 	struct rb_node		tree_node;	/* RB tree node */ | 
 | 	unsigned long long	usage_in_excess;/* Set to the value by which */ | 
 | 						/* the soft limit is exceeded*/ | 
 | 	bool			on_tree; | 
 | 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */ | 
 | 						/* use container_of	   */ | 
 | }; | 
 | /* Macro for accessing counter */ | 
 | #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)]) | 
 |  | 
 | struct mem_cgroup_per_node { | 
 | 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_lru_info { | 
 | 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Cgroups above their limits are maintained in a RB-Tree, independent of | 
 |  * their hierarchy representation | 
 |  */ | 
 |  | 
 | struct mem_cgroup_tree_per_zone { | 
 | 	struct rb_root rb_root; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree_per_node { | 
 | 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | 
 | }; | 
 |  | 
 | struct mem_cgroup_tree { | 
 | 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
 | }; | 
 |  | 
 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
 |  | 
 | /* | 
 |  * The memory controller data structure. The memory controller controls both | 
 |  * page cache and RSS per cgroup. We would eventually like to provide | 
 |  * statistics based on the statistics developed by Rik Van Riel for clock-pro, | 
 |  * to help the administrator determine what knobs to tune. | 
 |  * | 
 |  * TODO: Add a water mark for the memory controller. Reclaim will begin when | 
 |  * we hit the water mark. May be even add a low water mark, such that | 
 |  * no reclaim occurs from a cgroup at it's low water mark, this is | 
 |  * a feature that will be implemented much later in the future. | 
 |  */ | 
 | struct mem_cgroup { | 
 | 	struct cgroup_subsys_state css; | 
 | 	/* | 
 | 	 * the counter to account for memory usage | 
 | 	 */ | 
 | 	struct res_counter res; | 
 | 	/* | 
 | 	 * the counter to account for mem+swap usage. | 
 | 	 */ | 
 | 	struct res_counter memsw; | 
 | 	/* | 
 | 	 * Per cgroup active and inactive list, similar to the | 
 | 	 * per zone LRU lists. | 
 | 	 */ | 
 | 	struct mem_cgroup_lru_info info; | 
 |  | 
 | 	/* | 
 | 	  protect against reclaim related member. | 
 | 	*/ | 
 | 	spinlock_t reclaim_param_lock; | 
 |  | 
 | 	int	prev_priority;	/* for recording reclaim priority */ | 
 |  | 
 | 	/* | 
 | 	 * While reclaiming in a hierarchy, we cache the last child we | 
 | 	 * reclaimed from. | 
 | 	 */ | 
 | 	int last_scanned_child; | 
 | 	/* | 
 | 	 * Should the accounting and control be hierarchical, per subtree? | 
 | 	 */ | 
 | 	bool use_hierarchy; | 
 | 	unsigned long	last_oom_jiffies; | 
 | 	atomic_t	refcnt; | 
 |  | 
 | 	unsigned int	swappiness; | 
 |  | 
 | 	/* set when res.limit == memsw.limit */ | 
 | 	bool		memsw_is_minimum; | 
 |  | 
 | 	/* | 
 | 	 * statistics. This must be placed at the end of memcg. | 
 | 	 */ | 
 | 	struct mem_cgroup_stat stat; | 
 | }; | 
 |  | 
 | /* | 
 |  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
 |  * limit reclaim to prevent infinite loops, if they ever occur. | 
 |  */ | 
 | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100) | 
 | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2) | 
 |  | 
 | enum charge_type { | 
 | 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
 | 	MEM_CGROUP_CHARGE_TYPE_MAPPED, | 
 | 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */ | 
 | 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */ | 
 | 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
 | 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
 | 	NR_CHARGE_TYPE, | 
 | }; | 
 |  | 
 | /* only for here (for easy reading.) */ | 
 | #define PCGF_CACHE	(1UL << PCG_CACHE) | 
 | #define PCGF_USED	(1UL << PCG_USED) | 
 | #define PCGF_LOCK	(1UL << PCG_LOCK) | 
 | /* Not used, but added here for completeness */ | 
 | #define PCGF_ACCT	(1UL << PCG_ACCT) | 
 |  | 
 | /* for encoding cft->private value on file */ | 
 | #define _MEM			(0) | 
 | #define _MEMSWAP		(1) | 
 | #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val)) | 
 | #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff) | 
 | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
 |  | 
 | /* | 
 |  * Reclaim flags for mem_cgroup_hierarchical_reclaim | 
 |  */ | 
 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0 | 
 | #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | 
 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1 | 
 | #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | 
 | #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2 | 
 | #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT) | 
 |  | 
 | static void mem_cgroup_get(struct mem_cgroup *mem); | 
 | static void mem_cgroup_put(struct mem_cgroup *mem); | 
 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); | 
 | static void drain_all_stock_async(void); | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | 
 | { | 
 | 	return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | 
 | } | 
 |  | 
 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) | 
 | { | 
 | 	return &mem->css; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | page_cgroup_zoneinfo(struct page_cgroup *pc) | 
 | { | 
 | 	struct mem_cgroup *mem = pc->mem_cgroup; | 
 | 	int nid = page_cgroup_nid(pc); | 
 | 	int zid = page_cgroup_zid(pc); | 
 |  | 
 | 	if (!mem) | 
 | 		return NULL; | 
 |  | 
 | 	return mem_cgroup_zoneinfo(mem, nid, zid); | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_zone * | 
 | soft_limit_tree_node_zone(int nid, int zid) | 
 | { | 
 | 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
 | } | 
 |  | 
 | static struct mem_cgroup_tree_per_zone * | 
 | soft_limit_tree_from_page(struct page *page) | 
 | { | 
 | 	int nid = page_to_nid(page); | 
 | 	int zid = page_zonenum(page); | 
 |  | 
 | 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz, | 
 | 				unsigned long long new_usage_in_excess) | 
 | { | 
 | 	struct rb_node **p = &mctz->rb_root.rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct mem_cgroup_per_zone *mz_node; | 
 |  | 
 | 	if (mz->on_tree) | 
 | 		return; | 
 |  | 
 | 	mz->usage_in_excess = new_usage_in_excess; | 
 | 	if (!mz->usage_in_excess) | 
 | 		return; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | 
 | 					tree_node); | 
 | 		if (mz->usage_in_excess < mz_node->usage_in_excess) | 
 | 			p = &(*p)->rb_left; | 
 | 		/* | 
 | 		 * We can't avoid mem cgroups that are over their soft | 
 | 		 * limit by the same amount | 
 | 		 */ | 
 | 		else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 | 	rb_link_node(&mz->tree_node, parent, p); | 
 | 	rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = true; | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	if (!mz->on_tree) | 
 | 		return; | 
 | 	rb_erase(&mz->tree_node, &mctz->rb_root); | 
 | 	mz->on_tree = false; | 
 | } | 
 |  | 
 | static void | 
 | mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | 
 | 				struct mem_cgroup_per_zone *mz, | 
 | 				struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	spin_lock(&mctz->lock); | 
 | 	__mem_cgroup_remove_exceeded(mem, mz, mctz); | 
 | 	spin_unlock(&mctz->lock); | 
 | } | 
 |  | 
 | static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem) | 
 | { | 
 | 	bool ret = false; | 
 | 	int cpu; | 
 | 	s64 val; | 
 | 	struct mem_cgroup_stat_cpu *cpustat; | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	cpustat = &mem->stat.cpustat[cpu]; | 
 | 	val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS); | 
 | 	if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) { | 
 | 		__mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS); | 
 | 		ret = true; | 
 | 	} | 
 | 	put_cpu(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) | 
 | { | 
 | 	unsigned long long excess; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 | 	int nid = page_to_nid(page); | 
 | 	int zid = page_zonenum(page); | 
 | 	mctz = soft_limit_tree_from_page(page); | 
 |  | 
 | 	/* | 
 | 	 * Necessary to update all ancestors when hierarchy is used. | 
 | 	 * because their event counter is not touched. | 
 | 	 */ | 
 | 	for (; mem; mem = parent_mem_cgroup(mem)) { | 
 | 		mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
 | 		excess = res_counter_soft_limit_excess(&mem->res); | 
 | 		/* | 
 | 		 * We have to update the tree if mz is on RB-tree or | 
 | 		 * mem is over its softlimit. | 
 | 		 */ | 
 | 		if (excess || mz->on_tree) { | 
 | 			spin_lock(&mctz->lock); | 
 | 			/* if on-tree, remove it */ | 
 | 			if (mz->on_tree) | 
 | 				__mem_cgroup_remove_exceeded(mem, mz, mctz); | 
 | 			/* | 
 | 			 * Insert again. mz->usage_in_excess will be updated. | 
 | 			 * If excess is 0, no tree ops. | 
 | 			 */ | 
 | 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess); | 
 | 			spin_unlock(&mctz->lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) | 
 | { | 
 | 	int node, zone; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) { | 
 | 		for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 			mz = mem_cgroup_zoneinfo(mem, node, zone); | 
 | 			mctz = soft_limit_tree_node_zone(node, zone); | 
 | 			mem_cgroup_remove_exceeded(mem, mz, mctz); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) | 
 | { | 
 | 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	struct rb_node *rightmost = NULL; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | retry: | 
 | 	mz = NULL; | 
 | 	rightmost = rb_last(&mctz->rb_root); | 
 | 	if (!rightmost) | 
 | 		goto done;		/* Nothing to reclaim from */ | 
 |  | 
 | 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | 
 | 	/* | 
 | 	 * Remove the node now but someone else can add it back, | 
 | 	 * we will to add it back at the end of reclaim to its correct | 
 | 	 * position in the tree. | 
 | 	 */ | 
 | 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | 
 | 	if (!res_counter_soft_limit_excess(&mz->mem->res) || | 
 | 		!css_tryget(&mz->mem->css)) | 
 | 		goto retry; | 
 | done: | 
 | 	return mz; | 
 | } | 
 |  | 
 | static struct mem_cgroup_per_zone * | 
 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	spin_lock(&mctz->lock); | 
 | 	mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
 | 	spin_unlock(&mctz->lock); | 
 | 	return mz; | 
 | } | 
 |  | 
 | static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, | 
 | 					 bool charge) | 
 | { | 
 | 	int val = (charge) ? 1 : -1; | 
 | 	struct mem_cgroup_stat *stat = &mem->stat; | 
 | 	struct mem_cgroup_stat_cpu *cpustat; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	cpustat = &stat->cpustat[cpu]; | 
 | 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, | 
 | 					 struct page_cgroup *pc, | 
 | 					 bool charge) | 
 | { | 
 | 	int val = (charge) ? 1 : -1; | 
 | 	struct mem_cgroup_stat *stat = &mem->stat; | 
 | 	struct mem_cgroup_stat_cpu *cpustat; | 
 | 	int cpu = get_cpu(); | 
 |  | 
 | 	cpustat = &stat->cpustat[cpu]; | 
 | 	if (PageCgroupCache(pc)) | 
 | 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); | 
 | 	else | 
 | 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); | 
 |  | 
 | 	if (charge) | 
 | 		__mem_cgroup_stat_add_safe(cpustat, | 
 | 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1); | 
 | 	else | 
 | 		__mem_cgroup_stat_add_safe(cpustat, | 
 | 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | 
 | 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, | 
 | 					enum lru_list idx) | 
 | { | 
 | 	int nid, zid; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	u64 total = 0; | 
 |  | 
 | 	for_each_online_node(nid) | 
 | 		for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 			mz = mem_cgroup_zoneinfo(mem, nid, zid); | 
 | 			total += MEM_CGROUP_ZSTAT(mz, idx); | 
 | 		} | 
 | 	return total; | 
 | } | 
 |  | 
 | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) | 
 | { | 
 | 	return container_of(cgroup_subsys_state(cont, | 
 | 				mem_cgroup_subsys_id), struct mem_cgroup, | 
 | 				css); | 
 | } | 
 |  | 
 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * mm_update_next_owner() may clear mm->owner to NULL | 
 | 	 * if it races with swapoff, page migration, etc. | 
 | 	 * So this can be called with p == NULL. | 
 | 	 */ | 
 | 	if (unlikely(!p)) | 
 | 		return NULL; | 
 |  | 
 | 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id), | 
 | 				struct mem_cgroup, css); | 
 | } | 
 |  | 
 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | 
 | { | 
 | 	struct mem_cgroup *mem = NULL; | 
 |  | 
 | 	if (!mm) | 
 | 		return NULL; | 
 | 	/* | 
 | 	 * Because we have no locks, mm->owner's may be being moved to other | 
 | 	 * cgroup. We use css_tryget() here even if this looks | 
 | 	 * pessimistic (rather than adding locks here). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	do { | 
 | 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
 | 		if (unlikely(!mem)) | 
 | 			break; | 
 | 	} while (!css_tryget(&mem->css)); | 
 | 	rcu_read_unlock(); | 
 | 	return mem; | 
 | } | 
 |  | 
 | /* | 
 |  * Call callback function against all cgroup under hierarchy tree. | 
 |  */ | 
 | static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, | 
 | 			  int (*func)(struct mem_cgroup *, void *)) | 
 | { | 
 | 	int found, ret, nextid; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	struct mem_cgroup *mem; | 
 |  | 
 | 	if (!root->use_hierarchy) | 
 | 		return (*func)(root, data); | 
 |  | 
 | 	nextid = 1; | 
 | 	do { | 
 | 		ret = 0; | 
 | 		mem = NULL; | 
 |  | 
 | 		rcu_read_lock(); | 
 | 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, | 
 | 				   &found); | 
 | 		if (css && css_tryget(css)) | 
 | 			mem = container_of(css, struct mem_cgroup, css); | 
 | 		rcu_read_unlock(); | 
 |  | 
 | 		if (mem) { | 
 | 			ret = (*func)(mem, data); | 
 | 			css_put(&mem->css); | 
 | 		} | 
 | 		nextid = found + 1; | 
 | 	} while (!ret && css); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) | 
 | { | 
 | 	return (mem == root_mem_cgroup); | 
 | } | 
 |  | 
 | /* | 
 |  * Following LRU functions are allowed to be used without PCG_LOCK. | 
 |  * Operations are called by routine of global LRU independently from memcg. | 
 |  * What we have to take care of here is validness of pc->mem_cgroup. | 
 |  * | 
 |  * Changes to pc->mem_cgroup happens when | 
 |  * 1. charge | 
 |  * 2. moving account | 
 |  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | 
 |  * It is added to LRU before charge. | 
 |  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | 
 |  * When moving account, the page is not on LRU. It's isolated. | 
 |  */ | 
 |  | 
 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* can happen while we handle swapcache. */ | 
 | 	if (!TestClearPageCgroupAcctLRU(pc)) | 
 | 		return; | 
 | 	VM_BUG_ON(!pc->mem_cgroup); | 
 | 	/* | 
 | 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally | 
 | 	 * removed from global LRU. | 
 | 	 */ | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	MEM_CGROUP_ZSTAT(mz, lru) -= 1; | 
 | 	if (mem_cgroup_is_root(pc->mem_cgroup)) | 
 | 		return; | 
 | 	VM_BUG_ON(list_empty(&pc->lru)); | 
 | 	list_del_init(&pc->lru); | 
 | 	return; | 
 | } | 
 |  | 
 | void mem_cgroup_del_lru(struct page *page) | 
 | { | 
 | 	mem_cgroup_del_lru_list(page, page_lru(page)); | 
 | } | 
 |  | 
 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) | 
 | { | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* | 
 | 	 * Used bit is set without atomic ops but after smp_wmb(). | 
 | 	 * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	/* unused or root page is not rotated. */ | 
 | 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) | 
 | 		return; | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	list_move(&pc->lru, &mz->lists[lru]); | 
 | } | 
 |  | 
 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	VM_BUG_ON(PageCgroupAcctLRU(pc)); | 
 | 	/* | 
 | 	 * Used bit is set without atomic ops but after smp_wmb(). | 
 | 	 * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		return; | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	MEM_CGROUP_ZSTAT(mz, lru) += 1; | 
 | 	SetPageCgroupAcctLRU(pc); | 
 | 	if (mem_cgroup_is_root(pc->mem_cgroup)) | 
 | 		return; | 
 | 	list_add(&pc->lru, &mz->lists[lru]); | 
 | } | 
 |  | 
 | /* | 
 |  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to | 
 |  * lru because the page may.be reused after it's fully uncharged (because of | 
 |  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | 
 |  * it again. This function is only used to charge SwapCache. It's done under | 
 |  * lock_page and expected that zone->lru_lock is never held. | 
 |  */ | 
 | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct page_cgroup *pc = lookup_page_cgroup(page); | 
 |  | 
 | 	spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 	/* | 
 | 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit | 
 | 	 * is guarded by lock_page() because the page is SwapCache. | 
 | 	 */ | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		mem_cgroup_del_lru_list(page, page_lru(page)); | 
 | 	spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | } | 
 |  | 
 | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct page_cgroup *pc = lookup_page_cgroup(page); | 
 |  | 
 | 	spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 	/* link when the page is linked to LRU but page_cgroup isn't */ | 
 | 	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) | 
 | 		mem_cgroup_add_lru_list(page, page_lru(page)); | 
 | 	spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | } | 
 |  | 
 |  | 
 | void mem_cgroup_move_lists(struct page *page, | 
 | 			   enum lru_list from, enum lru_list to) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	mem_cgroup_del_lru_list(page, from); | 
 | 	mem_cgroup_add_lru_list(page, to); | 
 | } | 
 |  | 
 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | 
 | { | 
 | 	int ret; | 
 | 	struct mem_cgroup *curr = NULL; | 
 |  | 
 | 	task_lock(task); | 
 | 	rcu_read_lock(); | 
 | 	curr = try_get_mem_cgroup_from_mm(task->mm); | 
 | 	rcu_read_unlock(); | 
 | 	task_unlock(task); | 
 | 	if (!curr) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * We should check use_hierarchy of "mem" not "curr". Because checking | 
 | 	 * use_hierarchy of "curr" here make this function true if hierarchy is | 
 | 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* | 
 | 	 * hierarchy(even if use_hierarchy is disabled in "mem"). | 
 | 	 */ | 
 | 	if (mem->use_hierarchy) | 
 | 		ret = css_is_ancestor(&curr->css, &mem->css); | 
 | 	else | 
 | 		ret = (curr == mem); | 
 | 	css_put(&curr->css); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * prev_priority control...this will be used in memory reclaim path. | 
 |  */ | 
 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | 
 | { | 
 | 	int prev_priority; | 
 |  | 
 | 	spin_lock(&mem->reclaim_param_lock); | 
 | 	prev_priority = mem->prev_priority; | 
 | 	spin_unlock(&mem->reclaim_param_lock); | 
 |  | 
 | 	return prev_priority; | 
 | } | 
 |  | 
 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | 
 | { | 
 | 	spin_lock(&mem->reclaim_param_lock); | 
 | 	if (priority < mem->prev_priority) | 
 | 		mem->prev_priority = priority; | 
 | 	spin_unlock(&mem->reclaim_param_lock); | 
 | } | 
 |  | 
 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | 
 | { | 
 | 	spin_lock(&mem->reclaim_param_lock); | 
 | 	mem->prev_priority = priority; | 
 | 	spin_unlock(&mem->reclaim_param_lock); | 
 | } | 
 |  | 
 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) | 
 | { | 
 | 	unsigned long active; | 
 | 	unsigned long inactive; | 
 | 	unsigned long gb; | 
 | 	unsigned long inactive_ratio; | 
 |  | 
 | 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); | 
 | 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); | 
 |  | 
 | 	gb = (inactive + active) >> (30 - PAGE_SHIFT); | 
 | 	if (gb) | 
 | 		inactive_ratio = int_sqrt(10 * gb); | 
 | 	else | 
 | 		inactive_ratio = 1; | 
 |  | 
 | 	if (present_pages) { | 
 | 		present_pages[0] = inactive; | 
 | 		present_pages[1] = active; | 
 | 	} | 
 |  | 
 | 	return inactive_ratio; | 
 | } | 
 |  | 
 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long active; | 
 | 	unsigned long inactive; | 
 | 	unsigned long present_pages[2]; | 
 | 	unsigned long inactive_ratio; | 
 |  | 
 | 	inactive_ratio = calc_inactive_ratio(memcg, present_pages); | 
 |  | 
 | 	inactive = present_pages[0]; | 
 | 	active = present_pages[1]; | 
 |  | 
 | 	if (inactive * inactive_ratio < active) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) | 
 | { | 
 | 	unsigned long active; | 
 | 	unsigned long inactive; | 
 |  | 
 | 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); | 
 | 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); | 
 |  | 
 | 	return (active > inactive); | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | 
 | 				       struct zone *zone, | 
 | 				       enum lru_list lru) | 
 | { | 
 | 	int nid = zone->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
 |  | 
 | 	return MEM_CGROUP_ZSTAT(mz, lru); | 
 | } | 
 |  | 
 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | 
 | 						      struct zone *zone) | 
 | { | 
 | 	int nid = zone->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(zone); | 
 | 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 
 |  | 
 | 	return &mz->reclaim_stat; | 
 | } | 
 |  | 
 | struct zone_reclaim_stat * | 
 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* | 
 | 	 * Used bit is set without atomic ops but after smp_wmb(). | 
 | 	 * For making pc->mem_cgroup visible, insert smp_rmb() here. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		return NULL; | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	if (!mz) | 
 | 		return NULL; | 
 |  | 
 | 	return &mz->reclaim_stat; | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | 
 | 					struct list_head *dst, | 
 | 					unsigned long *scanned, int order, | 
 | 					int mode, struct zone *z, | 
 | 					struct mem_cgroup *mem_cont, | 
 | 					int active, int file) | 
 | { | 
 | 	unsigned long nr_taken = 0; | 
 | 	struct page *page; | 
 | 	unsigned long scan; | 
 | 	LIST_HEAD(pc_list); | 
 | 	struct list_head *src; | 
 | 	struct page_cgroup *pc, *tmp; | 
 | 	int nid = z->zone_pgdat->node_id; | 
 | 	int zid = zone_idx(z); | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	int lru = LRU_FILE * file + active; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!mem_cont); | 
 | 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
 | 	src = &mz->lists[lru]; | 
 |  | 
 | 	scan = 0; | 
 | 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | 
 | 		if (scan >= nr_to_scan) | 
 | 			break; | 
 |  | 
 | 		page = pc->page; | 
 | 		if (unlikely(!PageCgroupUsed(pc))) | 
 | 			continue; | 
 | 		if (unlikely(!PageLRU(page))) | 
 | 			continue; | 
 |  | 
 | 		scan++; | 
 | 		ret = __isolate_lru_page(page, mode, file); | 
 | 		switch (ret) { | 
 | 		case 0: | 
 | 			list_move(&page->lru, dst); | 
 | 			mem_cgroup_del_lru(page); | 
 | 			nr_taken++; | 
 | 			break; | 
 | 		case -EBUSY: | 
 | 			/* we don't affect global LRU but rotate in our LRU */ | 
 | 			mem_cgroup_rotate_lru_list(page, page_lru(page)); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*scanned = scan; | 
 | 	return nr_taken; | 
 | } | 
 |  | 
 | #define mem_cgroup_from_res_counter(counter, member)	\ | 
 | 	container_of(counter, struct mem_cgroup, member) | 
 |  | 
 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) | 
 | { | 
 | 	if (do_swap_account) { | 
 | 		if (res_counter_check_under_limit(&mem->res) && | 
 | 			res_counter_check_under_limit(&mem->memsw)) | 
 | 			return true; | 
 | 	} else | 
 | 		if (res_counter_check_under_limit(&mem->res)) | 
 | 			return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static unsigned int get_swappiness(struct mem_cgroup *memcg) | 
 | { | 
 | 	struct cgroup *cgrp = memcg->css.cgroup; | 
 | 	unsigned int swappiness; | 
 |  | 
 | 	/* root ? */ | 
 | 	if (cgrp->parent == NULL) | 
 | 		return vm_swappiness; | 
 |  | 
 | 	spin_lock(&memcg->reclaim_param_lock); | 
 | 	swappiness = memcg->swappiness; | 
 | 	spin_unlock(&memcg->reclaim_param_lock); | 
 |  | 
 | 	return swappiness; | 
 | } | 
 |  | 
 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | 
 | { | 
 | 	int *val = data; | 
 | 	(*val)++; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. | 
 |  * @memcg: The memory cgroup that went over limit | 
 |  * @p: Task that is going to be killed | 
 |  * | 
 |  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
 |  * enabled | 
 |  */ | 
 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 
 | { | 
 | 	struct cgroup *task_cgrp; | 
 | 	struct cgroup *mem_cgrp; | 
 | 	/* | 
 | 	 * Need a buffer in BSS, can't rely on allocations. The code relies | 
 | 	 * on the assumption that OOM is serialized for memory controller. | 
 | 	 * If this assumption is broken, revisit this code. | 
 | 	 */ | 
 | 	static char memcg_name[PATH_MAX]; | 
 | 	int ret; | 
 |  | 
 | 	if (!memcg || !p) | 
 | 		return; | 
 |  | 
 |  | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	mem_cgrp = memcg->css.cgroup; | 
 | 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | 
 |  | 
 | 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | 
 | 	if (ret < 0) { | 
 | 		/* | 
 | 		 * Unfortunately, we are unable to convert to a useful name | 
 | 		 * But we'll still print out the usage information | 
 | 		 */ | 
 | 		rcu_read_unlock(); | 
 | 		goto done; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	printk(KERN_INFO "Task in %s killed", memcg_name); | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | 
 | 	if (ret < 0) { | 
 | 		rcu_read_unlock(); | 
 | 		goto done; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	/* | 
 | 	 * Continues from above, so we don't need an KERN_ level | 
 | 	 */ | 
 | 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | 
 | done: | 
 |  | 
 | 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", | 
 | 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | 
 | 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | 
 | 		res_counter_read_u64(&memcg->res, RES_FAILCNT)); | 
 | 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " | 
 | 		"failcnt %llu\n", | 
 | 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | 
 | 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | 
 | 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | 
 | } | 
 |  | 
 | /* | 
 |  * This function returns the number of memcg under hierarchy tree. Returns | 
 |  * 1(self count) if no children. | 
 |  */ | 
 | static int mem_cgroup_count_children(struct mem_cgroup *mem) | 
 | { | 
 | 	int num = 0; | 
 |  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); | 
 | 	return num; | 
 | } | 
 |  | 
 | /* | 
 |  * Visit the first child (need not be the first child as per the ordering | 
 |  * of the cgroup list, since we track last_scanned_child) of @mem and use | 
 |  * that to reclaim free pages from. | 
 |  */ | 
 | static struct mem_cgroup * | 
 | mem_cgroup_select_victim(struct mem_cgroup *root_mem) | 
 | { | 
 | 	struct mem_cgroup *ret = NULL; | 
 | 	struct cgroup_subsys_state *css; | 
 | 	int nextid, found; | 
 |  | 
 | 	if (!root_mem->use_hierarchy) { | 
 | 		css_get(&root_mem->css); | 
 | 		ret = root_mem; | 
 | 	} | 
 |  | 
 | 	while (!ret) { | 
 | 		rcu_read_lock(); | 
 | 		nextid = root_mem->last_scanned_child + 1; | 
 | 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, | 
 | 				   &found); | 
 | 		if (css && css_tryget(css)) | 
 | 			ret = container_of(css, struct mem_cgroup, css); | 
 |  | 
 | 		rcu_read_unlock(); | 
 | 		/* Updates scanning parameter */ | 
 | 		spin_lock(&root_mem->reclaim_param_lock); | 
 | 		if (!css) { | 
 | 			/* this means start scan from ID:1 */ | 
 | 			root_mem->last_scanned_child = 0; | 
 | 		} else | 
 | 			root_mem->last_scanned_child = found; | 
 | 		spin_unlock(&root_mem->reclaim_param_lock); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Scan the hierarchy if needed to reclaim memory. We remember the last child | 
 |  * we reclaimed from, so that we don't end up penalizing one child extensively | 
 |  * based on its position in the children list. | 
 |  * | 
 |  * root_mem is the original ancestor that we've been reclaim from. | 
 |  * | 
 |  * We give up and return to the caller when we visit root_mem twice. | 
 |  * (other groups can be removed while we're walking....) | 
 |  * | 
 |  * If shrink==true, for avoiding to free too much, this returns immedieately. | 
 |  */ | 
 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | 
 | 						struct zone *zone, | 
 | 						gfp_t gfp_mask, | 
 | 						unsigned long reclaim_options) | 
 | { | 
 | 	struct mem_cgroup *victim; | 
 | 	int ret, total = 0; | 
 | 	int loop = 0; | 
 | 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; | 
 | 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; | 
 | 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; | 
 | 	unsigned long excess = mem_cgroup_get_excess(root_mem); | 
 |  | 
 | 	/* If memsw_is_minimum==1, swap-out is of-no-use. */ | 
 | 	if (root_mem->memsw_is_minimum) | 
 | 		noswap = true; | 
 |  | 
 | 	while (1) { | 
 | 		victim = mem_cgroup_select_victim(root_mem); | 
 | 		if (victim == root_mem) { | 
 | 			loop++; | 
 | 			if (loop >= 1) | 
 | 				drain_all_stock_async(); | 
 | 			if (loop >= 2) { | 
 | 				/* | 
 | 				 * If we have not been able to reclaim | 
 | 				 * anything, it might because there are | 
 | 				 * no reclaimable pages under this hierarchy | 
 | 				 */ | 
 | 				if (!check_soft || !total) { | 
 | 					css_put(&victim->css); | 
 | 					break; | 
 | 				} | 
 | 				/* | 
 | 				 * We want to do more targetted reclaim. | 
 | 				 * excess >> 2 is not to excessive so as to | 
 | 				 * reclaim too much, nor too less that we keep | 
 | 				 * coming back to reclaim from this cgroup | 
 | 				 */ | 
 | 				if (total >= (excess >> 2) || | 
 | 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { | 
 | 					css_put(&victim->css); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		if (!mem_cgroup_local_usage(&victim->stat)) { | 
 | 			/* this cgroup's local usage == 0 */ | 
 | 			css_put(&victim->css); | 
 | 			continue; | 
 | 		} | 
 | 		/* we use swappiness of local cgroup */ | 
 | 		if (check_soft) | 
 | 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | 
 | 				noswap, get_swappiness(victim), zone, | 
 | 				zone->zone_pgdat->node_id); | 
 | 		else | 
 | 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | 
 | 						noswap, get_swappiness(victim)); | 
 | 		css_put(&victim->css); | 
 | 		/* | 
 | 		 * At shrinking usage, we can't check we should stop here or | 
 | 		 * reclaim more. It's depends on callers. last_scanned_child | 
 | 		 * will work enough for keeping fairness under tree. | 
 | 		 */ | 
 | 		if (shrink) | 
 | 			return ret; | 
 | 		total += ret; | 
 | 		if (check_soft) { | 
 | 			if (res_counter_check_under_soft_limit(&root_mem->res)) | 
 | 				return total; | 
 | 		} else if (mem_cgroup_check_under_limit(root_mem)) | 
 | 			return 1 + total; | 
 | 	} | 
 | 	return total; | 
 | } | 
 |  | 
 | bool mem_cgroup_oom_called(struct task_struct *task) | 
 | { | 
 | 	bool ret = false; | 
 | 	struct mem_cgroup *mem; | 
 | 	struct mm_struct *mm; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	mm = task->mm; | 
 | 	if (!mm) | 
 | 		mm = &init_mm; | 
 | 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
 | 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) | 
 | 		ret = true; | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int record_last_oom_cb(struct mem_cgroup *mem, void *data) | 
 | { | 
 | 	mem->last_oom_jiffies = jiffies; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void record_last_oom(struct mem_cgroup *mem) | 
 | { | 
 | 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); | 
 | } | 
 |  | 
 | /* | 
 |  * Currently used to update mapped file statistics, but the routine can be | 
 |  * generalized to update other statistics as well. | 
 |  */ | 
 | void mem_cgroup_update_file_mapped(struct page *page, int val) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	struct mem_cgroup_stat *stat; | 
 | 	struct mem_cgroup_stat_cpu *cpustat; | 
 | 	int cpu; | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	if (unlikely(!pc)) | 
 | 		return; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 | 	mem = pc->mem_cgroup; | 
 | 	if (!mem) | 
 | 		goto done; | 
 |  | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		goto done; | 
 |  | 
 | 	/* | 
 | 	 * Preemption is already disabled, we don't need get_cpu() | 
 | 	 */ | 
 | 	cpu = smp_processor_id(); | 
 | 	stat = &mem->stat; | 
 | 	cpustat = &stat->cpustat[cpu]; | 
 |  | 
 | 	__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val); | 
 | done: | 
 | 	unlock_page_cgroup(pc); | 
 | } | 
 |  | 
 | /* | 
 |  * size of first charge trial. "32" comes from vmscan.c's magic value. | 
 |  * TODO: maybe necessary to use big numbers in big irons. | 
 |  */ | 
 | #define CHARGE_SIZE	(32 * PAGE_SIZE) | 
 | struct memcg_stock_pcp { | 
 | 	struct mem_cgroup *cached; /* this never be root cgroup */ | 
 | 	int charge; | 
 | 	struct work_struct work; | 
 | }; | 
 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
 | static atomic_t memcg_drain_count; | 
 |  | 
 | /* | 
 |  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed | 
 |  * from local stock and true is returned. If the stock is 0 or charges from a | 
 |  * cgroup which is not current target, returns false. This stock will be | 
 |  * refilled. | 
 |  */ | 
 | static bool consume_stock(struct mem_cgroup *mem) | 
 | { | 
 | 	struct memcg_stock_pcp *stock; | 
 | 	bool ret = true; | 
 |  | 
 | 	stock = &get_cpu_var(memcg_stock); | 
 | 	if (mem == stock->cached && stock->charge) | 
 | 		stock->charge -= PAGE_SIZE; | 
 | 	else /* need to call res_counter_charge */ | 
 | 		ret = false; | 
 | 	put_cpu_var(memcg_stock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns stocks cached in percpu to res_counter and reset cached information. | 
 |  */ | 
 | static void drain_stock(struct memcg_stock_pcp *stock) | 
 | { | 
 | 	struct mem_cgroup *old = stock->cached; | 
 |  | 
 | 	if (stock->charge) { | 
 | 		res_counter_uncharge(&old->res, stock->charge); | 
 | 		if (do_swap_account) | 
 | 			res_counter_uncharge(&old->memsw, stock->charge); | 
 | 	} | 
 | 	stock->cached = NULL; | 
 | 	stock->charge = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called under preempt disabled or must be called by | 
 |  * a thread which is pinned to local cpu. | 
 |  */ | 
 | static void drain_local_stock(struct work_struct *dummy) | 
 | { | 
 | 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | 
 | 	drain_stock(stock); | 
 | } | 
 |  | 
 | /* | 
 |  * Cache charges(val) which is from res_counter, to local per_cpu area. | 
 |  * This will be consumed by consumt_stock() function, later. | 
 |  */ | 
 | static void refill_stock(struct mem_cgroup *mem, int val) | 
 | { | 
 | 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | 
 |  | 
 | 	if (stock->cached != mem) { /* reset if necessary */ | 
 | 		drain_stock(stock); | 
 | 		stock->cached = mem; | 
 | 	} | 
 | 	stock->charge += val; | 
 | 	put_cpu_var(memcg_stock); | 
 | } | 
 |  | 
 | /* | 
 |  * Tries to drain stocked charges in other cpus. This function is asynchronous | 
 |  * and just put a work per cpu for draining localy on each cpu. Caller can | 
 |  * expects some charges will be back to res_counter later but cannot wait for | 
 |  * it. | 
 |  */ | 
 | static void drain_all_stock_async(void) | 
 | { | 
 | 	int cpu; | 
 | 	/* This function is for scheduling "drain" in asynchronous way. | 
 | 	 * The result of "drain" is not directly handled by callers. Then, | 
 | 	 * if someone is calling drain, we don't have to call drain more. | 
 | 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if | 
 | 	 * there is a race. We just do loose check here. | 
 | 	 */ | 
 | 	if (atomic_read(&memcg_drain_count)) | 
 | 		return; | 
 | 	/* Notify other cpus that system-wide "drain" is running */ | 
 | 	atomic_inc(&memcg_drain_count); | 
 | 	get_online_cpus(); | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
 | 		schedule_work_on(cpu, &stock->work); | 
 | 	} | 
 |  	put_online_cpus(); | 
 | 	atomic_dec(&memcg_drain_count); | 
 | 	/* We don't wait for flush_work */ | 
 | } | 
 |  | 
 | /* This is a synchronous drain interface. */ | 
 | static void drain_all_stock_sync(void) | 
 | { | 
 | 	/* called when force_empty is called */ | 
 | 	atomic_inc(&memcg_drain_count); | 
 | 	schedule_on_each_cpu(drain_local_stock); | 
 | 	atomic_dec(&memcg_drain_count); | 
 | } | 
 |  | 
 | static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | 
 | 					unsigned long action, | 
 | 					void *hcpu) | 
 | { | 
 | 	int cpu = (unsigned long)hcpu; | 
 | 	struct memcg_stock_pcp *stock; | 
 |  | 
 | 	if (action != CPU_DEAD) | 
 | 		return NOTIFY_OK; | 
 | 	stock = &per_cpu(memcg_stock, cpu); | 
 | 	drain_stock(stock); | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | /* | 
 |  * Unlike exported interface, "oom" parameter is added. if oom==true, | 
 |  * oom-killer can be invoked. | 
 |  */ | 
 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 
 | 			gfp_t gfp_mask, struct mem_cgroup **memcg, | 
 | 			bool oom, struct page *page) | 
 | { | 
 | 	struct mem_cgroup *mem, *mem_over_limit; | 
 | 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct res_counter *fail_res; | 
 | 	int csize = CHARGE_SIZE; | 
 |  | 
 | 	if (unlikely(test_thread_flag(TIF_MEMDIE))) { | 
 | 		/* Don't account this! */ | 
 | 		*memcg = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We always charge the cgroup the mm_struct belongs to. | 
 | 	 * The mm_struct's mem_cgroup changes on task migration if the | 
 | 	 * thread group leader migrates. It's possible that mm is not | 
 | 	 * set, if so charge the init_mm (happens for pagecache usage). | 
 | 	 */ | 
 | 	mem = *memcg; | 
 | 	if (likely(!mem)) { | 
 | 		mem = try_get_mem_cgroup_from_mm(mm); | 
 | 		*memcg = mem; | 
 | 	} else { | 
 | 		css_get(&mem->css); | 
 | 	} | 
 | 	if (unlikely(!mem)) | 
 | 		return 0; | 
 |  | 
 | 	VM_BUG_ON(css_is_removed(&mem->css)); | 
 | 	if (mem_cgroup_is_root(mem)) | 
 | 		goto done; | 
 |  | 
 | 	while (1) { | 
 | 		int ret = 0; | 
 | 		unsigned long flags = 0; | 
 |  | 
 | 		if (consume_stock(mem)) | 
 | 			goto charged; | 
 |  | 
 | 		ret = res_counter_charge(&mem->res, csize, &fail_res); | 
 | 		if (likely(!ret)) { | 
 | 			if (!do_swap_account) | 
 | 				break; | 
 | 			ret = res_counter_charge(&mem->memsw, csize, &fail_res); | 
 | 			if (likely(!ret)) | 
 | 				break; | 
 | 			/* mem+swap counter fails */ | 
 | 			res_counter_uncharge(&mem->res, csize); | 
 | 			flags |= MEM_CGROUP_RECLAIM_NOSWAP; | 
 | 			mem_over_limit = mem_cgroup_from_res_counter(fail_res, | 
 | 									memsw); | 
 | 		} else | 
 | 			/* mem counter fails */ | 
 | 			mem_over_limit = mem_cgroup_from_res_counter(fail_res, | 
 | 									res); | 
 |  | 
 | 		/* reduce request size and retry */ | 
 | 		if (csize > PAGE_SIZE) { | 
 | 			csize = PAGE_SIZE; | 
 | 			continue; | 
 | 		} | 
 | 		if (!(gfp_mask & __GFP_WAIT)) | 
 | 			goto nomem; | 
 |  | 
 | 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | 
 | 						gfp_mask, flags); | 
 | 		if (ret) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * try_to_free_mem_cgroup_pages() might not give us a full | 
 | 		 * picture of reclaim. Some pages are reclaimed and might be | 
 | 		 * moved to swap cache or just unmapped from the cgroup. | 
 | 		 * Check the limit again to see if the reclaim reduced the | 
 | 		 * current usage of the cgroup before giving up | 
 | 		 * | 
 | 		 */ | 
 | 		if (mem_cgroup_check_under_limit(mem_over_limit)) | 
 | 			continue; | 
 |  | 
 | 		if (!nr_retries--) { | 
 | 			if (oom) { | 
 | 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); | 
 | 				record_last_oom(mem_over_limit); | 
 | 			} | 
 | 			goto nomem; | 
 | 		} | 
 | 	} | 
 | 	if (csize > PAGE_SIZE) | 
 | 		refill_stock(mem, csize - PAGE_SIZE); | 
 | charged: | 
 | 	/* | 
 | 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | 
 | 	 * if they exceeds softlimit. | 
 | 	 */ | 
 | 	if (mem_cgroup_soft_limit_check(mem)) | 
 | 		mem_cgroup_update_tree(mem, page); | 
 | done: | 
 | 	return 0; | 
 | nomem: | 
 | 	css_put(&mem->css); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Somemtimes we have to undo a charge we got by try_charge(). | 
 |  * This function is for that and do uncharge, put css's refcnt. | 
 |  * gotten by try_charge(). | 
 |  */ | 
 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) | 
 | { | 
 | 	if (!mem_cgroup_is_root(mem)) { | 
 | 		res_counter_uncharge(&mem->res, PAGE_SIZE); | 
 | 		if (do_swap_account) | 
 | 			res_counter_uncharge(&mem->memsw, PAGE_SIZE); | 
 | 	} | 
 | 	css_put(&mem->css); | 
 | } | 
 |  | 
 | /* | 
 |  * A helper function to get mem_cgroup from ID. must be called under | 
 |  * rcu_read_lock(). The caller must check css_is_removed() or some if | 
 |  * it's concern. (dropping refcnt from swap can be called against removed | 
 |  * memcg.) | 
 |  */ | 
 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | 
 | { | 
 | 	struct cgroup_subsys_state *css; | 
 |  | 
 | 	/* ID 0 is unused ID */ | 
 | 	if (!id) | 
 | 		return NULL; | 
 | 	css = css_lookup(&mem_cgroup_subsys, id); | 
 | 	if (!css) | 
 | 		return NULL; | 
 | 	return container_of(css, struct mem_cgroup, css); | 
 | } | 
 |  | 
 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) | 
 | { | 
 | 	struct mem_cgroup *mem = NULL; | 
 | 	struct page_cgroup *pc; | 
 | 	unsigned short id; | 
 | 	swp_entry_t ent; | 
 |  | 
 | 	VM_BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		mem = pc->mem_cgroup; | 
 | 		if (mem && !css_tryget(&mem->css)) | 
 | 			mem = NULL; | 
 | 	} else if (PageSwapCache(page)) { | 
 | 		ent.val = page_private(page); | 
 | 		id = lookup_swap_cgroup(ent); | 
 | 		rcu_read_lock(); | 
 | 		mem = mem_cgroup_lookup(id); | 
 | 		if (mem && !css_tryget(&mem->css)) | 
 | 			mem = NULL; | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 | 	return mem; | 
 | } | 
 |  | 
 | /* | 
 |  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be | 
 |  * USED state. If already USED, uncharge and return. | 
 |  */ | 
 |  | 
 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | 
 | 				     struct page_cgroup *pc, | 
 | 				     enum charge_type ctype) | 
 | { | 
 | 	/* try_charge() can return NULL to *memcg, taking care of it. */ | 
 | 	if (!mem) | 
 | 		return; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 | 	if (unlikely(PageCgroupUsed(pc))) { | 
 | 		unlock_page_cgroup(pc); | 
 | 		mem_cgroup_cancel_charge(mem); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pc->mem_cgroup = mem; | 
 | 	/* | 
 | 	 * We access a page_cgroup asynchronously without lock_page_cgroup(). | 
 | 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | 
 | 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible | 
 | 	 * before USED bit, we need memory barrier here. | 
 | 	 * See mem_cgroup_add_lru_list(), etc. | 
 |  	 */ | 
 | 	smp_wmb(); | 
 | 	switch (ctype) { | 
 | 	case MEM_CGROUP_CHARGE_TYPE_CACHE: | 
 | 	case MEM_CGROUP_CHARGE_TYPE_SHMEM: | 
 | 		SetPageCgroupCache(pc); | 
 | 		SetPageCgroupUsed(pc); | 
 | 		break; | 
 | 	case MEM_CGROUP_CHARGE_TYPE_MAPPED: | 
 | 		ClearPageCgroupCache(pc); | 
 | 		SetPageCgroupUsed(pc); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	mem_cgroup_charge_statistics(mem, pc, true); | 
 |  | 
 | 	unlock_page_cgroup(pc); | 
 | } | 
 |  | 
 | /** | 
 |  * __mem_cgroup_move_account - move account of the page | 
 |  * @pc:	page_cgroup of the page. | 
 |  * @from: mem_cgroup which the page is moved from. | 
 |  * @to:	mem_cgroup which the page is moved to. @from != @to. | 
 |  * | 
 |  * The caller must confirm following. | 
 |  * - page is not on LRU (isolate_page() is useful.) | 
 |  * - the pc is locked, used, and ->mem_cgroup points to @from. | 
 |  * | 
 |  * This function does "uncharge" from old cgroup but doesn't do "charge" to | 
 |  * new cgroup. It should be done by a caller. | 
 |  */ | 
 |  | 
 | static void __mem_cgroup_move_account(struct page_cgroup *pc, | 
 | 	struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	struct page *page; | 
 | 	int cpu; | 
 | 	struct mem_cgroup_stat *stat; | 
 | 	struct mem_cgroup_stat_cpu *cpustat; | 
 |  | 
 | 	VM_BUG_ON(from == to); | 
 | 	VM_BUG_ON(PageLRU(pc->page)); | 
 | 	VM_BUG_ON(!PageCgroupLocked(pc)); | 
 | 	VM_BUG_ON(!PageCgroupUsed(pc)); | 
 | 	VM_BUG_ON(pc->mem_cgroup != from); | 
 |  | 
 | 	if (!mem_cgroup_is_root(from)) | 
 | 		res_counter_uncharge(&from->res, PAGE_SIZE); | 
 | 	mem_cgroup_charge_statistics(from, pc, false); | 
 |  | 
 | 	page = pc->page; | 
 | 	if (page_mapped(page) && !PageAnon(page)) { | 
 | 		cpu = smp_processor_id(); | 
 | 		/* Update mapped_file data for mem_cgroup "from" */ | 
 | 		stat = &from->stat; | 
 | 		cpustat = &stat->cpustat[cpu]; | 
 | 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, | 
 | 						-1); | 
 |  | 
 | 		/* Update mapped_file data for mem_cgroup "to" */ | 
 | 		stat = &to->stat; | 
 | 		cpustat = &stat->cpustat[cpu]; | 
 | 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, | 
 | 						1); | 
 | 	} | 
 |  | 
 | 	if (do_swap_account && !mem_cgroup_is_root(from)) | 
 | 		res_counter_uncharge(&from->memsw, PAGE_SIZE); | 
 | 	css_put(&from->css); | 
 |  | 
 | 	css_get(&to->css); | 
 | 	pc->mem_cgroup = to; | 
 | 	mem_cgroup_charge_statistics(to, pc, true); | 
 | 	/* | 
 | 	 * We charges against "to" which may not have any tasks. Then, "to" | 
 | 	 * can be under rmdir(). But in current implementation, caller of | 
 | 	 * this function is just force_empty() and it's garanteed that | 
 | 	 * "to" is never removed. So, we don't check rmdir status here. | 
 | 	 */ | 
 | } | 
 |  | 
 | /* | 
 |  * check whether the @pc is valid for moving account and call | 
 |  * __mem_cgroup_move_account() | 
 |  */ | 
 | static int mem_cgroup_move_account(struct page_cgroup *pc, | 
 | 				struct mem_cgroup *from, struct mem_cgroup *to) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { | 
 | 		__mem_cgroup_move_account(pc, from, to); | 
 | 		ret = 0; | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * move charges to its parent. | 
 |  */ | 
 |  | 
 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | 
 | 				  struct mem_cgroup *child, | 
 | 				  gfp_t gfp_mask) | 
 | { | 
 | 	struct page *page = pc->page; | 
 | 	struct cgroup *cg = child->css.cgroup; | 
 | 	struct cgroup *pcg = cg->parent; | 
 | 	struct mem_cgroup *parent; | 
 | 	int ret; | 
 |  | 
 | 	/* Is ROOT ? */ | 
 | 	if (!pcg) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = -EBUSY; | 
 | 	if (!get_page_unless_zero(page)) | 
 | 		goto out; | 
 | 	if (isolate_lru_page(page)) | 
 | 		goto put; | 
 |  | 
 | 	parent = mem_cgroup_from_cont(pcg); | 
 | 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page); | 
 | 	if (ret || !parent) | 
 | 		goto put_back; | 
 |  | 
 | 	ret = mem_cgroup_move_account(pc, child, parent); | 
 | 	if (!ret) | 
 | 		css_put(&parent->css);	/* drop extra refcnt by try_charge() */ | 
 | 	else | 
 | 		mem_cgroup_cancel_charge(parent);	/* does css_put */ | 
 | put_back: | 
 | 	putback_lru_page(page); | 
 | put: | 
 | 	put_page(page); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Charge the memory controller for page usage. | 
 |  * Return | 
 |  * 0 if the charge was successful | 
 |  * < 0 if the cgroup is over its limit | 
 |  */ | 
 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask, enum charge_type ctype, | 
 | 				struct mem_cgroup *memcg) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	struct page_cgroup *pc; | 
 | 	int ret; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	/* can happen at boot */ | 
 | 	if (unlikely(!pc)) | 
 | 		return 0; | 
 | 	prefetchw(pc); | 
 |  | 
 | 	mem = memcg; | 
 | 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page); | 
 | 	if (ret || !mem) | 
 | 		return ret; | 
 |  | 
 | 	__mem_cgroup_commit_charge(mem, pc, ctype); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int mem_cgroup_newpage_charge(struct page *page, | 
 | 			      struct mm_struct *mm, gfp_t gfp_mask) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 | 	if (PageCompound(page)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * If already mapped, we don't have to account. | 
 | 	 * If page cache, page->mapping has address_space. | 
 | 	 * But page->mapping may have out-of-use anon_vma pointer, | 
 | 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | 
 | 	 * is NULL. | 
 |   	 */ | 
 | 	if (page_mapped(page) || (page->mapping && !PageAnon(page))) | 
 | 		return 0; | 
 | 	if (unlikely(!mm)) | 
 | 		mm = &init_mm; | 
 | 	return mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | 
 | 					enum charge_type ctype); | 
 |  | 
 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 
 | 				gfp_t gfp_mask) | 
 | { | 
 | 	struct mem_cgroup *mem = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 | 	if (PageCompound(page)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Corner case handling. This is called from add_to_page_cache() | 
 | 	 * in usual. But some FS (shmem) precharges this page before calling it | 
 | 	 * and call add_to_page_cache() with GFP_NOWAIT. | 
 | 	 * | 
 | 	 * For GFP_NOWAIT case, the page may be pre-charged before calling | 
 | 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call | 
 | 	 * charge twice. (It works but has to pay a bit larger cost.) | 
 | 	 * And when the page is SwapCache, it should take swap information | 
 | 	 * into account. This is under lock_page() now. | 
 | 	 */ | 
 | 	if (!(gfp_mask & __GFP_WAIT)) { | 
 | 		struct page_cgroup *pc; | 
 |  | 
 |  | 
 | 		pc = lookup_page_cgroup(page); | 
 | 		if (!pc) | 
 | 			return 0; | 
 | 		lock_page_cgroup(pc); | 
 | 		if (PageCgroupUsed(pc)) { | 
 | 			unlock_page_cgroup(pc); | 
 | 			return 0; | 
 | 		} | 
 | 		unlock_page_cgroup(pc); | 
 | 	} | 
 |  | 
 | 	if (unlikely(!mm && !mem)) | 
 | 		mm = &init_mm; | 
 |  | 
 | 	if (page_is_file_cache(page)) | 
 | 		return mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 
 |  | 
 | 	/* shmem */ | 
 | 	if (PageSwapCache(page)) { | 
 | 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 
 | 		if (!ret) | 
 | 			__mem_cgroup_commit_charge_swapin(page, mem, | 
 | 					MEM_CGROUP_CHARGE_TYPE_SHMEM); | 
 | 	} else | 
 | 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 
 | 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * While swap-in, try_charge -> commit or cancel, the page is locked. | 
 |  * And when try_charge() successfully returns, one refcnt to memcg without | 
 |  * struct page_cgroup is acquired. This refcnt will be consumed by | 
 |  * "commit()" or removed by "cancel()" | 
 |  */ | 
 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | 
 | 				 struct page *page, | 
 | 				 gfp_t mask, struct mem_cgroup **ptr) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	int ret; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (!do_swap_account) | 
 | 		goto charge_cur_mm; | 
 | 	/* | 
 | 	 * A racing thread's fault, or swapoff, may have already updated | 
 | 	 * the pte, and even removed page from swap cache: in those cases | 
 | 	 * do_swap_page()'s pte_same() test will fail; but there's also a | 
 | 	 * KSM case which does need to charge the page. | 
 | 	 */ | 
 | 	if (!PageSwapCache(page)) | 
 | 		goto charge_cur_mm; | 
 | 	mem = try_get_mem_cgroup_from_page(page); | 
 | 	if (!mem) | 
 | 		goto charge_cur_mm; | 
 | 	*ptr = mem; | 
 | 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page); | 
 | 	/* drop extra refcnt from tryget */ | 
 | 	css_put(&mem->css); | 
 | 	return ret; | 
 | charge_cur_mm: | 
 | 	if (unlikely(!mm)) | 
 | 		mm = &init_mm; | 
 | 	return __mem_cgroup_try_charge(mm, mask, ptr, true, page); | 
 | } | 
 |  | 
 | static void | 
 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | 
 | 					enum charge_type ctype) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	if (!ptr) | 
 | 		return; | 
 | 	cgroup_exclude_rmdir(&ptr->css); | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	mem_cgroup_lru_del_before_commit_swapcache(page); | 
 | 	__mem_cgroup_commit_charge(ptr, pc, ctype); | 
 | 	mem_cgroup_lru_add_after_commit_swapcache(page); | 
 | 	/* | 
 | 	 * Now swap is on-memory. This means this page may be | 
 | 	 * counted both as mem and swap....double count. | 
 | 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable | 
 | 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | 
 | 	 * may call delete_from_swap_cache() before reach here. | 
 | 	 */ | 
 | 	if (do_swap_account && PageSwapCache(page)) { | 
 | 		swp_entry_t ent = {.val = page_private(page)}; | 
 | 		unsigned short id; | 
 | 		struct mem_cgroup *memcg; | 
 |  | 
 | 		id = swap_cgroup_record(ent, 0); | 
 | 		rcu_read_lock(); | 
 | 		memcg = mem_cgroup_lookup(id); | 
 | 		if (memcg) { | 
 | 			/* | 
 | 			 * This recorded memcg can be obsolete one. So, avoid | 
 | 			 * calling css_tryget | 
 | 			 */ | 
 | 			if (!mem_cgroup_is_root(memcg)) | 
 | 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 
 | 			mem_cgroup_swap_statistics(memcg, false); | 
 | 			mem_cgroup_put(memcg); | 
 | 		} | 
 | 		rcu_read_unlock(); | 
 | 	} | 
 | 	/* | 
 | 	 * At swapin, we may charge account against cgroup which has no tasks. | 
 | 	 * So, rmdir()->pre_destroy() can be called while we do this charge. | 
 | 	 * In that case, we need to call pre_destroy() again. check it here. | 
 | 	 */ | 
 | 	cgroup_release_and_wakeup_rmdir(&ptr->css); | 
 | } | 
 |  | 
 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) | 
 | { | 
 | 	__mem_cgroup_commit_charge_swapin(page, ptr, | 
 | 					MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
 | } | 
 |  | 
 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) | 
 | { | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return; | 
 | 	if (!mem) | 
 | 		return; | 
 | 	mem_cgroup_cancel_charge(mem); | 
 | } | 
 |  | 
 | static void | 
 | __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) | 
 | { | 
 | 	struct memcg_batch_info *batch = NULL; | 
 | 	bool uncharge_memsw = true; | 
 | 	/* If swapout, usage of swap doesn't decrease */ | 
 | 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 
 | 		uncharge_memsw = false; | 
 | 	/* | 
 | 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate. | 
 | 	 * In those cases, all pages freed continously can be expected to be in | 
 | 	 * the same cgroup and we have chance to coalesce uncharges. | 
 | 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | 
 | 	 * because we want to do uncharge as soon as possible. | 
 | 	 */ | 
 | 	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE)) | 
 | 		goto direct_uncharge; | 
 |  | 
 | 	batch = ¤t->memcg_batch; | 
 | 	/* | 
 | 	 * In usual, we do css_get() when we remember memcg pointer. | 
 | 	 * But in this case, we keep res->usage until end of a series of | 
 | 	 * uncharges. Then, it's ok to ignore memcg's refcnt. | 
 | 	 */ | 
 | 	if (!batch->memcg) | 
 | 		batch->memcg = mem; | 
 | 	/* | 
 | 	 * In typical case, batch->memcg == mem. This means we can | 
 | 	 * merge a series of uncharges to an uncharge of res_counter. | 
 | 	 * If not, we uncharge res_counter ony by one. | 
 | 	 */ | 
 | 	if (batch->memcg != mem) | 
 | 		goto direct_uncharge; | 
 | 	/* remember freed charge and uncharge it later */ | 
 | 	batch->bytes += PAGE_SIZE; | 
 | 	if (uncharge_memsw) | 
 | 		batch->memsw_bytes += PAGE_SIZE; | 
 | 	return; | 
 | direct_uncharge: | 
 | 	res_counter_uncharge(&mem->res, PAGE_SIZE); | 
 | 	if (uncharge_memsw) | 
 | 		res_counter_uncharge(&mem->memsw, PAGE_SIZE); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * uncharge if !page_mapped(page) | 
 |  */ | 
 | static struct mem_cgroup * | 
 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup *mem = NULL; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return NULL; | 
 |  | 
 | 	if (PageSwapCache(page)) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Check if our page_cgroup is valid | 
 | 	 */ | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	if (unlikely(!pc || !PageCgroupUsed(pc))) | 
 | 		return NULL; | 
 |  | 
 | 	lock_page_cgroup(pc); | 
 |  | 
 | 	mem = pc->mem_cgroup; | 
 |  | 
 | 	if (!PageCgroupUsed(pc)) | 
 | 		goto unlock_out; | 
 |  | 
 | 	switch (ctype) { | 
 | 	case MEM_CGROUP_CHARGE_TYPE_MAPPED: | 
 | 	case MEM_CGROUP_CHARGE_TYPE_DROP: | 
 | 		if (page_mapped(page)) | 
 | 			goto unlock_out; | 
 | 		break; | 
 | 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | 
 | 		if (!PageAnon(page)) {	/* Shared memory */ | 
 | 			if (page->mapping && !page_is_file_cache(page)) | 
 | 				goto unlock_out; | 
 | 		} else if (page_mapped(page)) /* Anon */ | 
 | 				goto unlock_out; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (!mem_cgroup_is_root(mem)) | 
 | 		__do_uncharge(mem, ctype); | 
 | 	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 
 | 		mem_cgroup_swap_statistics(mem, true); | 
 | 	mem_cgroup_charge_statistics(mem, pc, false); | 
 |  | 
 | 	ClearPageCgroupUsed(pc); | 
 | 	/* | 
 | 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's | 
 | 	 * freed from LRU. This is safe because uncharged page is expected not | 
 | 	 * to be reused (freed soon). Exception is SwapCache, it's handled by | 
 | 	 * special functions. | 
 | 	 */ | 
 |  | 
 | 	mz = page_cgroup_zoneinfo(pc); | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	if (mem_cgroup_soft_limit_check(mem)) | 
 | 		mem_cgroup_update_tree(mem, page); | 
 | 	/* at swapout, this memcg will be accessed to record to swap */ | 
 | 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 
 | 		css_put(&mem->css); | 
 |  | 
 | 	return mem; | 
 |  | 
 | unlock_out: | 
 | 	unlock_page_cgroup(pc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_page(struct page *page) | 
 | { | 
 | 	/* early check. */ | 
 | 	if (page_mapped(page)) | 
 | 		return; | 
 | 	if (page->mapping && !PageAnon(page)) | 
 | 		return; | 
 | 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_cache_page(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(page_mapped(page)); | 
 | 	VM_BUG_ON(page->mapping); | 
 | 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | 
 | } | 
 |  | 
 | /* | 
 |  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | 
 |  * In that cases, pages are freed continuously and we can expect pages | 
 |  * are in the same memcg. All these calls itself limits the number of | 
 |  * pages freed at once, then uncharge_start/end() is called properly. | 
 |  * This may be called prural(2) times in a context, | 
 |  */ | 
 |  | 
 | void mem_cgroup_uncharge_start(void) | 
 | { | 
 | 	current->memcg_batch.do_batch++; | 
 | 	/* We can do nest. */ | 
 | 	if (current->memcg_batch.do_batch == 1) { | 
 | 		current->memcg_batch.memcg = NULL; | 
 | 		current->memcg_batch.bytes = 0; | 
 | 		current->memcg_batch.memsw_bytes = 0; | 
 | 	} | 
 | } | 
 |  | 
 | void mem_cgroup_uncharge_end(void) | 
 | { | 
 | 	struct memcg_batch_info *batch = ¤t->memcg_batch; | 
 |  | 
 | 	if (!batch->do_batch) | 
 | 		return; | 
 |  | 
 | 	batch->do_batch--; | 
 | 	if (batch->do_batch) /* If stacked, do nothing. */ | 
 | 		return; | 
 |  | 
 | 	if (!batch->memcg) | 
 | 		return; | 
 | 	/* | 
 | 	 * This "batch->memcg" is valid without any css_get/put etc... | 
 | 	 * bacause we hide charges behind us. | 
 | 	 */ | 
 | 	if (batch->bytes) | 
 | 		res_counter_uncharge(&batch->memcg->res, batch->bytes); | 
 | 	if (batch->memsw_bytes) | 
 | 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); | 
 | 	/* forget this pointer (for sanity check) */ | 
 | 	batch->memcg = NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | /* | 
 |  * called after __delete_from_swap_cache() and drop "page" account. | 
 |  * memcg information is recorded to swap_cgroup of "ent" | 
 |  */ | 
 | void | 
 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; | 
 |  | 
 | 	if (!swapout) /* this was a swap cache but the swap is unused ! */ | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | 
 |  | 
 | 	memcg = __mem_cgroup_uncharge_common(page, ctype); | 
 |  | 
 | 	/* record memcg information */ | 
 | 	if (do_swap_account && swapout && memcg) { | 
 | 		swap_cgroup_record(ent, css_id(&memcg->css)); | 
 | 		mem_cgroup_get(memcg); | 
 | 	} | 
 | 	if (swapout && memcg) | 
 | 		css_put(&memcg->css); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | /* | 
 |  * called from swap_entry_free(). remove record in swap_cgroup and | 
 |  * uncharge "memsw" account. | 
 |  */ | 
 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | 
 | { | 
 | 	struct mem_cgroup *memcg; | 
 | 	unsigned short id; | 
 |  | 
 | 	if (!do_swap_account) | 
 | 		return; | 
 |  | 
 | 	id = swap_cgroup_record(ent, 0); | 
 | 	rcu_read_lock(); | 
 | 	memcg = mem_cgroup_lookup(id); | 
 | 	if (memcg) { | 
 | 		/* | 
 | 		 * We uncharge this because swap is freed. | 
 | 		 * This memcg can be obsolete one. We avoid calling css_tryget | 
 | 		 */ | 
 | 		if (!mem_cgroup_is_root(memcg)) | 
 | 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE); | 
 | 		mem_cgroup_swap_statistics(memcg, false); | 
 | 		mem_cgroup_put(memcg); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old | 
 |  * page belongs to. | 
 |  */ | 
 | int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) | 
 | { | 
 | 	struct page_cgroup *pc; | 
 | 	struct mem_cgroup *mem = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 |  | 
 | 	pc = lookup_page_cgroup(page); | 
 | 	lock_page_cgroup(pc); | 
 | 	if (PageCgroupUsed(pc)) { | 
 | 		mem = pc->mem_cgroup; | 
 | 		css_get(&mem->css); | 
 | 	} | 
 | 	unlock_page_cgroup(pc); | 
 |  | 
 | 	if (mem) { | 
 | 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false, | 
 | 						page); | 
 | 		css_put(&mem->css); | 
 | 	} | 
 | 	*ptr = mem; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* remove redundant charge if migration failed*/ | 
 | void mem_cgroup_end_migration(struct mem_cgroup *mem, | 
 | 		struct page *oldpage, struct page *newpage) | 
 | { | 
 | 	struct page *target, *unused; | 
 | 	struct page_cgroup *pc; | 
 | 	enum charge_type ctype; | 
 |  | 
 | 	if (!mem) | 
 | 		return; | 
 | 	cgroup_exclude_rmdir(&mem->css); | 
 | 	/* at migration success, oldpage->mapping is NULL. */ | 
 | 	if (oldpage->mapping) { | 
 | 		target = oldpage; | 
 | 		unused = NULL; | 
 | 	} else { | 
 | 		target = newpage; | 
 | 		unused = oldpage; | 
 | 	} | 
 |  | 
 | 	if (PageAnon(target)) | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | 
 | 	else if (page_is_file_cache(target)) | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | 
 | 	else | 
 | 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | 
 |  | 
 | 	/* unused page is not on radix-tree now. */ | 
 | 	if (unused) | 
 | 		__mem_cgroup_uncharge_common(unused, ctype); | 
 |  | 
 | 	pc = lookup_page_cgroup(target); | 
 | 	/* | 
 | 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. | 
 | 	 * So, double-counting is effectively avoided. | 
 | 	 */ | 
 | 	__mem_cgroup_commit_charge(mem, pc, ctype); | 
 |  | 
 | 	/* | 
 | 	 * Both of oldpage and newpage are still under lock_page(). | 
 | 	 * Then, we don't have to care about race in radix-tree. | 
 | 	 * But we have to be careful that this page is unmapped or not. | 
 | 	 * | 
 | 	 * There is a case for !page_mapped(). At the start of | 
 | 	 * migration, oldpage was mapped. But now, it's zapped. | 
 | 	 * But we know *target* page is not freed/reused under us. | 
 | 	 * mem_cgroup_uncharge_page() does all necessary checks. | 
 | 	 */ | 
 | 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) | 
 | 		mem_cgroup_uncharge_page(target); | 
 | 	/* | 
 | 	 * At migration, we may charge account against cgroup which has no tasks | 
 | 	 * So, rmdir()->pre_destroy() can be called while we do this charge. | 
 | 	 * In that case, we need to call pre_destroy() again. check it here. | 
 | 	 */ | 
 | 	cgroup_release_and_wakeup_rmdir(&mem->css); | 
 | } | 
 |  | 
 | /* | 
 |  * A call to try to shrink memory usage on charge failure at shmem's swapin. | 
 |  * Calling hierarchical_reclaim is not enough because we should update | 
 |  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. | 
 |  * Moreover considering hierarchy, we should reclaim from the mem_over_limit, | 
 |  * not from the memcg which this page would be charged to. | 
 |  * try_charge_swapin does all of these works properly. | 
 |  */ | 
 | int mem_cgroup_shmem_charge_fallback(struct page *page, | 
 | 			    struct mm_struct *mm, | 
 | 			    gfp_t gfp_mask) | 
 | { | 
 | 	struct mem_cgroup *mem = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (mem_cgroup_disabled()) | 
 | 		return 0; | 
 |  | 
 | 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 
 | 	if (!ret) | 
 | 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static DEFINE_MUTEX(set_limit_mutex); | 
 |  | 
 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, | 
 | 				unsigned long long val) | 
 | { | 
 | 	int retry_count; | 
 | 	u64 memswlimit; | 
 | 	int ret = 0; | 
 | 	int children = mem_cgroup_count_children(memcg); | 
 | 	u64 curusage, oldusage; | 
 |  | 
 | 	/* | 
 | 	 * For keeping hierarchical_reclaim simple, how long we should retry | 
 | 	 * is depends on callers. We set our retry-count to be function | 
 | 	 * of # of children which we should visit in this loop. | 
 | 	 */ | 
 | 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | 
 |  | 
 | 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
 |  | 
 | 	while (retry_count) { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Rather than hide all in some function, I do this in | 
 | 		 * open coded manner. You see what this really does. | 
 | 		 * We have to guarantee mem->res.limit < mem->memsw.limit. | 
 | 		 */ | 
 | 		mutex_lock(&set_limit_mutex); | 
 | 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 		if (memswlimit < val) { | 
 | 			ret = -EINVAL; | 
 | 			mutex_unlock(&set_limit_mutex); | 
 | 			break; | 
 | 		} | 
 | 		ret = res_counter_set_limit(&memcg->res, val); | 
 | 		if (!ret) { | 
 | 			if (memswlimit == val) | 
 | 				memcg->memsw_is_minimum = true; | 
 | 			else | 
 | 				memcg->memsw_is_minimum = false; | 
 | 		} | 
 | 		mutex_unlock(&set_limit_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, | 
 | 						MEM_CGROUP_RECLAIM_SHRINK); | 
 | 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE); | 
 | 		/* Usage is reduced ? */ | 
 |   		if (curusage >= oldusage) | 
 | 			retry_count--; | 
 | 		else | 
 | 			oldusage = curusage; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | 
 | 					unsigned long long val) | 
 | { | 
 | 	int retry_count; | 
 | 	u64 memlimit, oldusage, curusage; | 
 | 	int children = mem_cgroup_count_children(memcg); | 
 | 	int ret = -EBUSY; | 
 |  | 
 | 	/* see mem_cgroup_resize_res_limit */ | 
 |  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
 | 	while (retry_count) { | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			break; | 
 | 		} | 
 | 		/* | 
 | 		 * Rather than hide all in some function, I do this in | 
 | 		 * open coded manner. You see what this really does. | 
 | 		 * We have to guarantee mem->res.limit < mem->memsw.limit. | 
 | 		 */ | 
 | 		mutex_lock(&set_limit_mutex); | 
 | 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 		if (memlimit > val) { | 
 | 			ret = -EINVAL; | 
 | 			mutex_unlock(&set_limit_mutex); | 
 | 			break; | 
 | 		} | 
 | 		ret = res_counter_set_limit(&memcg->memsw, val); | 
 | 		if (!ret) { | 
 | 			if (memlimit == val) | 
 | 				memcg->memsw_is_minimum = true; | 
 | 			else | 
 | 				memcg->memsw_is_minimum = false; | 
 | 		} | 
 | 		mutex_unlock(&set_limit_mutex); | 
 |  | 
 | 		if (!ret) | 
 | 			break; | 
 |  | 
 | 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, | 
 | 						MEM_CGROUP_RECLAIM_NOSWAP | | 
 | 						MEM_CGROUP_RECLAIM_SHRINK); | 
 | 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | 
 | 		/* Usage is reduced ? */ | 
 | 		if (curusage >= oldusage) | 
 | 			retry_count--; | 
 | 		else | 
 | 			oldusage = curusage; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 
 | 						gfp_t gfp_mask, int nid, | 
 | 						int zid) | 
 | { | 
 | 	unsigned long nr_reclaimed = 0; | 
 | 	struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 
 | 	unsigned long reclaimed; | 
 | 	int loop = 0; | 
 | 	struct mem_cgroup_tree_per_zone *mctz; | 
 | 	unsigned long long excess; | 
 |  | 
 | 	if (order > 0) | 
 | 		return 0; | 
 |  | 
 | 	mctz = soft_limit_tree_node_zone(nid, zid); | 
 | 	/* | 
 | 	 * This loop can run a while, specially if mem_cgroup's continuously | 
 | 	 * keep exceeding their soft limit and putting the system under | 
 | 	 * pressure | 
 | 	 */ | 
 | 	do { | 
 | 		if (next_mz) | 
 | 			mz = next_mz; | 
 | 		else | 
 | 			mz = mem_cgroup_largest_soft_limit_node(mctz); | 
 | 		if (!mz) | 
 | 			break; | 
 |  | 
 | 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, | 
 | 						gfp_mask, | 
 | 						MEM_CGROUP_RECLAIM_SOFT); | 
 | 		nr_reclaimed += reclaimed; | 
 | 		spin_lock(&mctz->lock); | 
 |  | 
 | 		/* | 
 | 		 * If we failed to reclaim anything from this memory cgroup | 
 | 		 * it is time to move on to the next cgroup | 
 | 		 */ | 
 | 		next_mz = NULL; | 
 | 		if (!reclaimed) { | 
 | 			do { | 
 | 				/* | 
 | 				 * Loop until we find yet another one. | 
 | 				 * | 
 | 				 * By the time we get the soft_limit lock | 
 | 				 * again, someone might have aded the | 
 | 				 * group back on the RB tree. Iterate to | 
 | 				 * make sure we get a different mem. | 
 | 				 * mem_cgroup_largest_soft_limit_node returns | 
 | 				 * NULL if no other cgroup is present on | 
 | 				 * the tree | 
 | 				 */ | 
 | 				next_mz = | 
 | 				__mem_cgroup_largest_soft_limit_node(mctz); | 
 | 				if (next_mz == mz) { | 
 | 					css_put(&next_mz->mem->css); | 
 | 					next_mz = NULL; | 
 | 				} else /* next_mz == NULL or other memcg */ | 
 | 					break; | 
 | 			} while (1); | 
 | 		} | 
 | 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | 
 | 		excess = res_counter_soft_limit_excess(&mz->mem->res); | 
 | 		/* | 
 | 		 * One school of thought says that we should not add | 
 | 		 * back the node to the tree if reclaim returns 0. | 
 | 		 * But our reclaim could return 0, simply because due | 
 | 		 * to priority we are exposing a smaller subset of | 
 | 		 * memory to reclaim from. Consider this as a longer | 
 | 		 * term TODO. | 
 | 		 */ | 
 | 		/* If excess == 0, no tree ops */ | 
 | 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); | 
 | 		spin_unlock(&mctz->lock); | 
 | 		css_put(&mz->mem->css); | 
 | 		loop++; | 
 | 		/* | 
 | 		 * Could not reclaim anything and there are no more | 
 | 		 * mem cgroups to try or we seem to be looping without | 
 | 		 * reclaiming anything. | 
 | 		 */ | 
 | 		if (!nr_reclaimed && | 
 | 			(next_mz == NULL || | 
 | 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
 | 			break; | 
 | 	} while (!nr_reclaimed); | 
 | 	if (next_mz) | 
 | 		css_put(&next_mz->mem->css); | 
 | 	return nr_reclaimed; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine traverse page_cgroup in given list and drop them all. | 
 |  * *And* this routine doesn't reclaim page itself, just removes page_cgroup. | 
 |  */ | 
 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, | 
 | 				int node, int zid, enum lru_list lru) | 
 | { | 
 | 	struct zone *zone; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	struct page_cgroup *pc, *busy; | 
 | 	unsigned long flags, loop; | 
 | 	struct list_head *list; | 
 | 	int ret = 0; | 
 |  | 
 | 	zone = &NODE_DATA(node)->node_zones[zid]; | 
 | 	mz = mem_cgroup_zoneinfo(mem, node, zid); | 
 | 	list = &mz->lists[lru]; | 
 |  | 
 | 	loop = MEM_CGROUP_ZSTAT(mz, lru); | 
 | 	/* give some margin against EBUSY etc...*/ | 
 | 	loop += 256; | 
 | 	busy = NULL; | 
 | 	while (loop--) { | 
 | 		ret = 0; | 
 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		if (list_empty(list)) { | 
 | 			spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		pc = list_entry(list->prev, struct page_cgroup, lru); | 
 | 		if (busy == pc) { | 
 | 			list_move(&pc->lru, list); | 
 | 			busy = NULL; | 
 | 			spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			continue; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 |  | 
 | 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); | 
 | 		if (ret == -ENOMEM) | 
 | 			break; | 
 |  | 
 | 		if (ret == -EBUSY || ret == -EINVAL) { | 
 | 			/* found lock contention or "pc" is obsolete. */ | 
 | 			busy = pc; | 
 | 			cond_resched(); | 
 | 		} else | 
 | 			busy = NULL; | 
 | 	} | 
 |  | 
 | 	if (!ret && !list_empty(list)) | 
 | 		return -EBUSY; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * make mem_cgroup's charge to be 0 if there is no task. | 
 |  * This enables deleting this mem_cgroup. | 
 |  */ | 
 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) | 
 | { | 
 | 	int ret; | 
 | 	int node, zid, shrink; | 
 | 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
 | 	struct cgroup *cgrp = mem->css.cgroup; | 
 |  | 
 | 	css_get(&mem->css); | 
 |  | 
 | 	shrink = 0; | 
 | 	/* should free all ? */ | 
 | 	if (free_all) | 
 | 		goto try_to_free; | 
 | move_account: | 
 | 	do { | 
 | 		ret = -EBUSY; | 
 | 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) | 
 | 			goto out; | 
 | 		ret = -EINTR; | 
 | 		if (signal_pending(current)) | 
 | 			goto out; | 
 | 		/* This is for making all *used* pages to be on LRU. */ | 
 | 		lru_add_drain_all(); | 
 | 		drain_all_stock_sync(); | 
 | 		ret = 0; | 
 | 		for_each_node_state(node, N_HIGH_MEMORY) { | 
 | 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { | 
 | 				enum lru_list l; | 
 | 				for_each_lru(l) { | 
 | 					ret = mem_cgroup_force_empty_list(mem, | 
 | 							node, zid, l); | 
 | 					if (ret) | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			if (ret) | 
 | 				break; | 
 | 		} | 
 | 		/* it seems parent cgroup doesn't have enough mem */ | 
 | 		if (ret == -ENOMEM) | 
 | 			goto try_to_free; | 
 | 		cond_resched(); | 
 | 	/* "ret" should also be checked to ensure all lists are empty. */ | 
 | 	} while (mem->res.usage > 0 || ret); | 
 | out: | 
 | 	css_put(&mem->css); | 
 | 	return ret; | 
 |  | 
 | try_to_free: | 
 | 	/* returns EBUSY if there is a task or if we come here twice. */ | 
 | 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | 
 | 		ret = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 | 	/* we call try-to-free pages for make this cgroup empty */ | 
 | 	lru_add_drain_all(); | 
 | 	/* try to free all pages in this cgroup */ | 
 | 	shrink = 1; | 
 | 	while (nr_retries && mem->res.usage > 0) { | 
 | 		int progress; | 
 |  | 
 | 		if (signal_pending(current)) { | 
 | 			ret = -EINTR; | 
 | 			goto out; | 
 | 		} | 
 | 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, | 
 | 						false, get_swappiness(mem)); | 
 | 		if (!progress) { | 
 | 			nr_retries--; | 
 | 			/* maybe some writeback is necessary */ | 
 | 			congestion_wait(BLK_RW_ASYNC, HZ/10); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	lru_add_drain(); | 
 | 	/* try move_account...there may be some *locked* pages. */ | 
 | 	goto move_account; | 
 | } | 
 |  | 
 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) | 
 | { | 
 | 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | 
 | } | 
 |  | 
 |  | 
 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) | 
 | { | 
 | 	return mem_cgroup_from_cont(cont)->use_hierarchy; | 
 | } | 
 |  | 
 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | 
 | 					u64 val) | 
 | { | 
 | 	int retval = 0; | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 | 	struct cgroup *parent = cont->parent; | 
 | 	struct mem_cgroup *parent_mem = NULL; | 
 |  | 
 | 	if (parent) | 
 | 		parent_mem = mem_cgroup_from_cont(parent); | 
 |  | 
 | 	cgroup_lock(); | 
 | 	/* | 
 | 	 * If parent's use_hierarchy is set, we can't make any modifications | 
 | 	 * in the child subtrees. If it is unset, then the change can | 
 | 	 * occur, provided the current cgroup has no children. | 
 | 	 * | 
 | 	 * For the root cgroup, parent_mem is NULL, we allow value to be | 
 | 	 * set if there are no children. | 
 | 	 */ | 
 | 	if ((!parent_mem || !parent_mem->use_hierarchy) && | 
 | 				(val == 1 || val == 0)) { | 
 | 		if (list_empty(&cont->children)) | 
 | 			mem->use_hierarchy = val; | 
 | 		else | 
 | 			retval = -EBUSY; | 
 | 	} else | 
 | 		retval = -EINVAL; | 
 | 	cgroup_unlock(); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | struct mem_cgroup_idx_data { | 
 | 	s64 val; | 
 | 	enum mem_cgroup_stat_index idx; | 
 | }; | 
 |  | 
 | static int | 
 | mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data) | 
 | { | 
 | 	struct mem_cgroup_idx_data *d = data; | 
 | 	d->val += mem_cgroup_read_stat(&mem->stat, d->idx); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, | 
 | 				enum mem_cgroup_stat_index idx, s64 *val) | 
 | { | 
 | 	struct mem_cgroup_idx_data d; | 
 | 	d.idx = idx; | 
 | 	d.val = 0; | 
 | 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat); | 
 | 	*val = d.val; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 | 	u64 idx_val, val; | 
 | 	int type, name; | 
 |  | 
 | 	type = MEMFILE_TYPE(cft->private); | 
 | 	name = MEMFILE_ATTR(cft->private); | 
 | 	switch (type) { | 
 | 	case _MEM: | 
 | 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) { | 
 | 			mem_cgroup_get_recursive_idx_stat(mem, | 
 | 				MEM_CGROUP_STAT_CACHE, &idx_val); | 
 | 			val = idx_val; | 
 | 			mem_cgroup_get_recursive_idx_stat(mem, | 
 | 				MEM_CGROUP_STAT_RSS, &idx_val); | 
 | 			val += idx_val; | 
 | 			val <<= PAGE_SHIFT; | 
 | 		} else | 
 | 			val = res_counter_read_u64(&mem->res, name); | 
 | 		break; | 
 | 	case _MEMSWAP: | 
 | 		if (name == RES_USAGE && mem_cgroup_is_root(mem)) { | 
 | 			mem_cgroup_get_recursive_idx_stat(mem, | 
 | 				MEM_CGROUP_STAT_CACHE, &idx_val); | 
 | 			val = idx_val; | 
 | 			mem_cgroup_get_recursive_idx_stat(mem, | 
 | 				MEM_CGROUP_STAT_RSS, &idx_val); | 
 | 			val += idx_val; | 
 | 			mem_cgroup_get_recursive_idx_stat(mem, | 
 | 				MEM_CGROUP_STAT_SWAPOUT, &idx_val); | 
 | 			val += idx_val; | 
 | 			val <<= PAGE_SHIFT; | 
 | 		} else | 
 | 			val = res_counter_read_u64(&mem->memsw, name); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 		break; | 
 | 	} | 
 | 	return val; | 
 | } | 
 | /* | 
 |  * The user of this function is... | 
 |  * RES_LIMIT. | 
 |  */ | 
 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, | 
 | 			    const char *buffer) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | 
 | 	int type, name; | 
 | 	unsigned long long val; | 
 | 	int ret; | 
 |  | 
 | 	type = MEMFILE_TYPE(cft->private); | 
 | 	name = MEMFILE_ATTR(cft->private); | 
 | 	switch (name) { | 
 | 	case RES_LIMIT: | 
 | 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
 | 			ret = -EINVAL; | 
 | 			break; | 
 | 		} | 
 | 		/* This function does all necessary parse...reuse it */ | 
 | 		ret = res_counter_memparse_write_strategy(buffer, &val); | 
 | 		if (ret) | 
 | 			break; | 
 | 		if (type == _MEM) | 
 | 			ret = mem_cgroup_resize_limit(memcg, val); | 
 | 		else | 
 | 			ret = mem_cgroup_resize_memsw_limit(memcg, val); | 
 | 		break; | 
 | 	case RES_SOFT_LIMIT: | 
 | 		ret = res_counter_memparse_write_strategy(buffer, &val); | 
 | 		if (ret) | 
 | 			break; | 
 | 		/* | 
 | 		 * For memsw, soft limits are hard to implement in terms | 
 | 		 * of semantics, for now, we support soft limits for | 
 | 		 * control without swap | 
 | 		 */ | 
 | 		if (type == _MEM) | 
 | 			ret = res_counter_set_soft_limit(&memcg->res, val); | 
 | 		else | 
 | 			ret = -EINVAL; | 
 | 		break; | 
 | 	default: | 
 | 		ret = -EINVAL; /* should be BUG() ? */ | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, | 
 | 		unsigned long long *mem_limit, unsigned long long *memsw_limit) | 
 | { | 
 | 	struct cgroup *cgroup; | 
 | 	unsigned long long min_limit, min_memsw_limit, tmp; | 
 |  | 
 | 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 	cgroup = memcg->css.cgroup; | 
 | 	if (!memcg->use_hierarchy) | 
 | 		goto out; | 
 |  | 
 | 	while (cgroup->parent) { | 
 | 		cgroup = cgroup->parent; | 
 | 		memcg = mem_cgroup_from_cont(cgroup); | 
 | 		if (!memcg->use_hierarchy) | 
 | 			break; | 
 | 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | 
 | 		min_limit = min(min_limit, tmp); | 
 | 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | 
 | 		min_memsw_limit = min(min_memsw_limit, tmp); | 
 | 	} | 
 | out: | 
 | 	*mem_limit = min_limit; | 
 | 	*memsw_limit = min_memsw_limit; | 
 | 	return; | 
 | } | 
 |  | 
 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	int type, name; | 
 |  | 
 | 	mem = mem_cgroup_from_cont(cont); | 
 | 	type = MEMFILE_TYPE(event); | 
 | 	name = MEMFILE_ATTR(event); | 
 | 	switch (name) { | 
 | 	case RES_MAX_USAGE: | 
 | 		if (type == _MEM) | 
 | 			res_counter_reset_max(&mem->res); | 
 | 		else | 
 | 			res_counter_reset_max(&mem->memsw); | 
 | 		break; | 
 | 	case RES_FAILCNT: | 
 | 		if (type == _MEM) | 
 | 			res_counter_reset_failcnt(&mem->res); | 
 | 		else | 
 | 			res_counter_reset_failcnt(&mem->memsw); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* For read statistics */ | 
 | enum { | 
 | 	MCS_CACHE, | 
 | 	MCS_RSS, | 
 | 	MCS_FILE_MAPPED, | 
 | 	MCS_PGPGIN, | 
 | 	MCS_PGPGOUT, | 
 | 	MCS_SWAP, | 
 | 	MCS_INACTIVE_ANON, | 
 | 	MCS_ACTIVE_ANON, | 
 | 	MCS_INACTIVE_FILE, | 
 | 	MCS_ACTIVE_FILE, | 
 | 	MCS_UNEVICTABLE, | 
 | 	NR_MCS_STAT, | 
 | }; | 
 |  | 
 | struct mcs_total_stat { | 
 | 	s64 stat[NR_MCS_STAT]; | 
 | }; | 
 |  | 
 | struct { | 
 | 	char *local_name; | 
 | 	char *total_name; | 
 | } memcg_stat_strings[NR_MCS_STAT] = { | 
 | 	{"cache", "total_cache"}, | 
 | 	{"rss", "total_rss"}, | 
 | 	{"mapped_file", "total_mapped_file"}, | 
 | 	{"pgpgin", "total_pgpgin"}, | 
 | 	{"pgpgout", "total_pgpgout"}, | 
 | 	{"swap", "total_swap"}, | 
 | 	{"inactive_anon", "total_inactive_anon"}, | 
 | 	{"active_anon", "total_active_anon"}, | 
 | 	{"inactive_file", "total_inactive_file"}, | 
 | 	{"active_file", "total_active_file"}, | 
 | 	{"unevictable", "total_unevictable"} | 
 | }; | 
 |  | 
 |  | 
 | static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) | 
 | { | 
 | 	struct mcs_total_stat *s = data; | 
 | 	s64 val; | 
 |  | 
 | 	/* per cpu stat */ | 
 | 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); | 
 | 	s->stat[MCS_CACHE] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | 
 | 	s->stat[MCS_RSS] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED); | 
 | 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); | 
 | 	s->stat[MCS_PGPGIN] += val; | 
 | 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); | 
 | 	s->stat[MCS_PGPGOUT] += val; | 
 | 	if (do_swap_account) { | 
 | 		val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT); | 
 | 		s->stat[MCS_SWAP] += val * PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	/* per zone stat */ | 
 | 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); | 
 | 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); | 
 | 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); | 
 | 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); | 
 | 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | 
 | 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | 
 | 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | 
 | { | 
 | 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); | 
 | } | 
 |  | 
 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | 
 | 				 struct cgroup_map_cb *cb) | 
 | { | 
 | 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); | 
 | 	struct mcs_total_stat mystat; | 
 | 	int i; | 
 |  | 
 | 	memset(&mystat, 0, sizeof(mystat)); | 
 | 	mem_cgroup_get_local_stat(mem_cont, &mystat); | 
 |  | 
 | 	for (i = 0; i < NR_MCS_STAT; i++) { | 
 | 		if (i == MCS_SWAP && !do_swap_account) | 
 | 			continue; | 
 | 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); | 
 | 	} | 
 |  | 
 | 	/* Hierarchical information */ | 
 | 	{ | 
 | 		unsigned long long limit, memsw_limit; | 
 | 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | 
 | 		cb->fill(cb, "hierarchical_memory_limit", limit); | 
 | 		if (do_swap_account) | 
 | 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | 
 | 	} | 
 |  | 
 | 	memset(&mystat, 0, sizeof(mystat)); | 
 | 	mem_cgroup_get_total_stat(mem_cont, &mystat); | 
 | 	for (i = 0; i < NR_MCS_STAT; i++) { | 
 | 		if (i == MCS_SWAP && !do_swap_account) | 
 | 			continue; | 
 | 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); | 
 |  | 
 | 	{ | 
 | 		int nid, zid; | 
 | 		struct mem_cgroup_per_zone *mz; | 
 | 		unsigned long recent_rotated[2] = {0, 0}; | 
 | 		unsigned long recent_scanned[2] = {0, 0}; | 
 |  | 
 | 		for_each_online_node(nid) | 
 | 			for (zid = 0; zid < MAX_NR_ZONES; zid++) { | 
 | 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | 
 |  | 
 | 				recent_rotated[0] += | 
 | 					mz->reclaim_stat.recent_rotated[0]; | 
 | 				recent_rotated[1] += | 
 | 					mz->reclaim_stat.recent_rotated[1]; | 
 | 				recent_scanned[0] += | 
 | 					mz->reclaim_stat.recent_scanned[0]; | 
 | 				recent_scanned[1] += | 
 | 					mz->reclaim_stat.recent_scanned[1]; | 
 | 			} | 
 | 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | 
 | 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | 
 | 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | 
 | 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 |  | 
 | 	return get_swappiness(memcg); | 
 | } | 
 |  | 
 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | 
 | 				       u64 val) | 
 | { | 
 | 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | 
 | 	struct mem_cgroup *parent; | 
 |  | 
 | 	if (val > 100) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (cgrp->parent == NULL) | 
 | 		return -EINVAL; | 
 |  | 
 | 	parent = mem_cgroup_from_cont(cgrp->parent); | 
 |  | 
 | 	cgroup_lock(); | 
 |  | 
 | 	/* If under hierarchy, only empty-root can set this value */ | 
 | 	if ((parent->use_hierarchy) || | 
 | 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) { | 
 | 		cgroup_unlock(); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock(&memcg->reclaim_param_lock); | 
 | 	memcg->swappiness = val; | 
 | 	spin_unlock(&memcg->reclaim_param_lock); | 
 |  | 
 | 	cgroup_unlock(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static struct cftype mem_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "soft_limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "stat", | 
 | 		.read_map = mem_control_stat_show, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "force_empty", | 
 | 		.trigger = mem_cgroup_force_empty_write, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "use_hierarchy", | 
 | 		.write_u64 = mem_cgroup_hierarchy_write, | 
 | 		.read_u64 = mem_cgroup_hierarchy_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "swappiness", | 
 | 		.read_u64 = mem_cgroup_swappiness_read, | 
 | 		.write_u64 = mem_cgroup_swappiness_write, | 
 | 	}, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | static struct cftype memsw_cgroup_files[] = { | 
 | 	{ | 
 | 		.name = "memsw.usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.max_usage_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.limit_in_bytes", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
 | 		.write_string = mem_cgroup_write, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | 	{ | 
 | 		.name = "memsw.failcnt", | 
 | 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
 | 		.trigger = mem_cgroup_reset, | 
 | 		.read_u64 = mem_cgroup_read, | 
 | 	}, | 
 | }; | 
 |  | 
 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | 
 | { | 
 | 	if (!do_swap_account) | 
 | 		return 0; | 
 | 	return cgroup_add_files(cont, ss, memsw_cgroup_files, | 
 | 				ARRAY_SIZE(memsw_cgroup_files)); | 
 | }; | 
 | #else | 
 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
 | { | 
 | 	struct mem_cgroup_per_node *pn; | 
 | 	struct mem_cgroup_per_zone *mz; | 
 | 	enum lru_list l; | 
 | 	int zone, tmp = node; | 
 | 	/* | 
 | 	 * This routine is called against possible nodes. | 
 | 	 * But it's BUG to call kmalloc() against offline node. | 
 | 	 * | 
 | 	 * TODO: this routine can waste much memory for nodes which will | 
 | 	 *       never be onlined. It's better to use memory hotplug callback | 
 | 	 *       function. | 
 | 	 */ | 
 | 	if (!node_state(node, N_NORMAL_MEMORY)) | 
 | 		tmp = -1; | 
 | 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
 | 	if (!pn) | 
 | 		return 1; | 
 |  | 
 | 	mem->info.nodeinfo[node] = pn; | 
 | 	memset(pn, 0, sizeof(*pn)); | 
 |  | 
 | 	for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 		mz = &pn->zoneinfo[zone]; | 
 | 		for_each_lru(l) | 
 | 			INIT_LIST_HEAD(&mz->lists[l]); | 
 | 		mz->usage_in_excess = 0; | 
 | 		mz->on_tree = false; | 
 | 		mz->mem = mem; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) | 
 | { | 
 | 	kfree(mem->info.nodeinfo[node]); | 
 | } | 
 |  | 
 | static int mem_cgroup_size(void) | 
 | { | 
 | 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); | 
 | 	return sizeof(struct mem_cgroup) + cpustat_size; | 
 | } | 
 |  | 
 | static struct mem_cgroup *mem_cgroup_alloc(void) | 
 | { | 
 | 	struct mem_cgroup *mem; | 
 | 	int size = mem_cgroup_size(); | 
 |  | 
 | 	if (size < PAGE_SIZE) | 
 | 		mem = kmalloc(size, GFP_KERNEL); | 
 | 	else | 
 | 		mem = vmalloc(size); | 
 |  | 
 | 	if (mem) | 
 | 		memset(mem, 0, size); | 
 | 	return mem; | 
 | } | 
 |  | 
 | /* | 
 |  * At destroying mem_cgroup, references from swap_cgroup can remain. | 
 |  * (scanning all at force_empty is too costly...) | 
 |  * | 
 |  * Instead of clearing all references at force_empty, we remember | 
 |  * the number of reference from swap_cgroup and free mem_cgroup when | 
 |  * it goes down to 0. | 
 |  * | 
 |  * Removal of cgroup itself succeeds regardless of refs from swap. | 
 |  */ | 
 |  | 
 | static void __mem_cgroup_free(struct mem_cgroup *mem) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	mem_cgroup_remove_from_trees(mem); | 
 | 	free_css_id(&mem_cgroup_subsys, &mem->css); | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) | 
 | 		free_mem_cgroup_per_zone_info(mem, node); | 
 |  | 
 | 	if (mem_cgroup_size() < PAGE_SIZE) | 
 | 		kfree(mem); | 
 | 	else | 
 | 		vfree(mem); | 
 | } | 
 |  | 
 | static void mem_cgroup_get(struct mem_cgroup *mem) | 
 | { | 
 | 	atomic_inc(&mem->refcnt); | 
 | } | 
 |  | 
 | static void mem_cgroup_put(struct mem_cgroup *mem) | 
 | { | 
 | 	if (atomic_dec_and_test(&mem->refcnt)) { | 
 | 		struct mem_cgroup *parent = parent_mem_cgroup(mem); | 
 | 		__mem_cgroup_free(mem); | 
 | 		if (parent) | 
 | 			mem_cgroup_put(parent); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | 
 |  */ | 
 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) | 
 | { | 
 | 	if (!mem->res.parent) | 
 | 		return NULL; | 
 | 	return mem_cgroup_from_res_counter(mem->res.parent, res); | 
 | } | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 | static void __init enable_swap_cgroup(void) | 
 | { | 
 | 	if (!mem_cgroup_disabled() && really_do_swap_account) | 
 | 		do_swap_account = 1; | 
 | } | 
 | #else | 
 | static void __init enable_swap_cgroup(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | static int mem_cgroup_soft_limit_tree_init(void) | 
 | { | 
 | 	struct mem_cgroup_tree_per_node *rtpn; | 
 | 	struct mem_cgroup_tree_per_zone *rtpz; | 
 | 	int tmp, node, zone; | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) { | 
 | 		tmp = node; | 
 | 		if (!node_state(node, N_NORMAL_MEMORY)) | 
 | 			tmp = -1; | 
 | 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | 
 | 		if (!rtpn) | 
 | 			return 1; | 
 |  | 
 | 		soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
 |  | 
 | 		for (zone = 0; zone < MAX_NR_ZONES; zone++) { | 
 | 			rtpz = &rtpn->rb_tree_per_zone[zone]; | 
 | 			rtpz->rb_root = RB_ROOT; | 
 | 			spin_lock_init(&rtpz->lock); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct cgroup_subsys_state * __ref | 
 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *mem, *parent; | 
 | 	long error = -ENOMEM; | 
 | 	int node; | 
 |  | 
 | 	mem = mem_cgroup_alloc(); | 
 | 	if (!mem) | 
 | 		return ERR_PTR(error); | 
 |  | 
 | 	for_each_node_state(node, N_POSSIBLE) | 
 | 		if (alloc_mem_cgroup_per_zone_info(mem, node)) | 
 | 			goto free_out; | 
 |  | 
 | 	/* root ? */ | 
 | 	if (cont->parent == NULL) { | 
 | 		int cpu; | 
 | 		enable_swap_cgroup(); | 
 | 		parent = NULL; | 
 | 		root_mem_cgroup = mem; | 
 | 		if (mem_cgroup_soft_limit_tree_init()) | 
 | 			goto free_out; | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct memcg_stock_pcp *stock = | 
 | 						&per_cpu(memcg_stock, cpu); | 
 | 			INIT_WORK(&stock->work, drain_local_stock); | 
 | 		} | 
 | 		hotcpu_notifier(memcg_stock_cpu_callback, 0); | 
 |  | 
 | 	} else { | 
 | 		parent = mem_cgroup_from_cont(cont->parent); | 
 | 		mem->use_hierarchy = parent->use_hierarchy; | 
 | 	} | 
 |  | 
 | 	if (parent && parent->use_hierarchy) { | 
 | 		res_counter_init(&mem->res, &parent->res); | 
 | 		res_counter_init(&mem->memsw, &parent->memsw); | 
 | 		/* | 
 | 		 * We increment refcnt of the parent to ensure that we can | 
 | 		 * safely access it on res_counter_charge/uncharge. | 
 | 		 * This refcnt will be decremented when freeing this | 
 | 		 * mem_cgroup(see mem_cgroup_put). | 
 | 		 */ | 
 | 		mem_cgroup_get(parent); | 
 | 	} else { | 
 | 		res_counter_init(&mem->res, NULL); | 
 | 		res_counter_init(&mem->memsw, NULL); | 
 | 	} | 
 | 	mem->last_scanned_child = 0; | 
 | 	spin_lock_init(&mem->reclaim_param_lock); | 
 |  | 
 | 	if (parent) | 
 | 		mem->swappiness = get_swappiness(parent); | 
 | 	atomic_set(&mem->refcnt, 1); | 
 | 	return &mem->css; | 
 | free_out: | 
 | 	__mem_cgroup_free(mem); | 
 | 	root_mem_cgroup = NULL; | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, | 
 | 					struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	return mem_cgroup_force_empty(mem, false); | 
 | } | 
 |  | 
 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont) | 
 | { | 
 | 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | 
 |  | 
 | 	mem_cgroup_put(mem); | 
 | } | 
 |  | 
 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = cgroup_add_files(cont, ss, mem_cgroup_files, | 
 | 				ARRAY_SIZE(mem_cgroup_files)); | 
 |  | 
 | 	if (!ret) | 
 | 		ret = register_memsw_files(cont, ss); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | 
 | 				struct cgroup *cont, | 
 | 				struct cgroup *old_cont, | 
 | 				struct task_struct *p, | 
 | 				bool threadgroup) | 
 | { | 
 | 	/* | 
 | 	 * FIXME: It's better to move charges of this process from old | 
 | 	 * memcg to new memcg. But it's just on TODO-List now. | 
 | 	 */ | 
 | } | 
 |  | 
 | struct cgroup_subsys mem_cgroup_subsys = { | 
 | 	.name = "memory", | 
 | 	.subsys_id = mem_cgroup_subsys_id, | 
 | 	.create = mem_cgroup_create, | 
 | 	.pre_destroy = mem_cgroup_pre_destroy, | 
 | 	.destroy = mem_cgroup_destroy, | 
 | 	.populate = mem_cgroup_populate, | 
 | 	.attach = mem_cgroup_move_task, | 
 | 	.early_init = 0, | 
 | 	.use_id = 1, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | 
 |  | 
 | static int __init disable_swap_account(char *s) | 
 | { | 
 | 	really_do_swap_account = 0; | 
 | 	return 1; | 
 | } | 
 | __setup("noswapaccount", disable_swap_account); | 
 | #endif |