|  | /* | 
|  | * Architecture-specific setup. | 
|  | * | 
|  | * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * Copyright (C) 2000, 2004 Intel Corp | 
|  | * 	Rohit Seth <rohit.seth@intel.com> | 
|  | * 	Suresh Siddha <suresh.b.siddha@intel.com> | 
|  | * 	Gordon Jin <gordon.jin@intel.com> | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * | 
|  | * 12/26/04 S.Siddha, G.Jin, R.Seth | 
|  | *			Add multi-threading and multi-core detection | 
|  | * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). | 
|  | * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map | 
|  | * 03/31/00 R.Seth	cpu_initialized and current->processor fixes | 
|  | * 02/04/00 D.Mosberger	some more get_cpuinfo fixes... | 
|  | * 02/01/00 R.Seth	fixed get_cpuinfo for SMP | 
|  | * 01/07/99 S.Eranian	added the support for command line argument | 
|  | * 06/24/99 W.Drummond	added boot_cpu_data. | 
|  | * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()" | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/screen_info.h> | 
|  | #include <linux/dmi.h> | 
|  | #include <linux/serial.h> | 
|  | #include <linux/serial_core.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/pm.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/crash_dump.h> | 
|  |  | 
|  | #include <asm/machvec.h> | 
|  | #include <asm/mca.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/paravirt_patch.h> | 
|  | #include <asm/patch.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/sal.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/hpsim.h> | 
|  |  | 
|  | #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) | 
|  | # error "struct cpuinfo_ia64 too big!" | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long __per_cpu_offset[NR_CPUS]; | 
|  | EXPORT_SYMBOL(__per_cpu_offset); | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); | 
|  | DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); | 
|  | unsigned long ia64_cycles_per_usec; | 
|  | struct ia64_boot_param *ia64_boot_param; | 
|  | struct screen_info screen_info; | 
|  | unsigned long vga_console_iobase; | 
|  | unsigned long vga_console_membase; | 
|  |  | 
|  | static struct resource data_resource = { | 
|  | .name	= "Kernel data", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource code_resource = { | 
|  | .name	= "Kernel code", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | static struct resource bss_resource = { | 
|  | .name	= "Kernel bss", | 
|  | .flags	= IORESOURCE_BUSY | IORESOURCE_MEM | 
|  | }; | 
|  |  | 
|  | unsigned long ia64_max_cacheline_size; | 
|  |  | 
|  | unsigned long ia64_iobase;	/* virtual address for I/O accesses */ | 
|  | EXPORT_SYMBOL(ia64_iobase); | 
|  | struct io_space io_space[MAX_IO_SPACES]; | 
|  | EXPORT_SYMBOL(io_space); | 
|  | unsigned int num_io_spaces; | 
|  |  | 
|  | /* | 
|  | * "flush_icache_range()" needs to know what processor dependent stride size to use | 
|  | * when it makes i-cache(s) coherent with d-caches. | 
|  | */ | 
|  | #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */ | 
|  | unsigned long ia64_i_cache_stride_shift = ~0; | 
|  | /* | 
|  | * "clflush_cache_range()" needs to know what processor dependent stride size to | 
|  | * use when it flushes cache lines including both d-cache and i-cache. | 
|  | */ | 
|  | /* Safest way to go: 32 bytes by 32 bytes */ | 
|  | #define	CACHE_STRIDE_SHIFT	5 | 
|  | unsigned long ia64_cache_stride_shift = ~0; | 
|  |  | 
|  | /* | 
|  | * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This | 
|  | * mask specifies a mask of address bits that must be 0 in order for two buffers to be | 
|  | * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start | 
|  | * address of the second buffer must be aligned to (merge_mask+1) in order to be | 
|  | * mergeable).  By default, we assume there is no I/O MMU which can merge physically | 
|  | * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu | 
|  | * page-size of 2^64. | 
|  | */ | 
|  | unsigned long ia64_max_iommu_merge_mask = ~0UL; | 
|  | EXPORT_SYMBOL(ia64_max_iommu_merge_mask); | 
|  |  | 
|  | /* | 
|  | * We use a special marker for the end of memory and it uses the extra (+1) slot | 
|  | */ | 
|  | struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; | 
|  | int num_rsvd_regions __initdata; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Filter incoming memory segments based on the primitive map created from the boot | 
|  | * parameters. Segments contained in the map are removed from the memory ranges. A | 
|  | * caller-specified function is called with the memory ranges that remain after filtering. | 
|  | * This routine does not assume the incoming segments are sorted. | 
|  | */ | 
|  | int __init | 
|  | filter_rsvd_memory (u64 start, u64 end, void *arg) | 
|  | { | 
|  | u64 range_start, range_end, prev_start; | 
|  | void (*func)(unsigned long, unsigned long, int); | 
|  | int i; | 
|  |  | 
|  | #if IGNORE_PFN0 | 
|  | if (start == PAGE_OFFSET) { | 
|  | printk(KERN_WARNING "warning: skipping physical page 0\n"); | 
|  | start += PAGE_SIZE; | 
|  | if (start >= end) return 0; | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * lowest possible address(walker uses virtual) | 
|  | */ | 
|  | prev_start = PAGE_OFFSET; | 
|  | func = arg; | 
|  |  | 
|  | for (i = 0; i < num_rsvd_regions; ++i) { | 
|  | range_start = max(start, prev_start); | 
|  | range_end   = min(end, rsvd_region[i].start); | 
|  |  | 
|  | if (range_start < range_end) | 
|  | call_pernode_memory(__pa(range_start), range_end - range_start, func); | 
|  |  | 
|  | /* nothing more available in this segment */ | 
|  | if (range_end == end) return 0; | 
|  |  | 
|  | prev_start = rsvd_region[i].end; | 
|  | } | 
|  | /* end of memory marker allows full processing inside loop body */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Similar to "filter_rsvd_memory()", but the reserved memory ranges | 
|  | * are not filtered out. | 
|  | */ | 
|  | int __init | 
|  | filter_memory(u64 start, u64 end, void *arg) | 
|  | { | 
|  | void (*func)(unsigned long, unsigned long, int); | 
|  |  | 
|  | #if IGNORE_PFN0 | 
|  | if (start == PAGE_OFFSET) { | 
|  | printk(KERN_WARNING "warning: skipping physical page 0\n"); | 
|  | start += PAGE_SIZE; | 
|  | if (start >= end) | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | func = arg; | 
|  | if (start < end) | 
|  | call_pernode_memory(__pa(start), end - start, func); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | sort_regions (struct rsvd_region *rsvd_region, int max) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | /* simple bubble sorting */ | 
|  | while (max--) { | 
|  | for (j = 0; j < max; ++j) { | 
|  | if (rsvd_region[j].start > rsvd_region[j+1].start) { | 
|  | struct rsvd_region tmp; | 
|  | tmp = rsvd_region[j]; | 
|  | rsvd_region[j] = rsvd_region[j + 1]; | 
|  | rsvd_region[j + 1] = tmp; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Request address space for all standard resources | 
|  | */ | 
|  | static int __init register_memory(void) | 
|  | { | 
|  | code_resource.start = ia64_tpa(_text); | 
|  | code_resource.end   = ia64_tpa(_etext) - 1; | 
|  | data_resource.start = ia64_tpa(_etext); | 
|  | data_resource.end   = ia64_tpa(_edata) - 1; | 
|  | bss_resource.start  = ia64_tpa(__bss_start); | 
|  | bss_resource.end    = ia64_tpa(_end) - 1; | 
|  | efi_initialize_iomem_resources(&code_resource, &data_resource, | 
|  | &bss_resource); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(register_memory); | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_KEXEC | 
|  |  | 
|  | /* | 
|  | * This function checks if the reserved crashkernel is allowed on the specific | 
|  | * IA64 machine flavour. Machines without an IO TLB use swiotlb and require | 
|  | * some memory below 4 GB (i.e. in 32 bit area), see the implementation of | 
|  | * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that | 
|  | * in kdump case. See the comment in sba_init() in sba_iommu.c. | 
|  | * | 
|  | * So, the only machvec that really supports loading the kdump kernel | 
|  | * over 4 GB is "sn2". | 
|  | */ | 
|  | static int __init check_crashkernel_memory(unsigned long pbase, size_t size) | 
|  | { | 
|  | if (ia64_platform_is("sn2") || ia64_platform_is("uv")) | 
|  | return 1; | 
|  | else | 
|  | return pbase < (1UL << 32); | 
|  | } | 
|  |  | 
|  | static void __init setup_crashkernel(unsigned long total, int *n) | 
|  | { | 
|  | unsigned long long base = 0, size = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = parse_crashkernel(boot_command_line, total, | 
|  | &size, &base); | 
|  | if (ret == 0 && size > 0) { | 
|  | if (!base) { | 
|  | sort_regions(rsvd_region, *n); | 
|  | base = kdump_find_rsvd_region(size, | 
|  | rsvd_region, *n); | 
|  | } | 
|  |  | 
|  | if (!check_crashkernel_memory(base, size)) { | 
|  | pr_warning("crashkernel: There would be kdump memory " | 
|  | "at %ld GB but this is unusable because it " | 
|  | "must\nbe below 4 GB. Change the memory " | 
|  | "configuration of the machine.\n", | 
|  | (unsigned long)(base >> 30)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (base != ~0UL) { | 
|  | printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " | 
|  | "for crashkernel (System RAM: %ldMB)\n", | 
|  | (unsigned long)(size >> 20), | 
|  | (unsigned long)(base >> 20), | 
|  | (unsigned long)(total >> 20)); | 
|  | rsvd_region[*n].start = | 
|  | (unsigned long)__va(base); | 
|  | rsvd_region[*n].end = | 
|  | (unsigned long)__va(base + size); | 
|  | (*n)++; | 
|  | crashk_res.start = base; | 
|  | crashk_res.end = base + size - 1; | 
|  | } | 
|  | } | 
|  | efi_memmap_res.start = ia64_boot_param->efi_memmap; | 
|  | efi_memmap_res.end = efi_memmap_res.start + | 
|  | ia64_boot_param->efi_memmap_size; | 
|  | boot_param_res.start = __pa(ia64_boot_param); | 
|  | boot_param_res.end = boot_param_res.start + | 
|  | sizeof(*ia64_boot_param); | 
|  | } | 
|  | #else | 
|  | static inline void __init setup_crashkernel(unsigned long total, int *n) | 
|  | {} | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * reserve_memory - setup reserved memory areas | 
|  | * | 
|  | * Setup the reserved memory areas set aside for the boot parameters, | 
|  | * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined, | 
|  | * see arch/ia64/include/asm/meminit.h if you need to define more. | 
|  | */ | 
|  | void __init | 
|  | reserve_memory (void) | 
|  | { | 
|  | int n = 0; | 
|  | unsigned long total_memory; | 
|  |  | 
|  | /* | 
|  | * none of the entries in this table overlap | 
|  | */ | 
|  | rsvd_region[n].start = (unsigned long) ia64_boot_param; | 
|  | rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param); | 
|  | n++; | 
|  |  | 
|  | rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); | 
|  | rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; | 
|  | n++; | 
|  |  | 
|  | rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); | 
|  | rsvd_region[n].end   = (rsvd_region[n].start | 
|  | + strlen(__va(ia64_boot_param->command_line)) + 1); | 
|  | n++; | 
|  |  | 
|  | rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); | 
|  | rsvd_region[n].end   = (unsigned long) ia64_imva(_end); | 
|  | n++; | 
|  |  | 
|  | n += paravirt_reserve_memory(&rsvd_region[n]); | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (ia64_boot_param->initrd_start) { | 
|  | rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); | 
|  | rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size; | 
|  | n++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | if (reserve_elfcorehdr(&rsvd_region[n].start, | 
|  | &rsvd_region[n].end) == 0) | 
|  | n++; | 
|  | #endif | 
|  |  | 
|  | total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); | 
|  | n++; | 
|  |  | 
|  | setup_crashkernel(total_memory, &n); | 
|  |  | 
|  | /* end of memory marker */ | 
|  | rsvd_region[n].start = ~0UL; | 
|  | rsvd_region[n].end   = ~0UL; | 
|  | n++; | 
|  |  | 
|  | num_rsvd_regions = n; | 
|  | BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); | 
|  |  | 
|  | sort_regions(rsvd_region, num_rsvd_regions); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * find_initrd - get initrd parameters from the boot parameter structure | 
|  | * | 
|  | * Grab the initrd start and end from the boot parameter struct given us by | 
|  | * the boot loader. | 
|  | */ | 
|  | void __init | 
|  | find_initrd (void) | 
|  | { | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | if (ia64_boot_param->initrd_start) { | 
|  | initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); | 
|  | initrd_end   = initrd_start+ia64_boot_param->initrd_size; | 
|  |  | 
|  | printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n", | 
|  | initrd_start, ia64_boot_param->initrd_size); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __init | 
|  | io_port_init (void) | 
|  | { | 
|  | unsigned long phys_iobase; | 
|  |  | 
|  | /* | 
|  | * Set `iobase' based on the EFI memory map or, failing that, the | 
|  | * value firmware left in ar.k0. | 
|  | * | 
|  | * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute | 
|  | * the port's virtual address, so ia32_load_state() loads it with a | 
|  | * user virtual address.  But in ia64 mode, glibc uses the | 
|  | * *physical* address in ar.k0 to mmap the appropriate area from | 
|  | * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both | 
|  | * cases, user-mode can only use the legacy 0-64K I/O port space. | 
|  | * | 
|  | * ar.k0 is not involved in kernel I/O port accesses, which can use | 
|  | * any of the I/O port spaces and are done via MMIO using the | 
|  | * virtual mmio_base from the appropriate io_space[]. | 
|  | */ | 
|  | phys_iobase = efi_get_iobase(); | 
|  | if (!phys_iobase) { | 
|  | phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); | 
|  | printk(KERN_INFO "No I/O port range found in EFI memory map, " | 
|  | "falling back to AR.KR0 (0x%lx)\n", phys_iobase); | 
|  | } | 
|  | ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); | 
|  | ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); | 
|  |  | 
|  | /* setup legacy IO port space */ | 
|  | io_space[0].mmio_base = ia64_iobase; | 
|  | io_space[0].sparse = 1; | 
|  | num_io_spaces = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * early_console_setup - setup debugging console | 
|  | * | 
|  | * Consoles started here require little enough setup that we can start using | 
|  | * them very early in the boot process, either right after the machine | 
|  | * vector initialization, or even before if the drivers can detect their hw. | 
|  | * | 
|  | * Returns non-zero if a console couldn't be setup. | 
|  | */ | 
|  | static inline int __init | 
|  | early_console_setup (char *cmdline) | 
|  | { | 
|  | int earlycons = 0; | 
|  |  | 
|  | #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE | 
|  | { | 
|  | extern int sn_serial_console_early_setup(void); | 
|  | if (!sn_serial_console_early_setup()) | 
|  | earlycons++; | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_EFI_PCDP | 
|  | if (!efi_setup_pcdp_console(cmdline)) | 
|  | earlycons++; | 
|  | #endif | 
|  | if (!simcons_register()) | 
|  | earlycons++; | 
|  |  | 
|  | return (earlycons) ? 0 : -1; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | mark_bsp_online (void) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* If we register an early console, allow CPU 0 to printk */ | 
|  | cpu_set(smp_processor_id(), cpu_online_map); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static __initdata int nomca; | 
|  | static __init int setup_nomca(char *s) | 
|  | { | 
|  | nomca = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("nomca", setup_nomca); | 
|  |  | 
|  | #ifdef CONFIG_CRASH_DUMP | 
|  | int __init reserve_elfcorehdr(u64 *start, u64 *end) | 
|  | { | 
|  | u64 length; | 
|  |  | 
|  | /* We get the address using the kernel command line, | 
|  | * but the size is extracted from the EFI tables. | 
|  | * Both address and size are required for reservation | 
|  | * to work properly. | 
|  | */ | 
|  |  | 
|  | if (!is_vmcore_usable()) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) { | 
|  | vmcore_unusable(); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *start = (unsigned long)__va(elfcorehdr_addr); | 
|  | *end = *start + length; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PROC_VMCORE */ | 
|  |  | 
|  | void __init | 
|  | setup_arch (char **cmdline_p) | 
|  | { | 
|  | unw_init(); | 
|  |  | 
|  | paravirt_arch_setup_early(); | 
|  |  | 
|  | ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); | 
|  | paravirt_patch_apply(); | 
|  |  | 
|  | *cmdline_p = __va(ia64_boot_param->command_line); | 
|  | strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); | 
|  |  | 
|  | efi_init(); | 
|  | io_port_init(); | 
|  |  | 
|  | #ifdef CONFIG_IA64_GENERIC | 
|  | /* machvec needs to be parsed from the command line | 
|  | * before parse_early_param() is called to ensure | 
|  | * that ia64_mv is initialised before any command line | 
|  | * settings may cause console setup to occur | 
|  | */ | 
|  | machvec_init_from_cmdline(*cmdline_p); | 
|  | #endif | 
|  |  | 
|  | parse_early_param(); | 
|  |  | 
|  | if (early_console_setup(*cmdline_p) == 0) | 
|  | mark_bsp_online(); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | /* Initialize the ACPI boot-time table parser */ | 
|  | acpi_table_init(); | 
|  | early_acpi_boot_init(); | 
|  | # ifdef CONFIG_ACPI_NUMA | 
|  | acpi_numa_init(); | 
|  | #  ifdef CONFIG_ACPI_HOTPLUG_CPU | 
|  | prefill_possible_map(); | 
|  | #  endif | 
|  | per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ? | 
|  | 32 : cpus_weight(early_cpu_possible_map)), | 
|  | additional_cpus > 0 ? additional_cpus : 0); | 
|  | # endif | 
|  | #endif /* CONFIG_APCI_BOOT */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | smp_build_cpu_map(); | 
|  | #endif | 
|  | find_memory(); | 
|  |  | 
|  | /* process SAL system table: */ | 
|  | ia64_sal_init(__va(efi.sal_systab)); | 
|  |  | 
|  | #ifdef CONFIG_ITANIUM | 
|  | ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); | 
|  | #else | 
|  | { | 
|  | unsigned long num_phys_stacked; | 
|  |  | 
|  | if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96) | 
|  | ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | cpu_physical_id(0) = hard_smp_processor_id(); | 
|  | #endif | 
|  |  | 
|  | cpu_init();	/* initialize the bootstrap CPU */ | 
|  | mmu_context_init();	/* initialize context_id bitmap */ | 
|  |  | 
|  | paravirt_banner(); | 
|  | paravirt_arch_setup_console(cmdline_p); | 
|  |  | 
|  | #ifdef CONFIG_VT | 
|  | if (!conswitchp) { | 
|  | # if defined(CONFIG_DUMMY_CONSOLE) | 
|  | conswitchp = &dummy_con; | 
|  | # endif | 
|  | # if defined(CONFIG_VGA_CONSOLE) | 
|  | /* | 
|  | * Non-legacy systems may route legacy VGA MMIO range to system | 
|  | * memory.  vga_con probes the MMIO hole, so memory looks like | 
|  | * a VGA device to it.  The EFI memory map can tell us if it's | 
|  | * memory so we can avoid this problem. | 
|  | */ | 
|  | if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) | 
|  | conswitchp = &vga_con; | 
|  | # endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* enable IA-64 Machine Check Abort Handling unless disabled */ | 
|  | if (paravirt_arch_setup_nomca()) | 
|  | nomca = 1; | 
|  | if (!nomca) | 
|  | ia64_mca_init(); | 
|  |  | 
|  | platform_setup(cmdline_p); | 
|  | #ifndef CONFIG_IA64_HP_SIM | 
|  | check_sal_cache_flush(); | 
|  | #endif | 
|  | paging_init(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Display cpu info for all CPUs. | 
|  | */ | 
|  | static int | 
|  | show_cpuinfo (struct seq_file *m, void *v) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | #	define lpj	c->loops_per_jiffy | 
|  | #	define cpunum	c->cpu | 
|  | #else | 
|  | #	define lpj	loops_per_jiffy | 
|  | #	define cpunum	0 | 
|  | #endif | 
|  | static struct { | 
|  | unsigned long mask; | 
|  | const char *feature_name; | 
|  | } feature_bits[] = { | 
|  | { 1UL << 0, "branchlong" }, | 
|  | { 1UL << 1, "spontaneous deferral"}, | 
|  | { 1UL << 2, "16-byte atomic ops" } | 
|  | }; | 
|  | char features[128], *cp, *sep; | 
|  | struct cpuinfo_ia64 *c = v; | 
|  | unsigned long mask; | 
|  | unsigned long proc_freq; | 
|  | int i, size; | 
|  |  | 
|  | mask = c->features; | 
|  |  | 
|  | /* build the feature string: */ | 
|  | memcpy(features, "standard", 9); | 
|  | cp = features; | 
|  | size = sizeof(features); | 
|  | sep = ""; | 
|  | for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { | 
|  | if (mask & feature_bits[i].mask) { | 
|  | cp += snprintf(cp, size, "%s%s", sep, | 
|  | feature_bits[i].feature_name), | 
|  | sep = ", "; | 
|  | mask &= ~feature_bits[i].mask; | 
|  | size = sizeof(features) - (cp - features); | 
|  | } | 
|  | } | 
|  | if (mask && size > 1) { | 
|  | /* print unknown features as a hex value */ | 
|  | snprintf(cp, size, "%s0x%lx", sep, mask); | 
|  | } | 
|  |  | 
|  | proc_freq = cpufreq_quick_get(cpunum); | 
|  | if (!proc_freq) | 
|  | proc_freq = c->proc_freq / 1000; | 
|  |  | 
|  | seq_printf(m, | 
|  | "processor  : %d\n" | 
|  | "vendor     : %s\n" | 
|  | "arch       : IA-64\n" | 
|  | "family     : %u\n" | 
|  | "model      : %u\n" | 
|  | "model name : %s\n" | 
|  | "revision   : %u\n" | 
|  | "archrev    : %u\n" | 
|  | "features   : %s\n" | 
|  | "cpu number : %lu\n" | 
|  | "cpu regs   : %u\n" | 
|  | "cpu MHz    : %lu.%03lu\n" | 
|  | "itc MHz    : %lu.%06lu\n" | 
|  | "BogoMIPS   : %lu.%02lu\n", | 
|  | cpunum, c->vendor, c->family, c->model, | 
|  | c->model_name, c->revision, c->archrev, | 
|  | features, c->ppn, c->number, | 
|  | proc_freq / 1000, proc_freq % 1000, | 
|  | c->itc_freq / 1000000, c->itc_freq % 1000000, | 
|  | lpj*HZ/500000, (lpj*HZ/5000) % 100); | 
|  | #ifdef CONFIG_SMP | 
|  | seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum])); | 
|  | if (c->socket_id != -1) | 
|  | seq_printf(m, "physical id: %u\n", c->socket_id); | 
|  | if (c->threads_per_core > 1 || c->cores_per_socket > 1) | 
|  | seq_printf(m, | 
|  | "core id    : %u\n" | 
|  | "thread id  : %u\n", | 
|  | c->core_id, c->thread_id); | 
|  | #endif | 
|  | seq_printf(m,"\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void * | 
|  | c_start (struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | while (*pos < nr_cpu_ids && !cpu_online(*pos)) | 
|  | ++*pos; | 
|  | #endif | 
|  | return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL; | 
|  | } | 
|  |  | 
|  | static void * | 
|  | c_next (struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | ++*pos; | 
|  | return c_start(m, pos); | 
|  | } | 
|  |  | 
|  | static void | 
|  | c_stop (struct seq_file *m, void *v) | 
|  | { | 
|  | } | 
|  |  | 
|  | const struct seq_operations cpuinfo_op = { | 
|  | .start =	c_start, | 
|  | .next =		c_next, | 
|  | .stop =		c_stop, | 
|  | .show =		show_cpuinfo | 
|  | }; | 
|  |  | 
|  | #define MAX_BRANDS	8 | 
|  | static char brandname[MAX_BRANDS][128]; | 
|  |  | 
|  | static char * __cpuinit | 
|  | get_model_name(__u8 family, __u8 model) | 
|  | { | 
|  | static int overflow; | 
|  | char brand[128]; | 
|  | int i; | 
|  |  | 
|  | memcpy(brand, "Unknown", 8); | 
|  | if (ia64_pal_get_brand_info(brand)) { | 
|  | if (family == 0x7) | 
|  | memcpy(brand, "Merced", 7); | 
|  | else if (family == 0x1f) switch (model) { | 
|  | case 0: memcpy(brand, "McKinley", 9); break; | 
|  | case 1: memcpy(brand, "Madison", 8); break; | 
|  | case 2: memcpy(brand, "Madison up to 9M cache", 23); break; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < MAX_BRANDS; i++) | 
|  | if (strcmp(brandname[i], brand) == 0) | 
|  | return brandname[i]; | 
|  | for (i = 0; i < MAX_BRANDS; i++) | 
|  | if (brandname[i][0] == '\0') | 
|  | return strcpy(brandname[i], brand); | 
|  | if (overflow++ == 0) | 
|  | printk(KERN_ERR | 
|  | "%s: Table overflow. Some processor model information will be missing\n", | 
|  | __func__); | 
|  | return "Unknown"; | 
|  | } | 
|  |  | 
|  | static void __cpuinit | 
|  | identify_cpu (struct cpuinfo_ia64 *c) | 
|  | { | 
|  | union { | 
|  | unsigned long bits[5]; | 
|  | struct { | 
|  | /* id 0 & 1: */ | 
|  | char vendor[16]; | 
|  |  | 
|  | /* id 2 */ | 
|  | u64 ppn;		/* processor serial number */ | 
|  |  | 
|  | /* id 3: */ | 
|  | unsigned number		:  8; | 
|  | unsigned revision	:  8; | 
|  | unsigned model		:  8; | 
|  | unsigned family		:  8; | 
|  | unsigned archrev	:  8; | 
|  | unsigned reserved	: 24; | 
|  |  | 
|  | /* id 4: */ | 
|  | u64 features; | 
|  | } field; | 
|  | } cpuid; | 
|  | pal_vm_info_1_u_t vm1; | 
|  | pal_vm_info_2_u_t vm2; | 
|  | pal_status_t status; | 
|  | unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */ | 
|  | int i; | 
|  | for (i = 0; i < 5; ++i) | 
|  | cpuid.bits[i] = ia64_get_cpuid(i); | 
|  |  | 
|  | memcpy(c->vendor, cpuid.field.vendor, 16); | 
|  | #ifdef CONFIG_SMP | 
|  | c->cpu = smp_processor_id(); | 
|  |  | 
|  | /* below default values will be overwritten  by identify_siblings() | 
|  | * for Multi-Threading/Multi-Core capable CPUs | 
|  | */ | 
|  | c->threads_per_core = c->cores_per_socket = c->num_log = 1; | 
|  | c->socket_id = -1; | 
|  |  | 
|  | identify_siblings(c); | 
|  |  | 
|  | if (c->threads_per_core > smp_num_siblings) | 
|  | smp_num_siblings = c->threads_per_core; | 
|  | #endif | 
|  | c->ppn = cpuid.field.ppn; | 
|  | c->number = cpuid.field.number; | 
|  | c->revision = cpuid.field.revision; | 
|  | c->model = cpuid.field.model; | 
|  | c->family = cpuid.field.family; | 
|  | c->archrev = cpuid.field.archrev; | 
|  | c->features = cpuid.field.features; | 
|  | c->model_name = get_model_name(c->family, c->model); | 
|  |  | 
|  | status = ia64_pal_vm_summary(&vm1, &vm2); | 
|  | if (status == PAL_STATUS_SUCCESS) { | 
|  | impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; | 
|  | phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; | 
|  | } | 
|  | c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); | 
|  | c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the following calculations: | 
|  | * | 
|  | * 1. the max. cache line size. | 
|  | * 2. the minimum of the i-cache stride sizes for "flush_icache_range()". | 
|  | * 3. the minimum of the cache stride sizes for "clflush_cache_range()". | 
|  | */ | 
|  | static void __cpuinit | 
|  | get_cache_info(void) | 
|  | { | 
|  | unsigned long line_size, max = 1; | 
|  | unsigned long l, levels, unique_caches; | 
|  | pal_cache_config_info_t cci; | 
|  | long status; | 
|  |  | 
|  | status = ia64_pal_cache_summary(&levels, &unique_caches); | 
|  | if (status != 0) { | 
|  | printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", | 
|  | __func__, status); | 
|  | max = SMP_CACHE_BYTES; | 
|  | /* Safest setup for "flush_icache_range()" */ | 
|  | ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; | 
|  | /* Safest setup for "clflush_cache_range()" */ | 
|  | ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (l = 0; l < levels; ++l) { | 
|  | /* cache_type (data_or_unified)=2 */ | 
|  | status = ia64_pal_cache_config_info(l, 2, &cci); | 
|  | if (status != 0) { | 
|  | printk(KERN_ERR "%s: ia64_pal_cache_config_info" | 
|  | "(l=%lu, 2) failed (status=%ld)\n", | 
|  | __func__, l, status); | 
|  | max = SMP_CACHE_BYTES; | 
|  | /* The safest setup for "flush_icache_range()" */ | 
|  | cci.pcci_stride = I_CACHE_STRIDE_SHIFT; | 
|  | /* The safest setup for "clflush_cache_range()" */ | 
|  | ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; | 
|  | cci.pcci_unified = 1; | 
|  | } else { | 
|  | if (cci.pcci_stride < ia64_cache_stride_shift) | 
|  | ia64_cache_stride_shift = cci.pcci_stride; | 
|  |  | 
|  | line_size = 1 << cci.pcci_line_size; | 
|  | if (line_size > max) | 
|  | max = line_size; | 
|  | } | 
|  |  | 
|  | if (!cci.pcci_unified) { | 
|  | /* cache_type (instruction)=1*/ | 
|  | status = ia64_pal_cache_config_info(l, 1, &cci); | 
|  | if (status != 0) { | 
|  | printk(KERN_ERR "%s: ia64_pal_cache_config_info" | 
|  | "(l=%lu, 1) failed (status=%ld)\n", | 
|  | __func__, l, status); | 
|  | /* The safest setup for flush_icache_range() */ | 
|  | cci.pcci_stride = I_CACHE_STRIDE_SHIFT; | 
|  | } | 
|  | } | 
|  | if (cci.pcci_stride < ia64_i_cache_stride_shift) | 
|  | ia64_i_cache_stride_shift = cci.pcci_stride; | 
|  | } | 
|  | out: | 
|  | if (max > ia64_max_cacheline_size) | 
|  | ia64_max_cacheline_size = max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpu_init() initializes state that is per-CPU.  This function acts | 
|  | * as a 'CPU state barrier', nothing should get across. | 
|  | */ | 
|  | void __cpuinit | 
|  | cpu_init (void) | 
|  | { | 
|  | extern void __cpuinit ia64_mmu_init (void *); | 
|  | static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; | 
|  | unsigned long num_phys_stacked; | 
|  | pal_vm_info_2_u_t vmi; | 
|  | unsigned int max_ctx; | 
|  | struct cpuinfo_ia64 *cpu_info; | 
|  | void *cpu_data; | 
|  |  | 
|  | cpu_data = per_cpu_init(); | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * insert boot cpu into sibling and core mapes | 
|  | * (must be done after per_cpu area is setup) | 
|  | */ | 
|  | if (smp_processor_id() == 0) { | 
|  | cpu_set(0, per_cpu(cpu_sibling_map, 0)); | 
|  | cpu_set(0, cpu_core_map[0]); | 
|  | } else { | 
|  | /* | 
|  | * Set ar.k3 so that assembly code in MCA handler can compute | 
|  | * physical addresses of per cpu variables with a simple: | 
|  | *   phys = ar.k3 + &per_cpu_var | 
|  | * and the alt-dtlb-miss handler can set per-cpu mapping into | 
|  | * the TLB when needed. head.S already did this for cpu0. | 
|  | */ | 
|  | ia64_set_kr(IA64_KR_PER_CPU_DATA, | 
|  | ia64_tpa(cpu_data) - (long) __per_cpu_start); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | get_cache_info(); | 
|  |  | 
|  | /* | 
|  | * We can't pass "local_cpu_data" to identify_cpu() because we haven't called | 
|  | * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it | 
|  | * depends on the data returned by identify_cpu().  We break the dependency by | 
|  | * accessing cpu_data() through the canonical per-CPU address. | 
|  | */ | 
|  | cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start); | 
|  | identify_cpu(cpu_info); | 
|  |  | 
|  | #ifdef CONFIG_MCKINLEY | 
|  | { | 
|  | #		define FEATURE_SET 16 | 
|  | struct ia64_pal_retval iprv; | 
|  |  | 
|  | if (cpu_info->family == 0x1f) { | 
|  | PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); | 
|  | if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) | 
|  | PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, | 
|  | (iprv.v1 | 0x80), FEATURE_SET, 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Clear the stack memory reserved for pt_regs: */ | 
|  | memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); | 
|  |  | 
|  | ia64_set_kr(IA64_KR_FPU_OWNER, 0); | 
|  |  | 
|  | /* | 
|  | * Initialize the page-table base register to a global | 
|  | * directory with all zeroes.  This ensure that we can handle | 
|  | * TLB-misses to user address-space even before we created the | 
|  | * first user address-space.  This may happen, e.g., due to | 
|  | * aggressive use of lfetch.fault. | 
|  | */ | 
|  | ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); | 
|  |  | 
|  | /* | 
|  | * Initialize default control register to defer speculative faults except | 
|  | * for those arising from TLB misses, which are not deferred.  The | 
|  | * kernel MUST NOT depend on a particular setting of these bits (in other words, | 
|  | * the kernel must have recovery code for all speculative accesses).  Turn on | 
|  | * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps | 
|  | * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll | 
|  | * be fine). | 
|  | */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR | 
|  | | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | current->active_mm = &init_mm; | 
|  | BUG_ON(current->mm); | 
|  |  | 
|  | ia64_mmu_init(ia64_imva(cpu_data)); | 
|  | ia64_mca_cpu_init(ia64_imva(cpu_data)); | 
|  |  | 
|  | /* Clear ITC to eliminate sched_clock() overflows in human time.  */ | 
|  | ia64_set_itc(0); | 
|  |  | 
|  | /* disable all local interrupt sources: */ | 
|  | ia64_set_itv(1 << 16); | 
|  | ia64_set_lrr0(1 << 16); | 
|  | ia64_set_lrr1(1 << 16); | 
|  | ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); | 
|  | ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); | 
|  |  | 
|  | /* clear TPR & XTP to enable all interrupt classes: */ | 
|  | ia64_setreg(_IA64_REG_CR_TPR, 0); | 
|  |  | 
|  | /* Clear any pending interrupts left by SAL/EFI */ | 
|  | while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) | 
|  | ia64_eoi(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | normal_xtp(); | 
|  | #endif | 
|  |  | 
|  | /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ | 
|  | if (ia64_pal_vm_summary(NULL, &vmi) == 0) { | 
|  | max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; | 
|  | setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL); | 
|  | } else { | 
|  | printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); | 
|  | max_ctx = (1U << 15) - 1;	/* use architected minimum */ | 
|  | } | 
|  | while (max_ctx < ia64_ctx.max_ctx) { | 
|  | unsigned int old = ia64_ctx.max_ctx; | 
|  | if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { | 
|  | printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " | 
|  | "stacked regs\n"); | 
|  | num_phys_stacked = 96; | 
|  | } | 
|  | /* size of physical stacked register partition plus 8 bytes: */ | 
|  | if (num_phys_stacked > max_num_phys_stacked) { | 
|  | ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); | 
|  | max_num_phys_stacked = num_phys_stacked; | 
|  | } | 
|  | platform_cpu_init(); | 
|  | pm_idle = default_idle; | 
|  | } | 
|  |  | 
|  | void __init | 
|  | check_bugs (void) | 
|  | { | 
|  | ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, | 
|  | (unsigned long) __end___mckinley_e9_bundles); | 
|  | } | 
|  |  | 
|  | static int __init run_dmi_scan(void) | 
|  | { | 
|  | dmi_scan_machine(); | 
|  | return 0; | 
|  | } | 
|  | core_initcall(run_dmi_scan); |