|  | /* | 
|  | * Extensible Firmware Interface | 
|  | * | 
|  | * Based on Extensible Firmware Interface Specification version 0.9 | 
|  | * April 30, 1999 | 
|  | * | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 1999-2003 Hewlett-Packard Co. | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * (c) Copyright 2006 Hewlett-Packard Development Company, L.P. | 
|  | *	Bjorn Helgaas <bjorn.helgaas@hp.com> | 
|  | * | 
|  | * All EFI Runtime Services are not implemented yet as EFI only | 
|  | * supports physical mode addressing on SoftSDV. This is to be fixed | 
|  | * in a future version.  --drummond 1999-07-20 | 
|  | * | 
|  | * Implemented EFI runtime services and virtual mode calls.  --davidm | 
|  | * | 
|  | * Goutham Rao: <goutham.rao@intel.com> | 
|  | *	Skip non-WB memory and ignore empty memory ranges. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/kregs.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/mca.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #define EFI_DEBUG	0 | 
|  |  | 
|  | extern efi_status_t efi_call_phys (void *, ...); | 
|  |  | 
|  | struct efi efi; | 
|  | EXPORT_SYMBOL(efi); | 
|  | static efi_runtime_services_t *runtime; | 
|  | static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL; | 
|  |  | 
|  | #define efi_call_virt(f, args...)	(*(f))(args) | 
|  |  | 
|  | #define STUB_GET_TIME(prefix, adjust_arg)				       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)			       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_time_cap_t *atc = NULL;					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | if (tc)								       \ | 
|  | atc = adjust_arg(tc);					       \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \ | 
|  | adjust_arg(tm), atc);			       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_TIME(prefix, adjust_arg)				       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_set_time (efi_time_t *tm)					       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \ | 
|  | adjust_arg(tm));			       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)			       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,	       \ | 
|  | efi_time_t *tm)				       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix(					       \ | 
|  | (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \ | 
|  | adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)			       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)		       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_time_t *atm = NULL;						       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | if (tm)								       \ | 
|  | atm = adjust_arg(tm);					       \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix(					       \ | 
|  | (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \ | 
|  | enabled, atm);						       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_VARIABLE(prefix, adjust_arg)				       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \ | 
|  | unsigned long *data_size, void *data)		       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | u32 *aattr = NULL;						       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | if (attr)							       \ | 
|  | aattr = adjust_arg(attr);				       \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix(					       \ | 
|  | (efi_get_variable_t *) __va(runtime->get_variable),	       \ | 
|  | adjust_arg(name), adjust_arg(vendor), aattr,		       \ | 
|  | adjust_arg(data_size), adjust_arg(data));		       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)			       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \ | 
|  | efi_guid_t *vendor)				       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix(					       \ | 
|  | (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \ | 
|  | adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_SET_VARIABLE(prefix, adjust_arg)				       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,		       \ | 
|  | unsigned long attr, unsigned long data_size,	       \ | 
|  | void *data)					       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix(					       \ | 
|  | (efi_set_variable_t *) __va(runtime->set_variable),	       \ | 
|  | adjust_arg(name), adjust_arg(vendor), attr, data_size,	       \ | 
|  | adjust_arg(data));					       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)		       \ | 
|  | static efi_status_t							       \ | 
|  | prefix##_get_next_high_mono_count (u32 *count)				       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_status_t ret;						       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)	       \ | 
|  | __va(runtime->get_next_high_mono_count),       \ | 
|  | adjust_arg(count));			       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | return ret;							       \ | 
|  | } | 
|  |  | 
|  | #define STUB_RESET_SYSTEM(prefix, adjust_arg)				       \ | 
|  | static void								       \ | 
|  | prefix##_reset_system (int reset_type, efi_status_t status,		       \ | 
|  | unsigned long data_size, efi_char16_t *data)	       \ | 
|  | {									       \ | 
|  | struct ia64_fpreg fr[6];					       \ | 
|  | efi_char16_t *adata = NULL;					       \ | 
|  | \ | 
|  | if (data)							       \ | 
|  | adata = adjust_arg(data);				       \ | 
|  | \ | 
|  | ia64_save_scratch_fpregs(fr);					       \ | 
|  | efi_call_##prefix(						       \ | 
|  | (efi_reset_system_t *) __va(runtime->reset_system),	       \ | 
|  | reset_type, status, data_size, adata);			       \ | 
|  | /* should not return, but just in case... */			       \ | 
|  | ia64_load_scratch_fpregs(fr);					       \ | 
|  | } | 
|  |  | 
|  | #define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg)) | 
|  |  | 
|  | STUB_GET_TIME(phys, phys_ptr) | 
|  | STUB_SET_TIME(phys, phys_ptr) | 
|  | STUB_GET_WAKEUP_TIME(phys, phys_ptr) | 
|  | STUB_SET_WAKEUP_TIME(phys, phys_ptr) | 
|  | STUB_GET_VARIABLE(phys, phys_ptr) | 
|  | STUB_GET_NEXT_VARIABLE(phys, phys_ptr) | 
|  | STUB_SET_VARIABLE(phys, phys_ptr) | 
|  | STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr) | 
|  | STUB_RESET_SYSTEM(phys, phys_ptr) | 
|  |  | 
|  | #define id(arg)	arg | 
|  |  | 
|  | STUB_GET_TIME(virt, id) | 
|  | STUB_SET_TIME(virt, id) | 
|  | STUB_GET_WAKEUP_TIME(virt, id) | 
|  | STUB_SET_WAKEUP_TIME(virt, id) | 
|  | STUB_GET_VARIABLE(virt, id) | 
|  | STUB_GET_NEXT_VARIABLE(virt, id) | 
|  | STUB_SET_VARIABLE(virt, id) | 
|  | STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id) | 
|  | STUB_RESET_SYSTEM(virt, id) | 
|  |  | 
|  | void | 
|  | efi_gettimeofday (struct timespec *ts) | 
|  | { | 
|  | efi_time_t tm; | 
|  |  | 
|  | if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) { | 
|  | memset(ts, 0, sizeof(*ts)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ts->tv_sec = mktime(tm.year, tm.month, tm.day, | 
|  | tm.hour, tm.minute, tm.second); | 
|  | ts->tv_nsec = tm.nanosecond; | 
|  | } | 
|  |  | 
|  | static int | 
|  | is_memory_available (efi_memory_desc_t *md) | 
|  | { | 
|  | if (!(md->attribute & EFI_MEMORY_WB)) | 
|  | return 0; | 
|  |  | 
|  | switch (md->type) { | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef struct kern_memdesc { | 
|  | u64 attribute; | 
|  | u64 start; | 
|  | u64 num_pages; | 
|  | } kern_memdesc_t; | 
|  |  | 
|  | static kern_memdesc_t *kern_memmap; | 
|  |  | 
|  | #define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT) | 
|  |  | 
|  | static inline u64 | 
|  | kmd_end(kern_memdesc_t *kmd) | 
|  | { | 
|  | return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | static inline u64 | 
|  | efi_md_end(efi_memory_desc_t *md) | 
|  | { | 
|  | return (md->phys_addr + efi_md_size(md)); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | efi_wb(efi_memory_desc_t *md) | 
|  | { | 
|  | return (md->attribute & EFI_MEMORY_WB); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | efi_uc(efi_memory_desc_t *md) | 
|  | { | 
|  | return (md->attribute & EFI_MEMORY_UC); | 
|  | } | 
|  |  | 
|  | static void | 
|  | walk (efi_freemem_callback_t callback, void *arg, u64 attr) | 
|  | { | 
|  | kern_memdesc_t *k; | 
|  | u64 start, end, voff; | 
|  |  | 
|  | voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET; | 
|  | for (k = kern_memmap; k->start != ~0UL; k++) { | 
|  | if (k->attribute != attr) | 
|  | continue; | 
|  | start = PAGE_ALIGN(k->start); | 
|  | end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK; | 
|  | if (start < end) | 
|  | if ((*callback)(start + voff, end + voff, arg) < 0) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map and call CALLBACK once for each EFI memory | 
|  | * descriptor that has memory that is available for OS use. | 
|  | */ | 
|  | void | 
|  | efi_memmap_walk (efi_freemem_callback_t callback, void *arg) | 
|  | { | 
|  | walk(callback, arg, EFI_MEMORY_WB); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map and call CALLBACK once for each EFI memory | 
|  | * descriptor that has memory that is available for uncached allocator. | 
|  | */ | 
|  | void | 
|  | efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg) | 
|  | { | 
|  | walk(callback, arg, EFI_MEMORY_UC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for the PAL_CODE region reported by EFI and map it using an | 
|  | * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor | 
|  | * Abstraction Layer chapter 11 in ADAG | 
|  | */ | 
|  | void * | 
|  | efi_get_pal_addr (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  | int pal_code_count = 0; | 
|  | u64 vaddr, mask; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->type != EFI_PAL_CODE) | 
|  | continue; | 
|  |  | 
|  | if (++pal_code_count > 1) { | 
|  | printk(KERN_ERR "Too many EFI Pal Code memory ranges, " | 
|  | "dropped @ %llx\n", md->phys_addr); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * The only ITLB entry in region 7 that is used is the one | 
|  | * installed by __start().  That entry covers a 64MB range. | 
|  | */ | 
|  | mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1); | 
|  | vaddr = PAGE_OFFSET + md->phys_addr; | 
|  |  | 
|  | /* | 
|  | * We must check that the PAL mapping won't overlap with the | 
|  | * kernel mapping. | 
|  | * | 
|  | * PAL code is guaranteed to be aligned on a power of 2 between | 
|  | * 4k and 256KB and that only one ITR is needed to map it. This | 
|  | * implies that the PAL code is always aligned on its size, | 
|  | * i.e., the closest matching page size supported by the TLB. | 
|  | * Therefore PAL code is guaranteed never to cross a 64MB unless | 
|  | * it is bigger than 64MB (very unlikely!).  So for now the | 
|  | * following test is enough to determine whether or not we need | 
|  | * a dedicated ITR for the PAL code. | 
|  | */ | 
|  | if ((vaddr & mask) == (KERNEL_START & mask)) { | 
|  | printk(KERN_INFO "%s: no need to install ITR for PAL code\n", | 
|  | __func__); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (efi_md_size(md) > IA64_GRANULE_SIZE) | 
|  | panic("Whoa!  PAL code size bigger than a granule!"); | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | mask  = ~((1 << IA64_GRANULE_SHIFT) - 1); | 
|  |  | 
|  | printk(KERN_INFO "CPU %d: mapping PAL code " | 
|  | "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n", | 
|  | smp_processor_id(), md->phys_addr, | 
|  | md->phys_addr + efi_md_size(md), | 
|  | vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE); | 
|  | #endif | 
|  | return __va(md->phys_addr); | 
|  | } | 
|  | printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n", | 
|  | __func__); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static u8 __init palo_checksum(u8 *buffer, u32 length) | 
|  | { | 
|  | u8 sum = 0; | 
|  | u8 *end = buffer + length; | 
|  |  | 
|  | while (buffer < end) | 
|  | sum = (u8) (sum + *(buffer++)); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse and handle PALO table which is published at: | 
|  | * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf | 
|  | */ | 
|  | static void __init handle_palo(unsigned long palo_phys) | 
|  | { | 
|  | struct palo_table *palo = __va(palo_phys); | 
|  | u8  checksum; | 
|  |  | 
|  | if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) { | 
|  | printk(KERN_INFO "PALO signature incorrect.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | checksum = palo_checksum((u8 *)palo, palo->length); | 
|  | if (checksum) { | 
|  | printk(KERN_INFO "PALO checksum incorrect.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO); | 
|  | } | 
|  |  | 
|  | void | 
|  | efi_map_pal_code (void) | 
|  | { | 
|  | void *pal_vaddr = efi_get_pal_addr (); | 
|  | u64 psr; | 
|  |  | 
|  | if (!pal_vaddr) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Cannot write to CRx with PSR.ic=1 | 
|  | */ | 
|  | psr = ia64_clear_ic(); | 
|  | ia64_itr(0x1, IA64_TR_PALCODE, | 
|  | GRANULEROUNDDOWN((unsigned long) pal_vaddr), | 
|  | pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)), | 
|  | IA64_GRANULE_SHIFT); | 
|  | paravirt_dv_serialize_data(); | 
|  | ia64_set_psr(psr);		/* restore psr */ | 
|  | } | 
|  |  | 
|  | void __init | 
|  | efi_init (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end; | 
|  | efi_config_table_t *config_tables; | 
|  | efi_char16_t *c16; | 
|  | u64 efi_desc_size; | 
|  | char *cp, vendor[100] = "unknown"; | 
|  | int i; | 
|  | unsigned long palo_phys; | 
|  |  | 
|  | /* | 
|  | * It's too early to be able to use the standard kernel command line | 
|  | * support... | 
|  | */ | 
|  | for (cp = boot_command_line; *cp; ) { | 
|  | if (memcmp(cp, "mem=", 4) == 0) { | 
|  | mem_limit = memparse(cp + 4, &cp); | 
|  | } else if (memcmp(cp, "max_addr=", 9) == 0) { | 
|  | max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); | 
|  | } else if (memcmp(cp, "min_addr=", 9) == 0) { | 
|  | min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp)); | 
|  | } else { | 
|  | while (*cp != ' ' && *cp) | 
|  | ++cp; | 
|  | while (*cp == ' ') | 
|  | ++cp; | 
|  | } | 
|  | } | 
|  | if (min_addr != 0UL) | 
|  | printk(KERN_INFO "Ignoring memory below %lluMB\n", | 
|  | min_addr >> 20); | 
|  | if (max_addr != ~0UL) | 
|  | printk(KERN_INFO "Ignoring memory above %lluMB\n", | 
|  | max_addr >> 20); | 
|  |  | 
|  | efi.systab = __va(ia64_boot_param->efi_systab); | 
|  |  | 
|  | /* | 
|  | * Verify the EFI Table | 
|  | */ | 
|  | if (efi.systab == NULL) | 
|  | panic("Whoa! Can't find EFI system table.\n"); | 
|  | if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) | 
|  | panic("Whoa! EFI system table signature incorrect\n"); | 
|  | if ((efi.systab->hdr.revision >> 16) == 0) | 
|  | printk(KERN_WARNING "Warning: EFI system table version " | 
|  | "%d.%02d, expected 1.00 or greater\n", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff); | 
|  |  | 
|  | config_tables = __va(efi.systab->tables); | 
|  |  | 
|  | /* Show what we know for posterity */ | 
|  | c16 = __va(efi.systab->fw_vendor); | 
|  | if (c16) { | 
|  | for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i) | 
|  | vendor[i] = *c16++; | 
|  | vendor[i] = '\0'; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "EFI v%u.%.02u by %s:", | 
|  | efi.systab->hdr.revision >> 16, | 
|  | efi.systab->hdr.revision & 0xffff, vendor); | 
|  |  | 
|  | efi.mps        = EFI_INVALID_TABLE_ADDR; | 
|  | efi.acpi       = EFI_INVALID_TABLE_ADDR; | 
|  | efi.acpi20     = EFI_INVALID_TABLE_ADDR; | 
|  | efi.smbios     = EFI_INVALID_TABLE_ADDR; | 
|  | efi.sal_systab = EFI_INVALID_TABLE_ADDR; | 
|  | efi.boot_info  = EFI_INVALID_TABLE_ADDR; | 
|  | efi.hcdp       = EFI_INVALID_TABLE_ADDR; | 
|  | efi.uga        = EFI_INVALID_TABLE_ADDR; | 
|  |  | 
|  | palo_phys      = EFI_INVALID_TABLE_ADDR; | 
|  |  | 
|  | for (i = 0; i < (int) efi.systab->nr_tables; i++) { | 
|  | if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) { | 
|  | efi.mps = config_tables[i].table; | 
|  | printk(" MPS=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) { | 
|  | efi.acpi20 = config_tables[i].table; | 
|  | printk(" ACPI 2.0=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) { | 
|  | efi.acpi = config_tables[i].table; | 
|  | printk(" ACPI=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) { | 
|  | efi.smbios = config_tables[i].table; | 
|  | printk(" SMBIOS=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) { | 
|  | efi.sal_systab = config_tables[i].table; | 
|  | printk(" SALsystab=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) { | 
|  | efi.hcdp = config_tables[i].table; | 
|  | printk(" HCDP=0x%lx", config_tables[i].table); | 
|  | } else if (efi_guidcmp(config_tables[i].guid, | 
|  | PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) { | 
|  | palo_phys = config_tables[i].table; | 
|  | printk(" PALO=0x%lx", config_tables[i].table); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | if (palo_phys != EFI_INVALID_TABLE_ADDR) | 
|  | handle_palo(palo_phys); | 
|  |  | 
|  | runtime = __va(efi.systab->runtime); | 
|  | efi.get_time = phys_get_time; | 
|  | efi.set_time = phys_set_time; | 
|  | efi.get_wakeup_time = phys_get_wakeup_time; | 
|  | efi.set_wakeup_time = phys_set_wakeup_time; | 
|  | efi.get_variable = phys_get_variable; | 
|  | efi.get_next_variable = phys_get_next_variable; | 
|  | efi.set_variable = phys_set_variable; | 
|  | efi.get_next_high_mono_count = phys_get_next_high_mono_count; | 
|  | efi.reset_system = phys_reset_system; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | #if EFI_DEBUG | 
|  | /* print EFI memory map: */ | 
|  | { | 
|  | efi_memory_desc_t *md; | 
|  | void *p; | 
|  |  | 
|  | for (i = 0, p = efi_map_start; p < efi_map_end; | 
|  | ++i, p += efi_desc_size) | 
|  | { | 
|  | const char *unit; | 
|  | unsigned long size; | 
|  |  | 
|  | md = p; | 
|  | size = md->num_pages << EFI_PAGE_SHIFT; | 
|  |  | 
|  | if ((size >> 40) > 0) { | 
|  | size >>= 40; | 
|  | unit = "TB"; | 
|  | } else if ((size >> 30) > 0) { | 
|  | size >>= 30; | 
|  | unit = "GB"; | 
|  | } else if ((size >> 20) > 0) { | 
|  | size >>= 20; | 
|  | unit = "MB"; | 
|  | } else { | 
|  | size >>= 10; | 
|  | unit = "KB"; | 
|  | } | 
|  |  | 
|  | printk("mem%02d: type=%2u, attr=0x%016lx, " | 
|  | "range=[0x%016lx-0x%016lx) (%4lu%s)\n", | 
|  | i, md->type, md->attribute, md->phys_addr, | 
|  | md->phys_addr + efi_md_size(md), size, unit); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | efi_map_pal_code(); | 
|  | efi_enter_virtual_mode(); | 
|  | } | 
|  |  | 
|  | void | 
|  | efi_enter_virtual_mode (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | efi_status_t status; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->attribute & EFI_MEMORY_RUNTIME) { | 
|  | /* | 
|  | * Some descriptors have multiple bits set, so the | 
|  | * order of the tests is relevant. | 
|  | */ | 
|  | if (md->attribute & EFI_MEMORY_WB) { | 
|  | md->virt_addr = (u64) __va(md->phys_addr); | 
|  | } else if (md->attribute & EFI_MEMORY_UC) { | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | } else if (md->attribute & EFI_MEMORY_WC) { | 
|  | #if 0 | 
|  | md->virt_addr = ia64_remap(md->phys_addr, | 
|  | (_PAGE_A | | 
|  | _PAGE_P | | 
|  | _PAGE_D | | 
|  | _PAGE_MA_WC | | 
|  | _PAGE_PL_0 | | 
|  | _PAGE_AR_RW)); | 
|  | #else | 
|  | printk(KERN_INFO "EFI_MEMORY_WC mapping\n"); | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | #endif | 
|  | } else if (md->attribute & EFI_MEMORY_WT) { | 
|  | #if 0 | 
|  | md->virt_addr = ia64_remap(md->phys_addr, | 
|  | (_PAGE_A | | 
|  | _PAGE_P | | 
|  | _PAGE_D | | 
|  | _PAGE_MA_WT | | 
|  | _PAGE_PL_0 | | 
|  | _PAGE_AR_RW)); | 
|  | #else | 
|  | printk(KERN_INFO "EFI_MEMORY_WT mapping\n"); | 
|  | md->virt_addr = (u64) ioremap(md->phys_addr, 0); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | status = efi_call_phys(__va(runtime->set_virtual_address_map), | 
|  | ia64_boot_param->efi_memmap_size, | 
|  | efi_desc_size, | 
|  | ia64_boot_param->efi_memdesc_version, | 
|  | ia64_boot_param->efi_memmap); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_WARNING "warning: unable to switch EFI into " | 
|  | "virtual mode (status=%lu)\n", status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that EFI is in virtual mode, we call the EFI functions more | 
|  | * efficiently: | 
|  | */ | 
|  | efi.get_time = virt_get_time; | 
|  | efi.set_time = virt_set_time; | 
|  | efi.get_wakeup_time = virt_get_wakeup_time; | 
|  | efi.set_wakeup_time = virt_set_wakeup_time; | 
|  | efi.get_variable = virt_get_variable; | 
|  | efi.get_next_variable = virt_get_next_variable; | 
|  | efi.set_variable = virt_set_variable; | 
|  | efi.get_next_high_mono_count = virt_get_next_high_mono_count; | 
|  | efi.reset_system = virt_reset_system; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map looking for the I/O port range.  There can only be | 
|  | * one entry of this type, other I/O port ranges should be described via ACPI. | 
|  | */ | 
|  | u64 | 
|  | efi_get_iobase (void) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) { | 
|  | if (md->attribute & EFI_MEMORY_UC) | 
|  | return md->phys_addr; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kern_memdesc * | 
|  | kern_memory_descriptor (unsigned long phys_addr) | 
|  | { | 
|  | struct kern_memdesc *md; | 
|  |  | 
|  | for (md = kern_memmap; md->start != ~0UL; md++) { | 
|  | if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT)) | 
|  | return md; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static efi_memory_desc_t * | 
|  | efi_memory_descriptor (unsigned long phys_addr) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (phys_addr - md->phys_addr < efi_md_size(md)) | 
|  | return md; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | efi_memmap_intersects (unsigned long phys_addr, unsigned long size) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  | unsigned long end; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | end = phys_addr + size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (md->phys_addr < end && efi_md_end(md) > phys_addr) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u32 | 
|  | efi_mem_type (unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); | 
|  |  | 
|  | if (md) | 
|  | return md->type; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | u64 | 
|  | efi_mem_attributes (unsigned long phys_addr) | 
|  | { | 
|  | efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); | 
|  |  | 
|  | if (md) | 
|  | return md->attribute; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(efi_mem_attributes); | 
|  |  | 
|  | u64 | 
|  | efi_mem_attribute (unsigned long phys_addr, unsigned long size) | 
|  | { | 
|  | unsigned long end = phys_addr + size; | 
|  | efi_memory_desc_t *md = efi_memory_descriptor(phys_addr); | 
|  | u64 attr; | 
|  |  | 
|  | if (!md) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells | 
|  | * the kernel that firmware needs this region mapped. | 
|  | */ | 
|  | attr = md->attribute & ~EFI_MEMORY_RUNTIME; | 
|  | do { | 
|  | unsigned long md_end = efi_md_end(md); | 
|  |  | 
|  | if (end <= md_end) | 
|  | return attr; | 
|  |  | 
|  | md = efi_memory_descriptor(md_end); | 
|  | if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr) | 
|  | return 0; | 
|  | } while (md); | 
|  | return 0;	/* never reached */ | 
|  | } | 
|  |  | 
|  | u64 | 
|  | kern_mem_attribute (unsigned long phys_addr, unsigned long size) | 
|  | { | 
|  | unsigned long end = phys_addr + size; | 
|  | struct kern_memdesc *md; | 
|  | u64 attr; | 
|  |  | 
|  | /* | 
|  | * This is a hack for ioremap calls before we set up kern_memmap. | 
|  | * Maybe we should do efi_memmap_init() earlier instead. | 
|  | */ | 
|  | if (!kern_memmap) { | 
|  | attr = efi_mem_attribute(phys_addr, size); | 
|  | if (attr & EFI_MEMORY_WB) | 
|  | return EFI_MEMORY_WB; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | md = kern_memory_descriptor(phys_addr); | 
|  | if (!md) | 
|  | return 0; | 
|  |  | 
|  | attr = md->attribute; | 
|  | do { | 
|  | unsigned long md_end = kmd_end(md); | 
|  |  | 
|  | if (end <= md_end) | 
|  | return attr; | 
|  |  | 
|  | md = kern_memory_descriptor(md_end); | 
|  | if (!md || md->attribute != attr) | 
|  | return 0; | 
|  | } while (md); | 
|  | return 0;	/* never reached */ | 
|  | } | 
|  | EXPORT_SYMBOL(kern_mem_attribute); | 
|  |  | 
|  | int | 
|  | valid_phys_addr_range (unsigned long phys_addr, unsigned long size) | 
|  | { | 
|  | u64 attr; | 
|  |  | 
|  | /* | 
|  | * /dev/mem reads and writes use copy_to_user(), which implicitly | 
|  | * uses a granule-sized kernel identity mapping.  It's really | 
|  | * only safe to do this for regions in kern_memmap.  For more | 
|  | * details, see Documentation/ia64/aliasing.txt. | 
|  | */ | 
|  | attr = kern_mem_attribute(phys_addr, size); | 
|  | if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size) | 
|  | { | 
|  | unsigned long phys_addr = pfn << PAGE_SHIFT; | 
|  | u64 attr; | 
|  |  | 
|  | attr = efi_mem_attribute(phys_addr, size); | 
|  |  | 
|  | /* | 
|  | * /dev/mem mmap uses normal user pages, so we don't need the entire | 
|  | * granule, but the entire region we're mapping must support the same | 
|  | * attribute. | 
|  | */ | 
|  | if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Intel firmware doesn't tell us about all the MMIO regions, so | 
|  | * in general we have to allow mmap requests.  But if EFI *does* | 
|  | * tell us about anything inside this region, we should deny it. | 
|  | * The user can always map a smaller region to avoid the overlap. | 
|  | */ | 
|  | if (efi_memmap_intersects(phys_addr, size)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | pgprot_t | 
|  | phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, | 
|  | pgprot_t vma_prot) | 
|  | { | 
|  | unsigned long phys_addr = pfn << PAGE_SHIFT; | 
|  | u64 attr; | 
|  |  | 
|  | /* | 
|  | * For /dev/mem mmap, we use user mappings, but if the region is | 
|  | * in kern_memmap (and hence may be covered by a kernel mapping), | 
|  | * we must use the same attribute as the kernel mapping. | 
|  | */ | 
|  | attr = kern_mem_attribute(phys_addr, size); | 
|  | if (attr & EFI_MEMORY_WB) | 
|  | return pgprot_cacheable(vma_prot); | 
|  | else if (attr & EFI_MEMORY_UC) | 
|  | return pgprot_noncached(vma_prot); | 
|  |  | 
|  | /* | 
|  | * Some chipsets don't support UC access to memory.  If | 
|  | * WB is supported, we prefer that. | 
|  | */ | 
|  | if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB) | 
|  | return pgprot_cacheable(vma_prot); | 
|  |  | 
|  | return pgprot_noncached(vma_prot); | 
|  | } | 
|  |  | 
|  | int __init | 
|  | efi_uart_console_only(void) | 
|  | { | 
|  | efi_status_t status; | 
|  | char *s, name[] = "ConOut"; | 
|  | efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID; | 
|  | efi_char16_t *utf16, name_utf16[32]; | 
|  | unsigned char data[1024]; | 
|  | unsigned long size = sizeof(data); | 
|  | struct efi_generic_dev_path *hdr, *end_addr; | 
|  | int uart = 0; | 
|  |  | 
|  | /* Convert to UTF-16 */ | 
|  | utf16 = name_utf16; | 
|  | s = name; | 
|  | while (*s) | 
|  | *utf16++ = *s++ & 0x7f; | 
|  | *utf16 = 0; | 
|  |  | 
|  | status = efi.get_variable(name_utf16, &guid, NULL, &size, data); | 
|  | if (status != EFI_SUCCESS) { | 
|  | printk(KERN_ERR "No EFI %s variable?\n", name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hdr = (struct efi_generic_dev_path *) data; | 
|  | end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size); | 
|  | while (hdr < end_addr) { | 
|  | if (hdr->type == EFI_DEV_MSG && | 
|  | hdr->sub_type == EFI_DEV_MSG_UART) | 
|  | uart = 1; | 
|  | else if (hdr->type == EFI_DEV_END_PATH || | 
|  | hdr->type == EFI_DEV_END_PATH2) { | 
|  | if (!uart) | 
|  | return 0; | 
|  | if (hdr->sub_type == EFI_DEV_END_ENTIRE) | 
|  | return 1; | 
|  | uart = 0; | 
|  | } | 
|  | hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length); | 
|  | } | 
|  | printk(KERN_ERR "Malformed %s value\n", name); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look for the first granule aligned memory descriptor memory | 
|  | * that is big enough to hold EFI memory map. Make sure this | 
|  | * descriptor is atleast granule sized so it does not get trimmed | 
|  | */ | 
|  | struct kern_memdesc * | 
|  | find_memmap_space (void) | 
|  | { | 
|  | u64	contig_low=0, contig_high=0; | 
|  | u64	as = 0, ae; | 
|  | void *efi_map_start, *efi_map_end, *p, *q; | 
|  | efi_memory_desc_t *md, *pmd = NULL, *check_md; | 
|  | u64	space_needed, efi_desc_size; | 
|  | unsigned long total_mem = 0; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | /* | 
|  | * Worst case: we need 3 kernel descriptors for each efi descriptor | 
|  | * (if every entry has a WB part in the middle, and UC head and tail), | 
|  | * plus one for the end marker. | 
|  | */ | 
|  | space_needed = sizeof(kern_memdesc_t) * | 
|  | (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1); | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { | 
|  | md = p; | 
|  | if (!efi_wb(md)) { | 
|  | continue; | 
|  | } | 
|  | if (pmd == NULL || !efi_wb(pmd) || | 
|  | efi_md_end(pmd) != md->phys_addr) { | 
|  | contig_low = GRANULEROUNDUP(md->phys_addr); | 
|  | contig_high = efi_md_end(md); | 
|  | for (q = p + efi_desc_size; q < efi_map_end; | 
|  | q += efi_desc_size) { | 
|  | check_md = q; | 
|  | if (!efi_wb(check_md)) | 
|  | break; | 
|  | if (contig_high != check_md->phys_addr) | 
|  | break; | 
|  | contig_high = efi_md_end(check_md); | 
|  | } | 
|  | contig_high = GRANULEROUNDDOWN(contig_high); | 
|  | } | 
|  | if (!is_memory_available(md) || md->type == EFI_LOADER_DATA) | 
|  | continue; | 
|  |  | 
|  | /* Round ends inward to granule boundaries */ | 
|  | as = max(contig_low, md->phys_addr); | 
|  | ae = min(contig_high, efi_md_end(md)); | 
|  |  | 
|  | /* keep within max_addr= and min_addr= command line arg */ | 
|  | as = max(as, min_addr); | 
|  | ae = min(ae, max_addr); | 
|  | if (ae <= as) | 
|  | continue; | 
|  |  | 
|  | /* avoid going over mem= command line arg */ | 
|  | if (total_mem + (ae - as) > mem_limit) | 
|  | ae -= total_mem + (ae - as) - mem_limit; | 
|  |  | 
|  | if (ae <= as) | 
|  | continue; | 
|  |  | 
|  | if (ae - as > space_needed) | 
|  | break; | 
|  | } | 
|  | if (p >= efi_map_end) | 
|  | panic("Can't allocate space for kernel memory descriptors"); | 
|  |  | 
|  | return __va(as); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the EFI memory map and gather all memory available for kernel | 
|  | * to use.  We can allocate partial granules only if the unavailable | 
|  | * parts exist, and are WB. | 
|  | */ | 
|  | unsigned long | 
|  | efi_memmap_init(u64 *s, u64 *e) | 
|  | { | 
|  | struct kern_memdesc *k, *prev = NULL; | 
|  | u64	contig_low=0, contig_high=0; | 
|  | u64	as, ae, lim; | 
|  | void *efi_map_start, *efi_map_end, *p, *q; | 
|  | efi_memory_desc_t *md, *pmd = NULL, *check_md; | 
|  | u64	efi_desc_size; | 
|  | unsigned long total_mem = 0; | 
|  |  | 
|  | k = kern_memmap = find_memmap_space(); | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) { | 
|  | md = p; | 
|  | if (!efi_wb(md)) { | 
|  | if (efi_uc(md) && | 
|  | (md->type == EFI_CONVENTIONAL_MEMORY || | 
|  | md->type == EFI_BOOT_SERVICES_DATA)) { | 
|  | k->attribute = EFI_MEMORY_UC; | 
|  | k->start = md->phys_addr; | 
|  | k->num_pages = md->num_pages; | 
|  | k++; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (pmd == NULL || !efi_wb(pmd) || | 
|  | efi_md_end(pmd) != md->phys_addr) { | 
|  | contig_low = GRANULEROUNDUP(md->phys_addr); | 
|  | contig_high = efi_md_end(md); | 
|  | for (q = p + efi_desc_size; q < efi_map_end; | 
|  | q += efi_desc_size) { | 
|  | check_md = q; | 
|  | if (!efi_wb(check_md)) | 
|  | break; | 
|  | if (contig_high != check_md->phys_addr) | 
|  | break; | 
|  | contig_high = efi_md_end(check_md); | 
|  | } | 
|  | contig_high = GRANULEROUNDDOWN(contig_high); | 
|  | } | 
|  | if (!is_memory_available(md)) | 
|  | continue; | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | /* saved_max_pfn should ignore max_addr= command line arg */ | 
|  | if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT)) | 
|  | saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT); | 
|  | #endif | 
|  | /* | 
|  | * Round ends inward to granule boundaries | 
|  | * Give trimmings to uncached allocator | 
|  | */ | 
|  | if (md->phys_addr < contig_low) { | 
|  | lim = min(efi_md_end(md), contig_low); | 
|  | if (efi_uc(md)) { | 
|  | if (k > kern_memmap && | 
|  | (k-1)->attribute == EFI_MEMORY_UC && | 
|  | kmd_end(k-1) == md->phys_addr) { | 
|  | (k-1)->num_pages += | 
|  | (lim - md->phys_addr) | 
|  | >> EFI_PAGE_SHIFT; | 
|  | } else { | 
|  | k->attribute = EFI_MEMORY_UC; | 
|  | k->start = md->phys_addr; | 
|  | k->num_pages = (lim - md->phys_addr) | 
|  | >> EFI_PAGE_SHIFT; | 
|  | k++; | 
|  | } | 
|  | } | 
|  | as = contig_low; | 
|  | } else | 
|  | as = md->phys_addr; | 
|  |  | 
|  | if (efi_md_end(md) > contig_high) { | 
|  | lim = max(md->phys_addr, contig_high); | 
|  | if (efi_uc(md)) { | 
|  | if (lim == md->phys_addr && k > kern_memmap && | 
|  | (k-1)->attribute == EFI_MEMORY_UC && | 
|  | kmd_end(k-1) == md->phys_addr) { | 
|  | (k-1)->num_pages += md->num_pages; | 
|  | } else { | 
|  | k->attribute = EFI_MEMORY_UC; | 
|  | k->start = lim; | 
|  | k->num_pages = (efi_md_end(md) - lim) | 
|  | >> EFI_PAGE_SHIFT; | 
|  | k++; | 
|  | } | 
|  | } | 
|  | ae = contig_high; | 
|  | } else | 
|  | ae = efi_md_end(md); | 
|  |  | 
|  | /* keep within max_addr= and min_addr= command line arg */ | 
|  | as = max(as, min_addr); | 
|  | ae = min(ae, max_addr); | 
|  | if (ae <= as) | 
|  | continue; | 
|  |  | 
|  | /* avoid going over mem= command line arg */ | 
|  | if (total_mem + (ae - as) > mem_limit) | 
|  | ae -= total_mem + (ae - as) - mem_limit; | 
|  |  | 
|  | if (ae <= as) | 
|  | continue; | 
|  | if (prev && kmd_end(prev) == md->phys_addr) { | 
|  | prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT; | 
|  | total_mem += ae - as; | 
|  | continue; | 
|  | } | 
|  | k->attribute = EFI_MEMORY_WB; | 
|  | k->start = as; | 
|  | k->num_pages = (ae - as) >> EFI_PAGE_SHIFT; | 
|  | total_mem += ae - as; | 
|  | prev = k++; | 
|  | } | 
|  | k->start = ~0L; /* end-marker */ | 
|  |  | 
|  | /* reserve the memory we are using for kern_memmap */ | 
|  | *s = (u64)kern_memmap; | 
|  | *e = (u64)++k; | 
|  |  | 
|  | return total_mem; | 
|  | } | 
|  |  | 
|  | void | 
|  | efi_initialize_iomem_resources(struct resource *code_resource, | 
|  | struct resource *data_resource, | 
|  | struct resource *bss_resource) | 
|  | { | 
|  | struct resource *res; | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  | char *name; | 
|  | unsigned long flags; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | res = NULL; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  |  | 
|  | if (md->num_pages == 0) /* should not happen */ | 
|  | continue; | 
|  |  | 
|  | flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 
|  | switch (md->type) { | 
|  |  | 
|  | case EFI_MEMORY_MAPPED_IO: | 
|  | case EFI_MEMORY_MAPPED_IO_PORT_SPACE: | 
|  | continue; | 
|  |  | 
|  | case EFI_LOADER_CODE: | 
|  | case EFI_LOADER_DATA: | 
|  | case EFI_BOOT_SERVICES_DATA: | 
|  | case EFI_BOOT_SERVICES_CODE: | 
|  | case EFI_CONVENTIONAL_MEMORY: | 
|  | if (md->attribute & EFI_MEMORY_WP) { | 
|  | name = "System ROM"; | 
|  | flags |= IORESOURCE_READONLY; | 
|  | } else if (md->attribute == EFI_MEMORY_UC) | 
|  | name = "Uncached RAM"; | 
|  | else | 
|  | name = "System RAM"; | 
|  | break; | 
|  |  | 
|  | case EFI_ACPI_MEMORY_NVS: | 
|  | name = "ACPI Non-volatile Storage"; | 
|  | break; | 
|  |  | 
|  | case EFI_UNUSABLE_MEMORY: | 
|  | name = "reserved"; | 
|  | flags |= IORESOURCE_DISABLED; | 
|  | break; | 
|  |  | 
|  | case EFI_RESERVED_TYPE: | 
|  | case EFI_RUNTIME_SERVICES_CODE: | 
|  | case EFI_RUNTIME_SERVICES_DATA: | 
|  | case EFI_ACPI_RECLAIM_MEMORY: | 
|  | default: | 
|  | name = "reserved"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((res = kzalloc(sizeof(struct resource), | 
|  | GFP_KERNEL)) == NULL) { | 
|  | printk(KERN_ERR | 
|  | "failed to allocate resource for iomem\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | res->name = name; | 
|  | res->start = md->phys_addr; | 
|  | res->end = md->phys_addr + efi_md_size(md) - 1; | 
|  | res->flags = flags; | 
|  |  | 
|  | if (insert_resource(&iomem_resource, res) < 0) | 
|  | kfree(res); | 
|  | else { | 
|  | /* | 
|  | * We don't know which region contains | 
|  | * kernel data so we try it repeatedly and | 
|  | * let the resource manager test it. | 
|  | */ | 
|  | insert_resource(res, code_resource); | 
|  | insert_resource(res, data_resource); | 
|  | insert_resource(res, bss_resource); | 
|  | #ifdef CONFIG_KEXEC | 
|  | insert_resource(res, &efi_memmap_res); | 
|  | insert_resource(res, &boot_param_res); | 
|  | if (crashk_res.end > crashk_res.start) | 
|  | insert_resource(res, &crashk_res); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  | /* find a block of memory aligned to 64M exclude reserved regions | 
|  | rsvd_regions are sorted | 
|  | */ | 
|  | unsigned long __init | 
|  | kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n) | 
|  | { | 
|  | int i; | 
|  | u64 start, end; | 
|  | u64 alignment = 1UL << _PAGE_SIZE_64M; | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (!efi_wb(md)) | 
|  | continue; | 
|  | start = ALIGN(md->phys_addr, alignment); | 
|  | end = efi_md_end(md); | 
|  | for (i = 0; i < n; i++) { | 
|  | if (__pa(r[i].start) >= start && __pa(r[i].end) < end) { | 
|  | if (__pa(r[i].start) > start + size) | 
|  | return start; | 
|  | start = ALIGN(__pa(r[i].end), alignment); | 
|  | if (i < n-1 && | 
|  | __pa(r[i+1].start) < start + size) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (end > start + size) | 
|  | return start; | 
|  | } | 
|  |  | 
|  | printk(KERN_WARNING | 
|  | "Cannot reserve 0x%lx byte of memory for crashdump\n", size); | 
|  | return ~0UL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | /* locate the size find a the descriptor at a certain address */ | 
|  | unsigned long __init | 
|  | vmcore_find_descriptor_size (unsigned long address) | 
|  | { | 
|  | void *efi_map_start, *efi_map_end, *p; | 
|  | efi_memory_desc_t *md; | 
|  | u64 efi_desc_size; | 
|  | unsigned long ret = 0; | 
|  |  | 
|  | efi_map_start = __va(ia64_boot_param->efi_memmap); | 
|  | efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size; | 
|  | efi_desc_size = ia64_boot_param->efi_memdesc_size; | 
|  |  | 
|  | for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) { | 
|  | md = p; | 
|  | if (efi_wb(md) && md->type == EFI_LOADER_DATA | 
|  | && md->phys_addr == address) { | 
|  | ret = efi_md_size(md); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) | 
|  | printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif |