|  | /* | 
|  | * Architecture-specific unaligned trap handling. | 
|  | * | 
|  | * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix | 
|  | *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame | 
|  | *		stacked register returns an undefined value; it does NOT trigger a | 
|  | *		"rsvd register fault"). | 
|  | * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops. | 
|  | * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes. | 
|  | * 2001/01/17	Add support emulation of unaligned kernel accesses. | 
|  | */ | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/ratelimit.h> | 
|  |  | 
|  | #include <asm/intrinsics.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/rse.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | extern int die_if_kernel(char *str, struct pt_regs *regs, long err); | 
|  |  | 
|  | #undef DEBUG_UNALIGNED_TRAP | 
|  |  | 
|  | #ifdef DEBUG_UNALIGNED_TRAP | 
|  | # define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0) | 
|  | # define DDUMP(str,vp,len)	dump(str, vp, len) | 
|  |  | 
|  | static void | 
|  | dump (const char *str, void *vp, size_t len) | 
|  | { | 
|  | unsigned char *cp = vp; | 
|  | int i; | 
|  |  | 
|  | printk("%s", str); | 
|  | for (i = 0; i < len; ++i) | 
|  | printk (" %02x", *cp++); | 
|  | printk("\n"); | 
|  | } | 
|  | #else | 
|  | # define DPRINT(a...) | 
|  | # define DDUMP(str,vp,len) | 
|  | #endif | 
|  |  | 
|  | #define IA64_FIRST_STACKED_GR	32 | 
|  | #define IA64_FIRST_ROTATING_FR	32 | 
|  | #define SIGN_EXT9		0xffffffffffffff00ul | 
|  |  | 
|  | /* | 
|  | *  sysctl settable hook which tells the kernel whether to honor the | 
|  | *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want | 
|  | *  to allow the super user to enable/disable this for security reasons | 
|  | *  (i.e. don't allow attacker to fill up logs with unaligned accesses). | 
|  | */ | 
|  | int no_unaligned_warning; | 
|  | int unaligned_dump_stack; | 
|  |  | 
|  | /* | 
|  | * For M-unit: | 
|  | * | 
|  | *  opcode |   m  |   x6    | | 
|  | * --------|------|---------| | 
|  | * [40-37] | [36] | [35:30] | | 
|  | * --------|------|---------| | 
|  | *     4   |   1  |    6    | = 11 bits | 
|  | * -------------------------- | 
|  | * However bits [31:30] are not directly useful to distinguish between | 
|  | * load/store so we can use [35:32] instead, which gives the following | 
|  | * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer | 
|  | * checking the m-bit until later in the load/store emulation. | 
|  | */ | 
|  | #define IA64_OPCODE_MASK	0x1ef | 
|  | #define IA64_OPCODE_SHIFT	32 | 
|  |  | 
|  | /* | 
|  | * Table C-28 Integer Load/Store | 
|  | * | 
|  | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF | 
|  | * | 
|  | * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on | 
|  | * the address (bits [8:3]), so we must failed. | 
|  | */ | 
|  | #define LD_OP            0x080 | 
|  | #define LDS_OP           0x081 | 
|  | #define LDA_OP           0x082 | 
|  | #define LDSA_OP          0x083 | 
|  | #define LDBIAS_OP        0x084 | 
|  | #define LDACQ_OP         0x085 | 
|  | /* 0x086, 0x087 are not relevant */ | 
|  | #define LDCCLR_OP        0x088 | 
|  | #define LDCNC_OP         0x089 | 
|  | #define LDCCLRACQ_OP     0x08a | 
|  | #define ST_OP            0x08c | 
|  | #define STREL_OP         0x08d | 
|  | /* 0x08e,0x8f are not relevant */ | 
|  |  | 
|  | /* | 
|  | * Table C-29 Integer Load +Reg | 
|  | * | 
|  | * we use the ld->m (bit [36:36]) field to determine whether or not we have | 
|  | * a load/store of this form. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Table C-30 Integer Load/Store +Imm | 
|  | * | 
|  | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF | 
|  | * | 
|  | * ld8.fill, st8.fill  must be aligned because the Nat register are based on | 
|  | * the address, so we must fail and the program must be fixed. | 
|  | */ | 
|  | #define LD_IMM_OP            0x0a0 | 
|  | #define LDS_IMM_OP           0x0a1 | 
|  | #define LDA_IMM_OP           0x0a2 | 
|  | #define LDSA_IMM_OP          0x0a3 | 
|  | #define LDBIAS_IMM_OP        0x0a4 | 
|  | #define LDACQ_IMM_OP         0x0a5 | 
|  | /* 0x0a6, 0xa7 are not relevant */ | 
|  | #define LDCCLR_IMM_OP        0x0a8 | 
|  | #define LDCNC_IMM_OP         0x0a9 | 
|  | #define LDCCLRACQ_IMM_OP     0x0aa | 
|  | #define ST_IMM_OP            0x0ac | 
|  | #define STREL_IMM_OP         0x0ad | 
|  | /* 0x0ae,0xaf are not relevant */ | 
|  |  | 
|  | /* | 
|  | * Table C-32 Floating-point Load/Store | 
|  | */ | 
|  | #define LDF_OP           0x0c0 | 
|  | #define LDFS_OP          0x0c1 | 
|  | #define LDFA_OP          0x0c2 | 
|  | #define LDFSA_OP         0x0c3 | 
|  | /* 0x0c6 is irrelevant */ | 
|  | #define LDFCCLR_OP       0x0c8 | 
|  | #define LDFCNC_OP        0x0c9 | 
|  | /* 0x0cb is irrelevant  */ | 
|  | #define STF_OP           0x0cc | 
|  |  | 
|  | /* | 
|  | * Table C-33 Floating-point Load +Reg | 
|  | * | 
|  | * we use the ld->m (bit [36:36]) field to determine whether or not we have | 
|  | * a load/store of this form. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Table C-34 Floating-point Load/Store +Imm | 
|  | */ | 
|  | #define LDF_IMM_OP       0x0e0 | 
|  | #define LDFS_IMM_OP      0x0e1 | 
|  | #define LDFA_IMM_OP      0x0e2 | 
|  | #define LDFSA_IMM_OP     0x0e3 | 
|  | /* 0x0e6 is irrelevant */ | 
|  | #define LDFCCLR_IMM_OP   0x0e8 | 
|  | #define LDFCNC_IMM_OP    0x0e9 | 
|  | #define STF_IMM_OP       0x0ec | 
|  |  | 
|  | typedef struct { | 
|  | unsigned long	 qp:6;	/* [0:5]   */ | 
|  | unsigned long    r1:7;	/* [6:12]  */ | 
|  | unsigned long   imm:7;	/* [13:19] */ | 
|  | unsigned long    r3:7;	/* [20:26] */ | 
|  | unsigned long     x:1;  /* [27:27] */ | 
|  | unsigned long  hint:2;	/* [28:29] */ | 
|  | unsigned long x6_sz:2;	/* [30:31] */ | 
|  | unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */ | 
|  | unsigned long     m:1;	/* [36:36] */ | 
|  | unsigned long    op:4;	/* [37:40] */ | 
|  | unsigned long   pad:23; /* [41:63] */ | 
|  | } load_store_t; | 
|  |  | 
|  |  | 
|  | typedef enum { | 
|  | UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */ | 
|  | UPD_REG		/* ldXZ r1=[r3],r2     */ | 
|  | } update_t; | 
|  |  | 
|  | /* | 
|  | * We use tables to keep track of the offsets of registers in the saved state. | 
|  | * This way we save having big switch/case statements. | 
|  | * | 
|  | * We use bit 0 to indicate switch_stack or pt_regs. | 
|  | * The offset is simply shifted by 1 bit. | 
|  | * A 2-byte value should be enough to hold any kind of offset | 
|  | * | 
|  | * In case the calling convention changes (and thus pt_regs/switch_stack) | 
|  | * simply use RSW instead of RPT or vice-versa. | 
|  | */ | 
|  |  | 
|  | #define RPO(x)	((size_t) &((struct pt_regs *)0)->x) | 
|  | #define RSO(x)	((size_t) &((struct switch_stack *)0)->x) | 
|  |  | 
|  | #define RPT(x)		(RPO(x) << 1) | 
|  | #define RSW(x)		(1| RSO(x)<<1) | 
|  |  | 
|  | #define GR_OFFS(x)	(gr_info[x]>>1) | 
|  | #define GR_IN_SW(x)	(gr_info[x] & 0x1) | 
|  |  | 
|  | #define FR_OFFS(x)	(fr_info[x]>>1) | 
|  | #define FR_IN_SW(x)	(fr_info[x] & 0x1) | 
|  |  | 
|  | static u16 gr_info[32]={ | 
|  | 0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */ | 
|  |  | 
|  | RPT(r1), RPT(r2), RPT(r3), | 
|  |  | 
|  | RSW(r4), RSW(r5), RSW(r6), RSW(r7), | 
|  |  | 
|  | RPT(r8), RPT(r9), RPT(r10), RPT(r11), | 
|  | RPT(r12), RPT(r13), RPT(r14), RPT(r15), | 
|  |  | 
|  | RPT(r16), RPT(r17), RPT(r18), RPT(r19), | 
|  | RPT(r20), RPT(r21), RPT(r22), RPT(r23), | 
|  | RPT(r24), RPT(r25), RPT(r26), RPT(r27), | 
|  | RPT(r28), RPT(r29), RPT(r30), RPT(r31) | 
|  | }; | 
|  |  | 
|  | static u16 fr_info[32]={ | 
|  | 0,			/* constant : WE SHOULD NEVER GET THIS */ | 
|  | 0,			/* constant : WE SHOULD NEVER GET THIS */ | 
|  |  | 
|  | RSW(f2), RSW(f3), RSW(f4), RSW(f5), | 
|  |  | 
|  | RPT(f6), RPT(f7), RPT(f8), RPT(f9), | 
|  | RPT(f10), RPT(f11), | 
|  |  | 
|  | RSW(f12), RSW(f13), RSW(f14), | 
|  | RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), | 
|  | RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), | 
|  | RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), | 
|  | RSW(f30), RSW(f31) | 
|  | }; | 
|  |  | 
|  | /* Invalidate ALAT entry for integer register REGNO.  */ | 
|  | static void | 
|  | invala_gr (int regno) | 
|  | { | 
|  | #	define F(reg)	case reg: ia64_invala_gr(reg); break | 
|  |  | 
|  | switch (regno) { | 
|  | F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7); | 
|  | F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); | 
|  | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); | 
|  | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); | 
|  | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); | 
|  | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); | 
|  | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); | 
|  | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); | 
|  | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); | 
|  | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); | 
|  | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); | 
|  | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); | 
|  | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); | 
|  | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); | 
|  | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); | 
|  | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); | 
|  | } | 
|  | #	undef F | 
|  | } | 
|  |  | 
|  | /* Invalidate ALAT entry for floating-point register REGNO.  */ | 
|  | static void | 
|  | invala_fr (int regno) | 
|  | { | 
|  | #	define F(reg)	case reg: ia64_invala_fr(reg); break | 
|  |  | 
|  | switch (regno) { | 
|  | F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7); | 
|  | F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); | 
|  | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); | 
|  | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); | 
|  | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); | 
|  | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); | 
|  | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); | 
|  | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); | 
|  | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); | 
|  | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); | 
|  | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); | 
|  | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); | 
|  | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); | 
|  | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); | 
|  | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); | 
|  | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); | 
|  | } | 
|  | #	undef F | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) | 
|  | { | 
|  | reg += rrb; | 
|  | if (reg >= sor) | 
|  | reg -= sor; | 
|  | return reg; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; | 
|  | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; | 
|  | unsigned long rnats, nat_mask; | 
|  | unsigned long on_kbs; | 
|  | long sof = (regs->cr_ifs) & 0x7f; | 
|  | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); | 
|  | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; | 
|  | long ridx = r1 - 32; | 
|  |  | 
|  | if (ridx >= sof) { | 
|  | /* this should never happen, as the "rsvd register fault" has higher priority */ | 
|  | DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ridx < sor) | 
|  | ridx = rotate_reg(sor, rrb_gr, ridx); | 
|  |  | 
|  | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", | 
|  | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); | 
|  |  | 
|  | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); | 
|  | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); | 
|  | if (addr >= kbs) { | 
|  | /* the register is on the kernel backing store: easy... */ | 
|  | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | if ((unsigned long) rnat_addr >= sw->ar_bspstore) | 
|  | rnat_addr = &sw->ar_rnat; | 
|  | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  |  | 
|  | *addr = val; | 
|  | if (nat) | 
|  | *rnat_addr |=  nat_mask; | 
|  | else | 
|  | *rnat_addr &= ~nat_mask; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!user_stack(current, regs)) { | 
|  | DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | bspstore = (unsigned long *)regs->ar_bspstore; | 
|  | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); | 
|  | bsp     = ia64_rse_skip_regs(ubs_end, -sof); | 
|  | addr    = ia64_rse_skip_regs(bsp, ridx); | 
|  |  | 
|  | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); | 
|  |  | 
|  | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); | 
|  |  | 
|  | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  |  | 
|  | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); | 
|  | DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", | 
|  | (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); | 
|  |  | 
|  | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | if (nat) | 
|  | rnats |=  nat_mask; | 
|  | else | 
|  | rnats &= ~nat_mask; | 
|  | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); | 
|  |  | 
|  | DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; | 
|  | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; | 
|  | unsigned long rnats, nat_mask; | 
|  | unsigned long on_kbs; | 
|  | long sof = (regs->cr_ifs) & 0x7f; | 
|  | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); | 
|  | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; | 
|  | long ridx = r1 - 32; | 
|  |  | 
|  | if (ridx >= sof) { | 
|  | /* read of out-of-frame register returns an undefined value; 0 in our case.  */ | 
|  | DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (ridx < sor) | 
|  | ridx = rotate_reg(sor, rrb_gr, ridx); | 
|  |  | 
|  | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", | 
|  | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); | 
|  |  | 
|  | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); | 
|  | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); | 
|  | if (addr >= kbs) { | 
|  | /* the register is on the kernel backing store: easy... */ | 
|  | *val = *addr; | 
|  | if (nat) { | 
|  | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | if ((unsigned long) rnat_addr >= sw->ar_bspstore) | 
|  | rnat_addr = &sw->ar_rnat; | 
|  | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  | *nat = (*rnat_addr & nat_mask) != 0; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!user_stack(current, regs)) { | 
|  | DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | bspstore = (unsigned long *)regs->ar_bspstore; | 
|  | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); | 
|  | bsp     = ia64_rse_skip_regs(ubs_end, -sof); | 
|  | addr    = ia64_rse_skip_regs(bsp, ridx); | 
|  |  | 
|  | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); | 
|  |  | 
|  | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); | 
|  |  | 
|  | if (nat) { | 
|  | rnat_addr = ia64_rse_rnat_addr(addr); | 
|  | nat_mask = 1UL << ia64_rse_slot_num(addr); | 
|  |  | 
|  | DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); | 
|  |  | 
|  | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); | 
|  | *nat = (rnats & nat_mask) != 0; | 
|  | } | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | *val = 0; | 
|  | if (nat) | 
|  | *nat = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | unsigned long addr; | 
|  | unsigned long bitmask; | 
|  | unsigned long *unat; | 
|  |  | 
|  | /* | 
|  | * First takes care of stacked registers | 
|  | */ | 
|  | if (regnum >= IA64_FIRST_STACKED_GR) { | 
|  | set_rse_reg(regs, regnum, val, nat); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Using r0 as a target raises a General Exception fault which has higher priority | 
|  | * than the Unaligned Reference fault. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now look at registers in [0-31] range and init correct UNAT | 
|  | */ | 
|  | if (GR_IN_SW(regnum)) { | 
|  | addr = (unsigned long)sw; | 
|  | unat = &sw->ar_unat; | 
|  | } else { | 
|  | addr = (unsigned long)regs; | 
|  | unat = &sw->caller_unat; | 
|  | } | 
|  | DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", | 
|  | addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); | 
|  | /* | 
|  | * add offset from base of struct | 
|  | * and do it ! | 
|  | */ | 
|  | addr += GR_OFFS(regnum); | 
|  |  | 
|  | *(unsigned long *)addr = val; | 
|  |  | 
|  | /* | 
|  | * We need to clear the corresponding UNAT bit to fully emulate the load | 
|  | * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 | 
|  | */ | 
|  | bitmask   = 1UL << (addr >> 3 & 0x3f); | 
|  | DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); | 
|  | if (nat) { | 
|  | *unat |= bitmask; | 
|  | } else { | 
|  | *unat &= ~bitmask; | 
|  | } | 
|  | DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the | 
|  | * range from 32-127, result is in the range from 0-95. | 
|  | */ | 
|  | static inline unsigned long | 
|  | fph_index (struct pt_regs *regs, long regnum) | 
|  | { | 
|  | unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; | 
|  | return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *)regs - 1; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * From EAS-2.5: FPDisableFault has higher priority than Unaligned | 
|  | * Fault. Thus, when we get here, we know the partition is enabled. | 
|  | * To update f32-f127, there are three choices: | 
|  | * | 
|  | *	(1) save f32-f127 to thread.fph and update the values there | 
|  | *	(2) use a gigantic switch statement to directly access the registers | 
|  | *	(3) generate code on the fly to update the desired register | 
|  | * | 
|  | * For now, we are using approach (1). | 
|  | */ | 
|  | if (regnum >= IA64_FIRST_ROTATING_FR) { | 
|  | ia64_sync_fph(current); | 
|  | current->thread.fph[fph_index(regs, regnum)] = *fpval; | 
|  | } else { | 
|  | /* | 
|  | * pt_regs or switch_stack ? | 
|  | */ | 
|  | if (FR_IN_SW(regnum)) { | 
|  | addr = (unsigned long)sw; | 
|  | } else { | 
|  | addr = (unsigned long)regs; | 
|  | } | 
|  |  | 
|  | DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); | 
|  |  | 
|  | addr += FR_OFFS(regnum); | 
|  | *(struct ia64_fpreg *)addr = *fpval; | 
|  |  | 
|  | /* | 
|  | * mark the low partition as being used now | 
|  | * | 
|  | * It is highly unlikely that this bit is not already set, but | 
|  | * let's do it for safety. | 
|  | */ | 
|  | regs->cr_ipsr |= IA64_PSR_MFL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Those 2 inline functions generate the spilled versions of the constant floating point | 
|  | * registers which can be used with stfX | 
|  | */ | 
|  | static inline void | 
|  | float_spill_f0 (struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_stf_spill(final, 0); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | float_spill_f1 (struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_stf_spill(final, 1); | 
|  | } | 
|  |  | 
|  | static void | 
|  | getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | unsigned long addr; | 
|  |  | 
|  | /* | 
|  | * From EAS-2.5: FPDisableFault has higher priority than | 
|  | * Unaligned Fault. Thus, when we get here, we know the partition is | 
|  | * enabled. | 
|  | * | 
|  | * When regnum > 31, the register is still live and we need to force a save | 
|  | * to current->thread.fph to get access to it.  See discussion in setfpreg() | 
|  | * for reasons and other ways of doing this. | 
|  | */ | 
|  | if (regnum >= IA64_FIRST_ROTATING_FR) { | 
|  | ia64_flush_fph(current); | 
|  | *fpval = current->thread.fph[fph_index(regs, regnum)]; | 
|  | } else { | 
|  | /* | 
|  | * f0 = 0.0, f1= 1.0. Those registers are constant and are thus | 
|  | * not saved, we must generate their spilled form on the fly | 
|  | */ | 
|  | switch(regnum) { | 
|  | case 0: | 
|  | float_spill_f0(fpval); | 
|  | break; | 
|  | case 1: | 
|  | float_spill_f1(fpval); | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * pt_regs or switch_stack ? | 
|  | */ | 
|  | addr =  FR_IN_SW(regnum) ? (unsigned long)sw | 
|  | : (unsigned long)regs; | 
|  |  | 
|  | DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", | 
|  | FR_IN_SW(regnum), addr, FR_OFFS(regnum)); | 
|  |  | 
|  | addr  += FR_OFFS(regnum); | 
|  | *fpval = *(struct ia64_fpreg *)addr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void | 
|  | getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) | 
|  | { | 
|  | struct switch_stack *sw = (struct switch_stack *) regs - 1; | 
|  | unsigned long addr, *unat; | 
|  |  | 
|  | if (regnum >= IA64_FIRST_STACKED_GR) { | 
|  | get_rse_reg(regs, regnum, val, nat); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * take care of r0 (read-only always evaluate to 0) | 
|  | */ | 
|  | if (regnum == 0) { | 
|  | *val = 0; | 
|  | if (nat) | 
|  | *nat = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now look at registers in [0-31] range and init correct UNAT | 
|  | */ | 
|  | if (GR_IN_SW(regnum)) { | 
|  | addr = (unsigned long)sw; | 
|  | unat = &sw->ar_unat; | 
|  | } else { | 
|  | addr = (unsigned long)regs; | 
|  | unat = &sw->caller_unat; | 
|  | } | 
|  |  | 
|  | DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum)); | 
|  |  | 
|  | addr += GR_OFFS(regnum); | 
|  |  | 
|  | *val  = *(unsigned long *)addr; | 
|  |  | 
|  | /* | 
|  | * do it only when requested | 
|  | */ | 
|  | if (nat) | 
|  | *nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) | 
|  | { | 
|  | /* | 
|  | * IMPORTANT: | 
|  | * Given the way we handle unaligned speculative loads, we should | 
|  | * not get to this point in the code but we keep this sanity check, | 
|  | * just in case. | 
|  | */ | 
|  | if (ld.x6_op == 1 || ld.x6_op == 3) { | 
|  | printk(KERN_ERR "%s: register update on speculative load, error\n", __func__); | 
|  | if (die_if_kernel("unaligned reference on speculative load with register update\n", | 
|  | regs, 30)) | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * at this point, we know that the base register to update is valid i.e., | 
|  | * it's not r0 | 
|  | */ | 
|  | if (type == UPD_IMMEDIATE) { | 
|  | unsigned long imm; | 
|  |  | 
|  | /* | 
|  | * Load +Imm: ldXZ r1=[r3],imm(9) | 
|  | * | 
|  | * | 
|  | * form imm9: [13:19] contain the first 7 bits | 
|  | */ | 
|  | imm = ld.x << 7 | ld.imm; | 
|  |  | 
|  | /* | 
|  | * sign extend (1+8bits) if m set | 
|  | */ | 
|  | if (ld.m) imm |= SIGN_EXT9; | 
|  |  | 
|  | /* | 
|  | * ifa == r3 and we know that the NaT bit on r3 was clear so | 
|  | * we can directly use ifa. | 
|  | */ | 
|  | ifa += imm; | 
|  |  | 
|  | setreg(ld.r3, ifa, 0, regs); | 
|  |  | 
|  | DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); | 
|  |  | 
|  | } else if (ld.m) { | 
|  | unsigned long r2; | 
|  | int nat_r2; | 
|  |  | 
|  | /* | 
|  | * Load +Reg Opcode: ldXZ r1=[r3],r2 | 
|  | * | 
|  | * Note: that we update r3 even in the case of ldfX.a | 
|  | * (where the load does not happen) | 
|  | * | 
|  | * The way the load algorithm works, we know that r3 does not | 
|  | * have its NaT bit set (would have gotten NaT consumption | 
|  | * before getting the unaligned fault). So we can use ifa | 
|  | * which equals r3 at this point. | 
|  | * | 
|  | * IMPORTANT: | 
|  | * The above statement holds ONLY because we know that we | 
|  | * never reach this code when trying to do a ldX.s. | 
|  | * If we ever make it to here on an ldfX.s then | 
|  | */ | 
|  | getreg(ld.imm, &r2, &nat_r2, regs); | 
|  |  | 
|  | ifa += r2; | 
|  |  | 
|  | /* | 
|  | * propagate Nat r2 -> r3 | 
|  | */ | 
|  | setreg(ld.r3, ifa, nat_r2, regs); | 
|  |  | 
|  | DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | { | 
|  | unsigned int len = 1 << ld.x6_sz; | 
|  | unsigned long val = 0; | 
|  |  | 
|  | /* | 
|  | * r0, as target, doesn't need to be checked because Illegal Instruction | 
|  | * faults have higher priority than unaligned faults. | 
|  | * | 
|  | * r0 cannot be found as the base as it would never generate an | 
|  | * unaligned reference. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * ldX.a we will emulate load and also invalidate the ALAT entry. | 
|  | * See comment below for explanation on how we handle ldX.a | 
|  | */ | 
|  |  | 
|  | if (len != 2 && len != 4 && len != 8) { | 
|  | DPRINT("unknown size: x6=%d\n", ld.x6_sz); | 
|  | return -1; | 
|  | } | 
|  | /* this assumes little-endian byte-order: */ | 
|  | if (copy_from_user(&val, (void __user *) ifa, len)) | 
|  | return -1; | 
|  | setreg(ld.r1, val, 0, regs); | 
|  |  | 
|  | /* | 
|  | * check for updates on any kind of loads | 
|  | */ | 
|  | if (ld.op == 0x5 || ld.m) | 
|  | emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); | 
|  |  | 
|  | /* | 
|  | * handling of various loads (based on EAS2.4): | 
|  | * | 
|  | * ldX.acq (ordered load): | 
|  | *	- acquire semantics would have been used, so force fence instead. | 
|  | * | 
|  | * ldX.c.clr (check load and clear): | 
|  | *	- if we get to this handler, it's because the entry was not in the ALAT. | 
|  | *	  Therefore the operation reverts to a normal load | 
|  | * | 
|  | * ldX.c.nc (check load no clear): | 
|  | *	- same as previous one | 
|  | * | 
|  | * ldX.c.clr.acq (ordered check load and clear): | 
|  | *	- same as above for c.clr part. The load needs to have acquire semantics. So | 
|  | *	  we use the fence semantics which is stronger and thus ensures correctness. | 
|  | * | 
|  | * ldX.a (advanced load): | 
|  | *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the | 
|  | *	  address doesn't match requested size alignment. This means that we would | 
|  | *	  possibly need more than one load to get the result. | 
|  | * | 
|  | *	  The load part can be handled just like a normal load, however the difficult | 
|  | *	  part is to get the right thing into the ALAT. The critical piece of information | 
|  | *	  in the base address of the load & size. To do that, a ld.a must be executed, | 
|  | *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now | 
|  | *	  if we use the same target register, we will be okay for the check.a instruction. | 
|  | *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry | 
|  | *	  which would overlap within [r3,r3+X] (the size of the load was store in the | 
|  | *	  ALAT). If such an entry is found the entry is invalidated. But this is not good | 
|  | *	  enough, take the following example: | 
|  | *		r3=3 | 
|  | *		ld4.a r1=[r3] | 
|  | * | 
|  | *	  Could be emulated by doing: | 
|  | *		ld1.a r1=[r3],1 | 
|  | *		store to temporary; | 
|  | *		ld1.a r1=[r3],1 | 
|  | *		store & shift to temporary; | 
|  | *		ld1.a r1=[r3],1 | 
|  | *		store & shift to temporary; | 
|  | *		ld1.a r1=[r3] | 
|  | *		store & shift to temporary; | 
|  | *		r1=temporary | 
|  | * | 
|  | *	  So in this case, you would get the right value is r1 but the wrong info in | 
|  | *	  the ALAT.  Notice that you could do it in reverse to finish with address 3 | 
|  | *	  but you would still get the size wrong.  To get the size right, one needs to | 
|  | *	  execute exactly the same kind of load. You could do it from a aligned | 
|  | *	  temporary location, but you would get the address wrong. | 
|  | * | 
|  | *	  So no matter what, it is not possible to emulate an advanced load | 
|  | *	  correctly. But is that really critical ? | 
|  | * | 
|  | *	  We will always convert ld.a into a normal load with ALAT invalidated.  This | 
|  | *	  will enable compiler to do optimization where certain code path after ld.a | 
|  | *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores. | 
|  | * | 
|  | *	  If there is a store after the advanced load, one must either do a ld.c.* or | 
|  | *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no | 
|  | *	  entry found in ALAT), and that's perfectly ok because: | 
|  | * | 
|  | *		- ld.c.*, if the entry is not present a  normal load is executed | 
|  | *		- chk.a.*, if the entry is not present, execution jumps to recovery code | 
|  | * | 
|  | *	  In either case, the load can be potentially retried in another form. | 
|  | * | 
|  | *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick | 
|  | *	  up a stale entry later). The register base update MUST also be performed. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * when the load has the .acq completer then | 
|  | * use ordering fence. | 
|  | */ | 
|  | if (ld.x6_op == 0x5 || ld.x6_op == 0xa) | 
|  | mb(); | 
|  |  | 
|  | /* | 
|  | * invalidate ALAT entry in case of advanced load | 
|  | */ | 
|  | if (ld.x6_op == 0x2) | 
|  | invala_gr(ld.r1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long r2; | 
|  | unsigned int len = 1 << ld.x6_sz; | 
|  |  | 
|  | /* | 
|  | * if we get to this handler, Nat bits on both r3 and r2 have already | 
|  | * been checked. so we don't need to do it | 
|  | * | 
|  | * extract the value to be stored | 
|  | */ | 
|  | getreg(ld.imm, &r2, NULL, regs); | 
|  |  | 
|  | /* | 
|  | * we rely on the macros in unaligned.h for now i.e., | 
|  | * we let the compiler figure out how to read memory gracefully. | 
|  | * | 
|  | * We need this switch/case because the way the inline function | 
|  | * works. The code is optimized by the compiler and looks like | 
|  | * a single switch/case. | 
|  | */ | 
|  | DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); | 
|  |  | 
|  | if (len != 2 && len != 4 && len != 8) { | 
|  | DPRINT("unknown size: x6=%d\n", ld.x6_sz); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* this assumes little-endian byte-order: */ | 
|  | if (copy_to_user((void __user *) ifa, &r2, len)) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * stX [r3]=r2,imm(9) | 
|  | * | 
|  | * NOTE: | 
|  | * ld.r3 can never be r0, because r0 would not generate an | 
|  | * unaligned access. | 
|  | */ | 
|  | if (ld.op == 0x5) { | 
|  | unsigned long imm; | 
|  |  | 
|  | /* | 
|  | * form imm9: [12:6] contain first 7bits | 
|  | */ | 
|  | imm = ld.x << 7 | ld.r1; | 
|  | /* | 
|  | * sign extend (8bits) if m set | 
|  | */ | 
|  | if (ld.m) imm |= SIGN_EXT9; | 
|  | /* | 
|  | * ifa == r3 (NaT is necessarily cleared) | 
|  | */ | 
|  | ifa += imm; | 
|  |  | 
|  | DPRINT("imm=%lx r3=%lx\n", imm, ifa); | 
|  |  | 
|  | setreg(ld.r3, ifa, 0, regs); | 
|  | } | 
|  | /* | 
|  | * we don't have alat_invalidate_multiple() so we need | 
|  | * to do the complete flush :-<< | 
|  | */ | 
|  | ia64_invala(); | 
|  |  | 
|  | /* | 
|  | * stX.rel: use fence instead of release | 
|  | */ | 
|  | if (ld.x6_op == 0xd) | 
|  | mb(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * floating point operations sizes in bytes | 
|  | */ | 
|  | static const unsigned char float_fsz[4]={ | 
|  | 10, /* extended precision (e) */ | 
|  | 8,  /* integer (8)            */ | 
|  | 4,  /* single precision (s)   */ | 
|  | 8   /* double precision (d)   */ | 
|  | }; | 
|  |  | 
|  | static inline void | 
|  | mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldfe(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stf_spill(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldf8(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stf_spill(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldfs(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stf_spill(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldfd(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stf_spill(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldf_fill(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stfe(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldf_fill(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stf8(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldf_fill(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stfs(final, 6); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) | 
|  | { | 
|  | ia64_ldf_fill(6, init); | 
|  | ia64_stop(); | 
|  | ia64_stfd(final, 6); | 
|  | } | 
|  |  | 
|  | static int | 
|  | emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | { | 
|  | struct ia64_fpreg fpr_init[2]; | 
|  | struct ia64_fpreg fpr_final[2]; | 
|  | unsigned long len = float_fsz[ld.x6_sz]; | 
|  |  | 
|  | /* | 
|  | * fr0 & fr1 don't need to be checked because Illegal Instruction faults have | 
|  | * higher priority than unaligned faults. | 
|  | * | 
|  | * r0 cannot be found as the base as it would never generate an unaligned | 
|  | * reference. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * make sure we get clean buffers | 
|  | */ | 
|  | memset(&fpr_init, 0, sizeof(fpr_init)); | 
|  | memset(&fpr_final, 0, sizeof(fpr_final)); | 
|  |  | 
|  | /* | 
|  | * ldfpX.a: we don't try to emulate anything but we must | 
|  | * invalidate the ALAT entry and execute updates, if any. | 
|  | */ | 
|  | if (ld.x6_op != 0x2) { | 
|  | /* | 
|  | * This assumes little-endian byte-order.  Note that there is no "ldfpe" | 
|  | * instruction: | 
|  | */ | 
|  | if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) | 
|  | || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) | 
|  | return -1; | 
|  |  | 
|  | DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); | 
|  | DDUMP("frp_init =", &fpr_init, 2*len); | 
|  | /* | 
|  | * XXX fixme | 
|  | * Could optimize inlines by using ldfpX & 2 spills | 
|  | */ | 
|  | switch( ld.x6_sz ) { | 
|  | case 0: | 
|  | mem2float_extended(&fpr_init[0], &fpr_final[0]); | 
|  | mem2float_extended(&fpr_init[1], &fpr_final[1]); | 
|  | break; | 
|  | case 1: | 
|  | mem2float_integer(&fpr_init[0], &fpr_final[0]); | 
|  | mem2float_integer(&fpr_init[1], &fpr_final[1]); | 
|  | break; | 
|  | case 2: | 
|  | mem2float_single(&fpr_init[0], &fpr_final[0]); | 
|  | mem2float_single(&fpr_init[1], &fpr_final[1]); | 
|  | break; | 
|  | case 3: | 
|  | mem2float_double(&fpr_init[0], &fpr_final[0]); | 
|  | mem2float_double(&fpr_init[1], &fpr_final[1]); | 
|  | break; | 
|  | } | 
|  | DDUMP("fpr_final =", &fpr_final, 2*len); | 
|  | /* | 
|  | * XXX fixme | 
|  | * | 
|  | * A possible optimization would be to drop fpr_final and directly | 
|  | * use the storage from the saved context i.e., the actual final | 
|  | * destination (pt_regs, switch_stack or thread structure). | 
|  | */ | 
|  | setfpreg(ld.r1, &fpr_final[0], regs); | 
|  | setfpreg(ld.imm, &fpr_final[1], regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for updates: only immediate updates are available for this | 
|  | * instruction. | 
|  | */ | 
|  | if (ld.m) { | 
|  | /* | 
|  | * the immediate is implicit given the ldsz of the operation: | 
|  | * single: 8 (2x4) and for  all others it's 16 (2x8) | 
|  | */ | 
|  | ifa += len<<1; | 
|  |  | 
|  | /* | 
|  | * IMPORTANT: | 
|  | * the fact that we force the NaT of r3 to zero is ONLY valid | 
|  | * as long as we don't come here with a ldfpX.s. | 
|  | * For this reason we keep this sanity check | 
|  | */ | 
|  | if (ld.x6_op == 1 || ld.x6_op == 3) | 
|  | printk(KERN_ERR "%s: register update on speculative load pair, error\n", | 
|  | __func__); | 
|  |  | 
|  | setreg(ld.r3, ifa, 0, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate ALAT entries, if any, for both registers. | 
|  | */ | 
|  | if (ld.x6_op == 0x2) { | 
|  | invala_fr(ld.r1); | 
|  | invala_fr(ld.imm); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | { | 
|  | struct ia64_fpreg fpr_init; | 
|  | struct ia64_fpreg fpr_final; | 
|  | unsigned long len = float_fsz[ld.x6_sz]; | 
|  |  | 
|  | /* | 
|  | * fr0 & fr1 don't need to be checked because Illegal Instruction | 
|  | * faults have higher priority than unaligned faults. | 
|  | * | 
|  | * r0 cannot be found as the base as it would never generate an | 
|  | * unaligned reference. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * make sure we get clean buffers | 
|  | */ | 
|  | memset(&fpr_init,0, sizeof(fpr_init)); | 
|  | memset(&fpr_final,0, sizeof(fpr_final)); | 
|  |  | 
|  | /* | 
|  | * ldfX.a we don't try to emulate anything but we must | 
|  | * invalidate the ALAT entry. | 
|  | * See comments in ldX for descriptions on how the various loads are handled. | 
|  | */ | 
|  | if (ld.x6_op != 0x2) { | 
|  | if (copy_from_user(&fpr_init, (void __user *) ifa, len)) | 
|  | return -1; | 
|  |  | 
|  | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); | 
|  | DDUMP("fpr_init =", &fpr_init, len); | 
|  | /* | 
|  | * we only do something for x6_op={0,8,9} | 
|  | */ | 
|  | switch( ld.x6_sz ) { | 
|  | case 0: | 
|  | mem2float_extended(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 1: | 
|  | mem2float_integer(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 2: | 
|  | mem2float_single(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 3: | 
|  | mem2float_double(&fpr_init, &fpr_final); | 
|  | break; | 
|  | } | 
|  | DDUMP("fpr_final =", &fpr_final, len); | 
|  | /* | 
|  | * XXX fixme | 
|  | * | 
|  | * A possible optimization would be to drop fpr_final and directly | 
|  | * use the storage from the saved context i.e., the actual final | 
|  | * destination (pt_regs, switch_stack or thread structure). | 
|  | */ | 
|  | setfpreg(ld.r1, &fpr_final, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check for updates on any loads | 
|  | */ | 
|  | if (ld.op == 0x7 || ld.m) | 
|  | emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); | 
|  |  | 
|  | /* | 
|  | * invalidate ALAT entry in case of advanced floating point loads | 
|  | */ | 
|  | if (ld.x6_op == 0x2) | 
|  | invala_fr(ld.r1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) | 
|  | { | 
|  | struct ia64_fpreg fpr_init; | 
|  | struct ia64_fpreg fpr_final; | 
|  | unsigned long len = float_fsz[ld.x6_sz]; | 
|  |  | 
|  | /* | 
|  | * make sure we get clean buffers | 
|  | */ | 
|  | memset(&fpr_init,0, sizeof(fpr_init)); | 
|  | memset(&fpr_final,0, sizeof(fpr_final)); | 
|  |  | 
|  | /* | 
|  | * if we get to this handler, Nat bits on both r3 and r2 have already | 
|  | * been checked. so we don't need to do it | 
|  | * | 
|  | * extract the value to be stored | 
|  | */ | 
|  | getfpreg(ld.imm, &fpr_init, regs); | 
|  | /* | 
|  | * during this step, we extract the spilled registers from the saved | 
|  | * context i.e., we refill. Then we store (no spill) to temporary | 
|  | * aligned location | 
|  | */ | 
|  | switch( ld.x6_sz ) { | 
|  | case 0: | 
|  | float2mem_extended(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 1: | 
|  | float2mem_integer(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 2: | 
|  | float2mem_single(&fpr_init, &fpr_final); | 
|  | break; | 
|  | case 3: | 
|  | float2mem_double(&fpr_init, &fpr_final); | 
|  | break; | 
|  | } | 
|  | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); | 
|  | DDUMP("fpr_init =", &fpr_init, len); | 
|  | DDUMP("fpr_final =", &fpr_final, len); | 
|  |  | 
|  | if (copy_to_user((void __user *) ifa, &fpr_final, len)) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * stfX [r3]=r2,imm(9) | 
|  | * | 
|  | * NOTE: | 
|  | * ld.r3 can never be r0, because r0 would not generate an | 
|  | * unaligned access. | 
|  | */ | 
|  | if (ld.op == 0x7) { | 
|  | unsigned long imm; | 
|  |  | 
|  | /* | 
|  | * form imm9: [12:6] contain first 7bits | 
|  | */ | 
|  | imm = ld.x << 7 | ld.r1; | 
|  | /* | 
|  | * sign extend (8bits) if m set | 
|  | */ | 
|  | if (ld.m) | 
|  | imm |= SIGN_EXT9; | 
|  | /* | 
|  | * ifa == r3 (NaT is necessarily cleared) | 
|  | */ | 
|  | ifa += imm; | 
|  |  | 
|  | DPRINT("imm=%lx r3=%lx\n", imm, ifa); | 
|  |  | 
|  | setreg(ld.r3, ifa, 0, regs); | 
|  | } | 
|  | /* | 
|  | * we don't have alat_invalidate_multiple() so we need | 
|  | * to do the complete flush :-<< | 
|  | */ | 
|  | ia64_invala(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we log the unaligned access, so that user/sysadmin can notice it and | 
|  | * eventually fix the program.  However, we don't want to do that for every access so we | 
|  | * pace it with jiffies. | 
|  | */ | 
|  | static DEFINE_RATELIMIT_STATE(logging_rate_limit, 5 * HZ, 5); | 
|  |  | 
|  | void | 
|  | ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) | 
|  | { | 
|  | struct ia64_psr *ipsr = ia64_psr(regs); | 
|  | mm_segment_t old_fs = get_fs(); | 
|  | unsigned long bundle[2]; | 
|  | unsigned long opcode; | 
|  | struct siginfo si; | 
|  | const struct exception_table_entry *eh = NULL; | 
|  | union { | 
|  | unsigned long l; | 
|  | load_store_t insn; | 
|  | } u; | 
|  | int ret = -1; | 
|  |  | 
|  | if (ia64_psr(regs)->be) { | 
|  | /* we don't support big-endian accesses */ | 
|  | if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0)) | 
|  | return; | 
|  | goto force_sigbus; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Treat kernel accesses for which there is an exception handler entry the same as | 
|  | * user-level unaligned accesses.  Otherwise, a clever program could trick this | 
|  | * handler into reading an arbitrary kernel addresses... | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); | 
|  | if (user_mode(regs) || eh) { | 
|  | if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) | 
|  | goto force_sigbus; | 
|  |  | 
|  | if (!no_unaligned_warning && | 
|  | !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) && | 
|  | __ratelimit(&logging_rate_limit)) | 
|  | { | 
|  | char buf[200];	/* comm[] is at most 16 bytes... */ | 
|  | size_t len; | 
|  |  | 
|  | len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " | 
|  | "ip=0x%016lx\n\r", current->comm, | 
|  | task_pid_nr(current), | 
|  | ifa, regs->cr_iip + ipsr->ri); | 
|  | /* | 
|  | * Don't call tty_write_message() if we're in the kernel; we might | 
|  | * be holding locks... | 
|  | */ | 
|  | if (user_mode(regs)) | 
|  | tty_write_message(current->signal->tty, buf); | 
|  | buf[len-1] = '\0';	/* drop '\r' */ | 
|  | /* watch for command names containing %s */ | 
|  | printk(KERN_WARNING "%s", buf); | 
|  | } else { | 
|  | if (no_unaligned_warning) { | 
|  | printk_once(KERN_WARNING "%s(%d) encountered an " | 
|  | "unaligned exception which required\n" | 
|  | "kernel assistance, which degrades " | 
|  | "the performance of the application.\n" | 
|  | "Unaligned exception warnings have " | 
|  | "been disabled by the system " | 
|  | "administrator\n" | 
|  | "echo 0 > /proc/sys/kernel/ignore-" | 
|  | "unaligned-usertrap to re-enable\n", | 
|  | current->comm, task_pid_nr(current)); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (__ratelimit(&logging_rate_limit)) { | 
|  | printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", | 
|  | ifa, regs->cr_iip + ipsr->ri); | 
|  | if (unaligned_dump_stack) | 
|  | dump_stack(); | 
|  | } | 
|  | set_fs(KERNEL_DS); | 
|  | } | 
|  |  | 
|  | DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", | 
|  | regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); | 
|  |  | 
|  | if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) | 
|  | goto failure; | 
|  |  | 
|  | /* | 
|  | * extract the instruction from the bundle given the slot number | 
|  | */ | 
|  | switch (ipsr->ri) { | 
|  | case 0: u.l = (bundle[0] >>  5); break; | 
|  | case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; | 
|  | case 2: u.l = (bundle[1] >> 23); break; | 
|  | } | 
|  | opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; | 
|  |  | 
|  | DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " | 
|  | "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, | 
|  | u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); | 
|  |  | 
|  | /* | 
|  | * IMPORTANT: | 
|  | * Notice that the switch statement DOES not cover all possible instructions | 
|  | * that DO generate unaligned references. This is made on purpose because for some | 
|  | * instructions it DOES NOT make sense to try and emulate the access. Sometimes it | 
|  | * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., | 
|  | * the program will get a signal and die: | 
|  | * | 
|  | *	load/store: | 
|  | *		- ldX.spill | 
|  | *		- stX.spill | 
|  | *	Reason: RNATs are based on addresses | 
|  | *		- ld16 | 
|  | *		- st16 | 
|  | *	Reason: ld16 and st16 are supposed to occur in a single | 
|  | *		memory op | 
|  | * | 
|  | *	synchronization: | 
|  | *		- cmpxchg | 
|  | *		- fetchadd | 
|  | *		- xchg | 
|  | *	Reason: ATOMIC operations cannot be emulated properly using multiple | 
|  | *	        instructions. | 
|  | * | 
|  | *	speculative loads: | 
|  | *		- ldX.sZ | 
|  | *	Reason: side effects, code must be ready to deal with failure so simpler | 
|  | *		to let the load fail. | 
|  | * --------------------------------------------------------------------------------- | 
|  | * XXX fixme | 
|  | * | 
|  | * I would like to get rid of this switch case and do something | 
|  | * more elegant. | 
|  | */ | 
|  | switch (opcode) { | 
|  | case LDS_OP: | 
|  | case LDSA_OP: | 
|  | if (u.insn.x) | 
|  | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | goto failure; | 
|  | /* no break */ | 
|  | case LDS_IMM_OP: | 
|  | case LDSA_IMM_OP: | 
|  | case LDFS_OP: | 
|  | case LDFSA_OP: | 
|  | case LDFS_IMM_OP: | 
|  | /* | 
|  | * The instruction will be retried with deferred exceptions turned on, and | 
|  | * we should get Nat bit installed | 
|  | * | 
|  | * IMPORTANT: When PSR_ED is set, the register & immediate update forms | 
|  | * are actually executed even though the operation failed. So we don't | 
|  | * need to take care of this. | 
|  | */ | 
|  | DPRINT("forcing PSR_ED\n"); | 
|  | regs->cr_ipsr |= IA64_PSR_ED; | 
|  | goto done; | 
|  |  | 
|  | case LD_OP: | 
|  | case LDA_OP: | 
|  | case LDBIAS_OP: | 
|  | case LDACQ_OP: | 
|  | case LDCCLR_OP: | 
|  | case LDCNC_OP: | 
|  | case LDCCLRACQ_OP: | 
|  | if (u.insn.x) | 
|  | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | goto failure; | 
|  | /* no break */ | 
|  | case LD_IMM_OP: | 
|  | case LDA_IMM_OP: | 
|  | case LDBIAS_IMM_OP: | 
|  | case LDACQ_IMM_OP: | 
|  | case LDCCLR_IMM_OP: | 
|  | case LDCNC_IMM_OP: | 
|  | case LDCCLRACQ_IMM_OP: | 
|  | ret = emulate_load_int(ifa, u.insn, regs); | 
|  | break; | 
|  |  | 
|  | case ST_OP: | 
|  | case STREL_OP: | 
|  | if (u.insn.x) | 
|  | /* oops, really a semaphore op (cmpxchg, etc) */ | 
|  | goto failure; | 
|  | /* no break */ | 
|  | case ST_IMM_OP: | 
|  | case STREL_IMM_OP: | 
|  | ret = emulate_store_int(ifa, u.insn, regs); | 
|  | break; | 
|  |  | 
|  | case LDF_OP: | 
|  | case LDFA_OP: | 
|  | case LDFCCLR_OP: | 
|  | case LDFCNC_OP: | 
|  | if (u.insn.x) | 
|  | ret = emulate_load_floatpair(ifa, u.insn, regs); | 
|  | else | 
|  | ret = emulate_load_float(ifa, u.insn, regs); | 
|  | break; | 
|  |  | 
|  | case LDF_IMM_OP: | 
|  | case LDFA_IMM_OP: | 
|  | case LDFCCLR_IMM_OP: | 
|  | case LDFCNC_IMM_OP: | 
|  | ret = emulate_load_float(ifa, u.insn, regs); | 
|  | break; | 
|  |  | 
|  | case STF_OP: | 
|  | case STF_IMM_OP: | 
|  | ret = emulate_store_float(ifa, u.insn, regs); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | goto failure; | 
|  | } | 
|  | DPRINT("ret=%d\n", ret); | 
|  | if (ret) | 
|  | goto failure; | 
|  |  | 
|  | if (ipsr->ri == 2) | 
|  | /* | 
|  | * given today's architecture this case is not likely to happen because a | 
|  | * memory access instruction (M) can never be in the last slot of a | 
|  | * bundle. But let's keep it for now. | 
|  | */ | 
|  | regs->cr_iip += 16; | 
|  | ipsr->ri = (ipsr->ri + 1) & 0x3; | 
|  |  | 
|  | DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); | 
|  | done: | 
|  | set_fs(old_fs);		/* restore original address limit */ | 
|  | return; | 
|  |  | 
|  | failure: | 
|  | /* something went wrong... */ | 
|  | if (!user_mode(regs)) { | 
|  | if (eh) { | 
|  | ia64_handle_exception(regs, eh); | 
|  | goto done; | 
|  | } | 
|  | if (die_if_kernel("error during unaligned kernel access\n", regs, ret)) | 
|  | return; | 
|  | /* NOT_REACHED */ | 
|  | } | 
|  | force_sigbus: | 
|  | si.si_signo = SIGBUS; | 
|  | si.si_errno = 0; | 
|  | si.si_code = BUS_ADRALN; | 
|  | si.si_addr = (void __user *) ifa; | 
|  | si.si_flags = 0; | 
|  | si.si_isr = 0; | 
|  | si.si_imm = 0; | 
|  | force_sig_info(SIGBUS, &si, current); | 
|  | goto done; | 
|  | } |