|  | /* | 
|  | * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2001-2011 Anton Altaparmakov and Tuxera Inc. | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/uio.h> | 
|  | #include <linux/writeback.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include "attrib.h" | 
|  | #include "bitmap.h" | 
|  | #include "inode.h" | 
|  | #include "debug.h" | 
|  | #include "lcnalloc.h" | 
|  | #include "malloc.h" | 
|  | #include "mft.h" | 
|  | #include "ntfs.h" | 
|  |  | 
|  | /** | 
|  | * ntfs_file_open - called when an inode is about to be opened | 
|  | * @vi:		inode to be opened | 
|  | * @filp:	file structure describing the inode | 
|  | * | 
|  | * Limit file size to the page cache limit on architectures where unsigned long | 
|  | * is 32-bits. This is the most we can do for now without overflowing the page | 
|  | * cache page index. Doing it this way means we don't run into problems because | 
|  | * of existing too large files. It would be better to allow the user to read | 
|  | * the beginning of the file but I doubt very much anyone is going to hit this | 
|  | * check on a 32-bit architecture, so there is no point in adding the extra | 
|  | * complexity required to support this. | 
|  | * | 
|  | * On 64-bit architectures, the check is hopefully optimized away by the | 
|  | * compiler. | 
|  | * | 
|  | * After the check passes, just call generic_file_open() to do its work. | 
|  | */ | 
|  | static int ntfs_file_open(struct inode *vi, struct file *filp) | 
|  | { | 
|  | if (sizeof(unsigned long) < 8) { | 
|  | if (i_size_read(vi) > MAX_LFS_FILESIZE) | 
|  | return -EOVERFLOW; | 
|  | } | 
|  | return generic_file_open(vi, filp); | 
|  | } | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | /** | 
|  | * ntfs_attr_extend_initialized - extend the initialized size of an attribute | 
|  | * @ni:			ntfs inode of the attribute to extend | 
|  | * @new_init_size:	requested new initialized size in bytes | 
|  | * @cached_page:	store any allocated but unused page here | 
|  | * @lru_pvec:		lru-buffering pagevec of the caller | 
|  | * | 
|  | * Extend the initialized size of an attribute described by the ntfs inode @ni | 
|  | * to @new_init_size bytes.  This involves zeroing any non-sparse space between | 
|  | * the old initialized size and @new_init_size both in the page cache and on | 
|  | * disk (if relevant complete pages are already uptodate in the page cache then | 
|  | * these are simply marked dirty). | 
|  | * | 
|  | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, | 
|  | * in the resident attribute case, it is tied to the initialized size and, in | 
|  | * the non-resident attribute case, it may not fall below the initialized size. | 
|  | * | 
|  | * Note that if the attribute is resident, we do not need to touch the page | 
|  | * cache at all.  This is because if the page cache page is not uptodate we | 
|  | * bring it uptodate later, when doing the write to the mft record since we | 
|  | * then already have the page mapped.  And if the page is uptodate, the | 
|  | * non-initialized region will already have been zeroed when the page was | 
|  | * brought uptodate and the region may in fact already have been overwritten | 
|  | * with new data via mmap() based writes, so we cannot just zero it.  And since | 
|  | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped | 
|  | * is unspecified, we choose not to do zeroing and thus we do not need to touch | 
|  | * the page at all.  For a more detailed explanation see ntfs_truncate() in | 
|  | * fs/ntfs/inode.c. | 
|  | * | 
|  | * Return 0 on success and -errno on error.  In the case that an error is | 
|  | * encountered it is possible that the initialized size will already have been | 
|  | * incremented some way towards @new_init_size but it is guaranteed that if | 
|  | * this is the case, the necessary zeroing will also have happened and that all | 
|  | * metadata is self-consistent. | 
|  | * | 
|  | * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be | 
|  | *	    held by the caller. | 
|  | */ | 
|  | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size) | 
|  | { | 
|  | s64 old_init_size; | 
|  | loff_t old_i_size; | 
|  | pgoff_t index, end_index; | 
|  | unsigned long flags; | 
|  | struct inode *vi = VFS_I(ni); | 
|  | ntfs_inode *base_ni; | 
|  | MFT_RECORD *m = NULL; | 
|  | ATTR_RECORD *a; | 
|  | ntfs_attr_search_ctx *ctx = NULL; | 
|  | struct address_space *mapping; | 
|  | struct page *page = NULL; | 
|  | u8 *kattr; | 
|  | int err; | 
|  | u32 attr_len; | 
|  |  | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | old_init_size = ni->initialized_size; | 
|  | old_i_size = i_size_read(vi); | 
|  | BUG_ON(new_init_size > ni->allocated_size); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | 
|  | "old_initialized_size 0x%llx, " | 
|  | "new_initialized_size 0x%llx, i_size 0x%llx.", | 
|  | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | 
|  | (unsigned long long)old_init_size, | 
|  | (unsigned long long)new_init_size, old_i_size); | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | /* Use goto to reduce indentation and we need the label below anyway. */ | 
|  | if (NInoNonResident(ni)) | 
|  | goto do_non_resident_extend; | 
|  | BUG_ON(old_init_size != old_i_size); | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | BUG_ON(a->non_resident); | 
|  | /* The total length of the attribute value. */ | 
|  | attr_len = le32_to_cpu(a->data.resident.value_length); | 
|  | BUG_ON(old_i_size != (loff_t)attr_len); | 
|  | /* | 
|  | * Do the zeroing in the mft record and update the attribute size in | 
|  | * the mft record. | 
|  | */ | 
|  | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | 
|  | memset(kattr + attr_len, 0, new_init_size - attr_len); | 
|  | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); | 
|  | /* Finally, update the sizes in the vfs and ntfs inodes. */ | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | i_size_write(vi, new_init_size); | 
|  | ni->initialized_size = new_init_size; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | goto done; | 
|  | do_non_resident_extend: | 
|  | /* | 
|  | * If the new initialized size @new_init_size exceeds the current file | 
|  | * size (vfs inode->i_size), we need to extend the file size to the | 
|  | * new initialized size. | 
|  | */ | 
|  | if (new_init_size > old_i_size) { | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | BUG_ON(!a->non_resident); | 
|  | BUG_ON(old_i_size != (loff_t) | 
|  | sle64_to_cpu(a->data.non_resident.data_size)); | 
|  | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | /* Update the file size in the vfs inode. */ | 
|  | i_size_write(vi, new_init_size); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | ctx = NULL; | 
|  | unmap_mft_record(base_ni); | 
|  | m = NULL; | 
|  | } | 
|  | mapping = vi->i_mapping; | 
|  | index = old_init_size >> PAGE_CACHE_SHIFT; | 
|  | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | do { | 
|  | /* | 
|  | * Read the page.  If the page is not present, this will zero | 
|  | * the uninitialized regions for us. | 
|  | */ | 
|  | page = read_mapping_page(mapping, index, NULL); | 
|  | if (IS_ERR(page)) { | 
|  | err = PTR_ERR(page); | 
|  | goto init_err_out; | 
|  | } | 
|  | if (unlikely(PageError(page))) { | 
|  | page_cache_release(page); | 
|  | err = -EIO; | 
|  | goto init_err_out; | 
|  | } | 
|  | /* | 
|  | * Update the initialized size in the ntfs inode.  This is | 
|  | * enough to make ntfs_writepage() work. | 
|  | */ | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT; | 
|  | if (ni->initialized_size > new_init_size) | 
|  | ni->initialized_size = new_init_size; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* Set the page dirty so it gets written out. */ | 
|  | set_page_dirty(page); | 
|  | page_cache_release(page); | 
|  | /* | 
|  | * Play nice with the vm and the rest of the system.  This is | 
|  | * very much needed as we can potentially be modifying the | 
|  | * initialised size from a very small value to a really huge | 
|  | * value, e.g. | 
|  | *	f = open(somefile, O_TRUNC); | 
|  | *	truncate(f, 10GiB); | 
|  | *	seek(f, 10GiB); | 
|  | *	write(f, 1); | 
|  | * And this would mean we would be marking dirty hundreds of | 
|  | * thousands of pages or as in the above example more than | 
|  | * two and a half million pages! | 
|  | * | 
|  | * TODO: For sparse pages could optimize this workload by using | 
|  | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This | 
|  | * would be set in readpage for sparse pages and here we would | 
|  | * not need to mark dirty any pages which have this bit set. | 
|  | * The only caveat is that we have to clear the bit everywhere | 
|  | * where we allocate any clusters that lie in the page or that | 
|  | * contain the page. | 
|  | * | 
|  | * TODO: An even greater optimization would be for us to only | 
|  | * call readpage() on pages which are not in sparse regions as | 
|  | * determined from the runlist.  This would greatly reduce the | 
|  | * number of pages we read and make dirty in the case of sparse | 
|  | * files. | 
|  | */ | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | cond_resched(); | 
|  | } while (++index < end_index); | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | BUG_ON(ni->initialized_size != new_init_size); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* Now bring in sync the initialized_size in the mft record. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | goto init_err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto init_err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto init_err_out; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | BUG_ON(!a->non_resident); | 
|  | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); | 
|  | done: | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", | 
|  | (unsigned long long)new_init_size, i_size_read(vi)); | 
|  | return 0; | 
|  | init_err_out: | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->initialized_size = old_init_size; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | err_out: | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | ntfs_debug("Failed.  Returning error code %i.", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_fault_in_pages_readable - | 
|  | * | 
|  | * Fault a number of userspace pages into pagetables. | 
|  | * | 
|  | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes | 
|  | * with more than two userspace pages as well as handling the single page case | 
|  | * elegantly. | 
|  | * | 
|  | * If you find this difficult to understand, then think of the while loop being | 
|  | * the following code, except that we do without the integer variable ret: | 
|  | * | 
|  | *	do { | 
|  | *		ret = __get_user(c, uaddr); | 
|  | *		uaddr += PAGE_SIZE; | 
|  | *	} while (!ret && uaddr < end); | 
|  | * | 
|  | * Note, the final __get_user() may well run out-of-bounds of the user buffer, | 
|  | * but _not_ out-of-bounds of the page the user buffer belongs to, and since | 
|  | * this is only a read and not a write, and since it is still in the same page, | 
|  | * it should not matter and this makes the code much simpler. | 
|  | */ | 
|  | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, | 
|  | int bytes) | 
|  | { | 
|  | const char __user *end; | 
|  | volatile char c; | 
|  |  | 
|  | /* Set @end to the first byte outside the last page we care about. */ | 
|  | end = (const char __user*)PAGE_ALIGN((unsigned long)uaddr + bytes); | 
|  |  | 
|  | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) | 
|  | ; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_fault_in_pages_readable_iovec - | 
|  | * | 
|  | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. | 
|  | */ | 
|  | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, | 
|  | size_t iov_ofs, int bytes) | 
|  | { | 
|  | do { | 
|  | const char __user *buf; | 
|  | unsigned len; | 
|  |  | 
|  | buf = iov->iov_base + iov_ofs; | 
|  | len = iov->iov_len - iov_ofs; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | ntfs_fault_in_pages_readable(buf, len); | 
|  | bytes -= len; | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } while (bytes); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __ntfs_grab_cache_pages - obtain a number of locked pages | 
|  | * @mapping:	address space mapping from which to obtain page cache pages | 
|  | * @index:	starting index in @mapping at which to begin obtaining pages | 
|  | * @nr_pages:	number of page cache pages to obtain | 
|  | * @pages:	array of pages in which to return the obtained page cache pages | 
|  | * @cached_page: allocated but as yet unused page | 
|  | * @lru_pvec:	lru-buffering pagevec of caller | 
|  | * | 
|  | * Obtain @nr_pages locked page cache pages from the mapping @mapping and | 
|  | * starting at index @index. | 
|  | * | 
|  | * If a page is newly created, add it to lru list | 
|  | * | 
|  | * Note, the page locks are obtained in ascending page index order. | 
|  | */ | 
|  | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, | 
|  | pgoff_t index, const unsigned nr_pages, struct page **pages, | 
|  | struct page **cached_page) | 
|  | { | 
|  | int err, nr; | 
|  |  | 
|  | BUG_ON(!nr_pages); | 
|  | err = nr = 0; | 
|  | do { | 
|  | pages[nr] = find_lock_page(mapping, index); | 
|  | if (!pages[nr]) { | 
|  | if (!*cached_page) { | 
|  | *cached_page = page_cache_alloc(mapping); | 
|  | if (unlikely(!*cached_page)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  | err = add_to_page_cache_lru(*cached_page, mapping, index, | 
|  | GFP_KERNEL); | 
|  | if (unlikely(err)) { | 
|  | if (err == -EEXIST) | 
|  | continue; | 
|  | goto err_out; | 
|  | } | 
|  | pages[nr] = *cached_page; | 
|  | *cached_page = NULL; | 
|  | } | 
|  | index++; | 
|  | nr++; | 
|  | } while (nr < nr_pages); | 
|  | out: | 
|  | return err; | 
|  | err_out: | 
|  | while (nr > 0) { | 
|  | unlock_page(pages[--nr]); | 
|  | page_cache_release(pages[nr]); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) | 
|  | { | 
|  | lock_buffer(bh); | 
|  | get_bh(bh); | 
|  | bh->b_end_io = end_buffer_read_sync; | 
|  | return submit_bh(READ, bh); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data | 
|  | * @pages:	array of destination pages | 
|  | * @nr_pages:	number of pages in @pages | 
|  | * @pos:	byte position in file at which the write begins | 
|  | * @bytes:	number of bytes to be written | 
|  | * | 
|  | * This is called for non-resident attributes from ntfs_file_buffered_write() | 
|  | * with i_mutex held on the inode (@pages[0]->mapping->host).  There are | 
|  | * @nr_pages pages in @pages which are locked but not kmap()ped.  The source | 
|  | * data has not yet been copied into the @pages. | 
|  | * | 
|  | * Need to fill any holes with actual clusters, allocate buffers if necessary, | 
|  | * ensure all the buffers are mapped, and bring uptodate any buffers that are | 
|  | * only partially being written to. | 
|  | * | 
|  | * If @nr_pages is greater than one, we are guaranteed that the cluster size is | 
|  | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside | 
|  | * the same cluster and that they are the entirety of that cluster, and that | 
|  | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. | 
|  | * | 
|  | * i_size is not to be modified yet. | 
|  | * | 
|  | * Return 0 on success or -errno on error. | 
|  | */ | 
|  | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, | 
|  | unsigned nr_pages, s64 pos, size_t bytes) | 
|  | { | 
|  | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; | 
|  | LCN lcn; | 
|  | s64 bh_pos, vcn_len, end, initialized_size; | 
|  | sector_t lcn_block; | 
|  | struct page *page; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni, *base_ni = NULL; | 
|  | ntfs_volume *vol; | 
|  | runlist_element *rl, *rl2; | 
|  | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | 
|  | ntfs_attr_search_ctx *ctx = NULL; | 
|  | MFT_RECORD *m = NULL; | 
|  | ATTR_RECORD *a = NULL; | 
|  | unsigned long flags; | 
|  | u32 attr_rec_len = 0; | 
|  | unsigned blocksize, u; | 
|  | int err, mp_size; | 
|  | bool rl_write_locked, was_hole, is_retry; | 
|  | unsigned char blocksize_bits; | 
|  | struct { | 
|  | u8 runlist_merged:1; | 
|  | u8 mft_attr_mapped:1; | 
|  | u8 mp_rebuilt:1; | 
|  | u8 attr_switched:1; | 
|  | } status = { 0, 0, 0, 0 }; | 
|  |  | 
|  | BUG_ON(!nr_pages); | 
|  | BUG_ON(!pages); | 
|  | BUG_ON(!*pages); | 
|  | vi = pages[0]->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | vol = ni->vol; | 
|  | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | 
|  | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | 
|  | vi->i_ino, ni->type, pages[0]->index, nr_pages, | 
|  | (long long)pos, bytes); | 
|  | blocksize = vol->sb->s_blocksize; | 
|  | blocksize_bits = vol->sb->s_blocksize_bits; | 
|  | u = 0; | 
|  | do { | 
|  | page = pages[u]; | 
|  | BUG_ON(!page); | 
|  | /* | 
|  | * create_empty_buffers() will create uptodate/dirty buffers if | 
|  | * the page is uptodate/dirty. | 
|  | */ | 
|  | if (!page_has_buffers(page)) { | 
|  | create_empty_buffers(page, blocksize, 0); | 
|  | if (unlikely(!page_has_buffers(page))) | 
|  | return -ENOMEM; | 
|  | } | 
|  | } while (++u < nr_pages); | 
|  | rl_write_locked = false; | 
|  | rl = NULL; | 
|  | err = 0; | 
|  | vcn = lcn = -1; | 
|  | vcn_len = 0; | 
|  | lcn_block = -1; | 
|  | was_hole = false; | 
|  | cpos = pos >> vol->cluster_size_bits; | 
|  | end = pos + bytes; | 
|  | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; | 
|  | /* | 
|  | * Loop over each page and for each page over each buffer.  Use goto to | 
|  | * reduce indentation. | 
|  | */ | 
|  | u = 0; | 
|  | do_next_page: | 
|  | page = pages[u]; | 
|  | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | VCN cdelta; | 
|  | s64 bh_end; | 
|  | unsigned bh_cofs; | 
|  |  | 
|  | /* Clear buffer_new on all buffers to reinitialise state. */ | 
|  | if (buffer_new(bh)) | 
|  | clear_buffer_new(bh); | 
|  | bh_end = bh_pos + blocksize; | 
|  | bh_cpos = bh_pos >> vol->cluster_size_bits; | 
|  | bh_cofs = bh_pos & vol->cluster_size_mask; | 
|  | if (buffer_mapped(bh)) { | 
|  | /* | 
|  | * The buffer is already mapped.  If it is uptodate, | 
|  | * ignore it. | 
|  | */ | 
|  | if (buffer_uptodate(bh)) | 
|  | continue; | 
|  | /* | 
|  | * The buffer is not uptodate.  If the page is uptodate | 
|  | * set the buffer uptodate and otherwise ignore it. | 
|  | */ | 
|  | if (PageUptodate(page)) { | 
|  | set_buffer_uptodate(bh); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Neither the page nor the buffer are uptodate.  If | 
|  | * the buffer is only partially being written to, we | 
|  | * need to read it in before the write, i.e. now. | 
|  | */ | 
|  | if ((bh_pos < pos && bh_end > pos) || | 
|  | (bh_pos < end && bh_end > end)) { | 
|  | /* | 
|  | * If the buffer is fully or partially within | 
|  | * the initialized size, do an actual read. | 
|  | * Otherwise, simply zero the buffer. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | initialized_size = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (bh_pos < initialized_size) { | 
|  | ntfs_submit_bh_for_read(bh); | 
|  | *wait_bh++ = bh; | 
|  | } else { | 
|  | zero_user(page, bh_offset(bh), | 
|  | blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | /* Unmapped buffer.  Need to map it. */ | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  | /* | 
|  | * If the current buffer is in the same clusters as the map | 
|  | * cache, there is no need to check the runlist again.  The | 
|  | * map cache is made up of @vcn, which is the first cached file | 
|  | * cluster, @vcn_len which is the number of cached file | 
|  | * clusters, @lcn is the device cluster corresponding to @vcn, | 
|  | * and @lcn_block is the block number corresponding to @lcn. | 
|  | */ | 
|  | cdelta = bh_cpos - vcn; | 
|  | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { | 
|  | map_buffer_cached: | 
|  | BUG_ON(lcn < 0); | 
|  | bh->b_blocknr = lcn_block + | 
|  | (cdelta << (vol->cluster_size_bits - | 
|  | blocksize_bits)) + | 
|  | (bh_cofs >> blocksize_bits); | 
|  | set_buffer_mapped(bh); | 
|  | /* | 
|  | * If the page is uptodate so is the buffer.  If the | 
|  | * buffer is fully outside the write, we ignore it if | 
|  | * it was already allocated and we mark it dirty so it | 
|  | * gets written out if we allocated it.  On the other | 
|  | * hand, if we allocated the buffer but we are not | 
|  | * marking it dirty we set buffer_new so we can do | 
|  | * error recovery. | 
|  | */ | 
|  | if (PageUptodate(page)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | if (unlikely(was_hole)) { | 
|  | /* We allocated the buffer. */ | 
|  | unmap_underlying_metadata(bh->b_bdev, | 
|  | bh->b_blocknr); | 
|  | if (bh_end <= pos || bh_pos >= end) | 
|  | mark_buffer_dirty(bh); | 
|  | else | 
|  | set_buffer_new(bh); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | /* Page is _not_ uptodate. */ | 
|  | if (likely(!was_hole)) { | 
|  | /* | 
|  | * Buffer was already allocated.  If it is not | 
|  | * uptodate and is only partially being written | 
|  | * to, we need to read it in before the write, | 
|  | * i.e. now. | 
|  | */ | 
|  | if (!buffer_uptodate(bh) && bh_pos < end && | 
|  | bh_end > pos && | 
|  | (bh_pos < pos || | 
|  | bh_end > end)) { | 
|  | /* | 
|  | * If the buffer is fully or partially | 
|  | * within the initialized size, do an | 
|  | * actual read.  Otherwise, simply zero | 
|  | * the buffer. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, | 
|  | flags); | 
|  | initialized_size = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, | 
|  | flags); | 
|  | if (bh_pos < initialized_size) { | 
|  | ntfs_submit_bh_for_read(bh); | 
|  | *wait_bh++ = bh; | 
|  | } else { | 
|  | zero_user(page, bh_offset(bh), | 
|  | blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | /* We allocated the buffer. */ | 
|  | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | 
|  | /* | 
|  | * If the buffer is fully outside the write, zero it, | 
|  | * set it uptodate, and mark it dirty so it gets | 
|  | * written out.  If it is partially being written to, | 
|  | * zero region surrounding the write but leave it to | 
|  | * commit write to do anything else.  Finally, if the | 
|  | * buffer is fully being overwritten, do nothing. | 
|  | */ | 
|  | if (bh_end <= pos || bh_pos >= end) { | 
|  | if (!buffer_uptodate(bh)) { | 
|  | zero_user(page, bh_offset(bh), | 
|  | blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | mark_buffer_dirty(bh); | 
|  | continue; | 
|  | } | 
|  | set_buffer_new(bh); | 
|  | if (!buffer_uptodate(bh) && | 
|  | (bh_pos < pos || bh_end > end)) { | 
|  | u8 *kaddr; | 
|  | unsigned pofs; | 
|  |  | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | if (bh_pos < pos) { | 
|  | pofs = bh_pos & ~PAGE_CACHE_MASK; | 
|  | memset(kaddr + pofs, 0, pos - bh_pos); | 
|  | } | 
|  | if (bh_end > end) { | 
|  | pofs = end & ~PAGE_CACHE_MASK; | 
|  | memset(kaddr + pofs, 0, bh_end - end); | 
|  | } | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | flush_dcache_page(page); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * Slow path: this is the first buffer in the cluster.  If it | 
|  | * is outside allocated size and is not uptodate, zero it and | 
|  | * set it uptodate. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | initialized_size = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (bh_pos > initialized_size) { | 
|  | if (PageUptodate(page)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | } else if (!buffer_uptodate(bh)) { | 
|  | zero_user(page, bh_offset(bh), blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | is_retry = false; | 
|  | if (!rl) { | 
|  | down_read(&ni->runlist.lock); | 
|  | retry_remap: | 
|  | rl = ni->runlist.rl; | 
|  | } | 
|  | if (likely(rl != NULL)) { | 
|  | /* Seek to element containing target cluster. */ | 
|  | while (rl->length && rl[1].vcn <= bh_cpos) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); | 
|  | if (likely(lcn >= 0)) { | 
|  | /* | 
|  | * Successful remap, setup the map cache and | 
|  | * use that to deal with the buffer. | 
|  | */ | 
|  | was_hole = false; | 
|  | vcn = bh_cpos; | 
|  | vcn_len = rl[1].vcn - vcn; | 
|  | lcn_block = lcn << (vol->cluster_size_bits - | 
|  | blocksize_bits); | 
|  | cdelta = 0; | 
|  | /* | 
|  | * If the number of remaining clusters touched | 
|  | * by the write is smaller or equal to the | 
|  | * number of cached clusters, unlock the | 
|  | * runlist as the map cache will be used from | 
|  | * now on. | 
|  | */ | 
|  | if (likely(vcn + vcn_len >= cend)) { | 
|  | if (rl_write_locked) { | 
|  | up_write(&ni->runlist.lock); | 
|  | rl_write_locked = false; | 
|  | } else | 
|  | up_read(&ni->runlist.lock); | 
|  | rl = NULL; | 
|  | } | 
|  | goto map_buffer_cached; | 
|  | } | 
|  | } else | 
|  | lcn = LCN_RL_NOT_MAPPED; | 
|  | /* | 
|  | * If it is not a hole and not out of bounds, the runlist is | 
|  | * probably unmapped so try to map it now. | 
|  | */ | 
|  | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { | 
|  | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { | 
|  | /* Attempt to map runlist. */ | 
|  | if (!rl_write_locked) { | 
|  | /* | 
|  | * We need the runlist locked for | 
|  | * writing, so if it is locked for | 
|  | * reading relock it now and retry in | 
|  | * case it changed whilst we dropped | 
|  | * the lock. | 
|  | */ | 
|  | up_read(&ni->runlist.lock); | 
|  | down_write(&ni->runlist.lock); | 
|  | rl_write_locked = true; | 
|  | goto retry_remap; | 
|  | } | 
|  | err = ntfs_map_runlist_nolock(ni, bh_cpos, | 
|  | NULL); | 
|  | if (likely(!err)) { | 
|  | is_retry = true; | 
|  | goto retry_remap; | 
|  | } | 
|  | /* | 
|  | * If @vcn is out of bounds, pretend @lcn is | 
|  | * LCN_ENOENT.  As long as the buffer is out | 
|  | * of bounds this will work fine. | 
|  | */ | 
|  | if (err == -ENOENT) { | 
|  | lcn = LCN_ENOENT; | 
|  | err = 0; | 
|  | goto rl_not_mapped_enoent; | 
|  | } | 
|  | } else | 
|  | err = -EIO; | 
|  | /* Failed to map the buffer, even after retrying. */ | 
|  | bh->b_blocknr = -1; | 
|  | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | 
|  | "attribute type 0x%x, vcn 0x%llx, " | 
|  | "vcn offset 0x%x, because its " | 
|  | "location on disk could not be " | 
|  | "determined%s (error code %i).", | 
|  | ni->mft_no, ni->type, | 
|  | (unsigned long long)bh_cpos, | 
|  | (unsigned)bh_pos & | 
|  | vol->cluster_size_mask, | 
|  | is_retry ? " even after retrying" : "", | 
|  | err); | 
|  | break; | 
|  | } | 
|  | rl_not_mapped_enoent: | 
|  | /* | 
|  | * The buffer is in a hole or out of bounds.  We need to fill | 
|  | * the hole, unless the buffer is in a cluster which is not | 
|  | * touched by the write, in which case we just leave the buffer | 
|  | * unmapped.  This can only happen when the cluster size is | 
|  | * less than the page cache size. | 
|  | */ | 
|  | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { | 
|  | bh_cend = (bh_end + vol->cluster_size - 1) >> | 
|  | vol->cluster_size_bits; | 
|  | if ((bh_cend <= cpos || bh_cpos >= cend)) { | 
|  | bh->b_blocknr = -1; | 
|  | /* | 
|  | * If the buffer is uptodate we skip it.  If it | 
|  | * is not but the page is uptodate, we can set | 
|  | * the buffer uptodate.  If the page is not | 
|  | * uptodate, we can clear the buffer and set it | 
|  | * uptodate.  Whether this is worthwhile is | 
|  | * debatable and this could be removed. | 
|  | */ | 
|  | if (PageUptodate(page)) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | set_buffer_uptodate(bh); | 
|  | } else if (!buffer_uptodate(bh)) { | 
|  | zero_user(page, bh_offset(bh), | 
|  | blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Out of bounds buffer is invalid if it was not really out of | 
|  | * bounds. | 
|  | */ | 
|  | BUG_ON(lcn != LCN_HOLE); | 
|  | /* | 
|  | * We need the runlist locked for writing, so if it is locked | 
|  | * for reading relock it now and retry in case it changed | 
|  | * whilst we dropped the lock. | 
|  | */ | 
|  | BUG_ON(!rl); | 
|  | if (!rl_write_locked) { | 
|  | up_read(&ni->runlist.lock); | 
|  | down_write(&ni->runlist.lock); | 
|  | rl_write_locked = true; | 
|  | goto retry_remap; | 
|  | } | 
|  | /* Find the previous last allocated cluster. */ | 
|  | BUG_ON(rl->lcn != LCN_HOLE); | 
|  | lcn = -1; | 
|  | rl2 = rl; | 
|  | while (--rl2 >= ni->runlist.rl) { | 
|  | if (rl2->lcn >= 0) { | 
|  | lcn = rl2->lcn + rl2->length; | 
|  | break; | 
|  | } | 
|  | } | 
|  | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, | 
|  | false); | 
|  | if (IS_ERR(rl2)) { | 
|  | err = PTR_ERR(rl2); | 
|  | ntfs_debug("Failed to allocate cluster, error code %i.", | 
|  | err); | 
|  | break; | 
|  | } | 
|  | lcn = rl2->lcn; | 
|  | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | 
|  | if (IS_ERR(rl)) { | 
|  | err = PTR_ERR(rl); | 
|  | if (err != -ENOMEM) | 
|  | err = -EIO; | 
|  | if (ntfs_cluster_free_from_rl(vol, rl2)) { | 
|  | ntfs_error(vol->sb, "Failed to release " | 
|  | "allocated cluster in error " | 
|  | "code path.  Run chkdsk to " | 
|  | "recover the lost cluster."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | ntfs_free(rl2); | 
|  | break; | 
|  | } | 
|  | ni->runlist.rl = rl; | 
|  | status.runlist_merged = 1; | 
|  | ntfs_debug("Allocated cluster, lcn 0x%llx.", | 
|  | (unsigned long long)lcn); | 
|  | /* Map and lock the mft record and get the attribute record. */ | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | break; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | unmap_mft_record(base_ni); | 
|  | break; | 
|  | } | 
|  | status.mft_attr_mapped = 1; | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | /* | 
|  | * Find the runlist element with which the attribute extent | 
|  | * starts.  Note, we cannot use the _attr_ version because we | 
|  | * have mapped the mft record.  That is ok because we know the | 
|  | * runlist fragment must be mapped already to have ever gotten | 
|  | * here, so we can just use the _rl_ version. | 
|  | */ | 
|  | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); | 
|  | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); | 
|  | BUG_ON(!rl2); | 
|  | BUG_ON(!rl2->length); | 
|  | BUG_ON(rl2->lcn < LCN_HOLE); | 
|  | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | 
|  | /* | 
|  | * If @highest_vcn is zero, calculate the real highest_vcn | 
|  | * (which can really be zero). | 
|  | */ | 
|  | if (!highest_vcn) | 
|  | highest_vcn = (sle64_to_cpu( | 
|  | a->data.non_resident.allocated_size) >> | 
|  | vol->cluster_size_bits) - 1; | 
|  | /* | 
|  | * Determine the size of the mapping pairs array for the new | 
|  | * extent, i.e. the old extent with the hole filled. | 
|  | */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, | 
|  | highest_vcn); | 
|  | if (unlikely(mp_size <= 0)) { | 
|  | if (!(err = mp_size)) | 
|  | err = -EIO; | 
|  | ntfs_debug("Failed to get size for mapping pairs " | 
|  | "array, error code %i.", err); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * Resize the attribute record to fit the new mapping pairs | 
|  | * array. | 
|  | */ | 
|  | attr_rec_len = le32_to_cpu(a->length); | 
|  | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset)); | 
|  | if (unlikely(err)) { | 
|  | BUG_ON(err != -ENOSPC); | 
|  | // TODO: Deal with this by using the current attribute | 
|  | // and fill it with as much of the mapping pairs | 
|  | // array as possible.  Then loop over each attribute | 
|  | // extent rewriting the mapping pairs arrays as we go | 
|  | // along and if when we reach the end we have not | 
|  | // enough space, try to resize the last attribute | 
|  | // extent and if even that fails, add a new attribute | 
|  | // extent. | 
|  | // We could also try to resize at each step in the hope | 
|  | // that we will not need to rewrite every single extent. | 
|  | // Note, we may need to decompress some extents to fill | 
|  | // the runlist as we are walking the extents... | 
|  | ntfs_error(vol->sb, "Not enough space in the mft " | 
|  | "record for the extended attribute " | 
|  | "record.  This case is not " | 
|  | "implemented yet."); | 
|  | err = -EOPNOTSUPP; | 
|  | break ; | 
|  | } | 
|  | status.mp_rebuilt = 1; | 
|  | /* | 
|  | * Generate the mapping pairs array directly into the attribute | 
|  | * record. | 
|  | */ | 
|  | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset), | 
|  | mp_size, rl2, vcn, highest_vcn, NULL); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " | 
|  | "attribute type 0x%x, because building " | 
|  | "the mapping pairs failed with error " | 
|  | "code %i.", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | err = -EIO; | 
|  | break; | 
|  | } | 
|  | /* Update the highest_vcn but only if it was not set. */ | 
|  | if (unlikely(!a->data.non_resident.highest_vcn)) | 
|  | a->data.non_resident.highest_vcn = | 
|  | cpu_to_sle64(highest_vcn); | 
|  | /* | 
|  | * If the attribute is sparse/compressed, update the compressed | 
|  | * size in the ntfs_inode structure and the attribute record. | 
|  | */ | 
|  | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { | 
|  | /* | 
|  | * If we are not in the first attribute extent, switch | 
|  | * to it, but first ensure the changes will make it to | 
|  | * disk later. | 
|  | */ | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, | 
|  | ni->name_len, CASE_SENSITIVE, | 
|  | 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | status.attr_switched = 1; | 
|  | break; | 
|  | } | 
|  | /* @m is not used any more so do not set it. */ | 
|  | a = ctx->attr; | 
|  | } | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->itype.compressed.size += vol->cluster_size; | 
|  | a->data.non_resident.compressed_size = | 
|  | cpu_to_sle64(ni->itype.compressed.size); | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | } | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | /* Successfully filled the hole. */ | 
|  | status.runlist_merged = 0; | 
|  | status.mft_attr_mapped = 0; | 
|  | status.mp_rebuilt = 0; | 
|  | /* Setup the map cache and use that to deal with the buffer. */ | 
|  | was_hole = true; | 
|  | vcn = bh_cpos; | 
|  | vcn_len = 1; | 
|  | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); | 
|  | cdelta = 0; | 
|  | /* | 
|  | * If the number of remaining clusters in the @pages is smaller | 
|  | * or equal to the number of cached clusters, unlock the | 
|  | * runlist as the map cache will be used from now on. | 
|  | */ | 
|  | if (likely(vcn + vcn_len >= cend)) { | 
|  | up_write(&ni->runlist.lock); | 
|  | rl_write_locked = false; | 
|  | rl = NULL; | 
|  | } | 
|  | goto map_buffer_cached; | 
|  | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | 
|  | /* If there are no errors, do the next page. */ | 
|  | if (likely(!err && ++u < nr_pages)) | 
|  | goto do_next_page; | 
|  | /* If there are no errors, release the runlist lock if we took it. */ | 
|  | if (likely(!err)) { | 
|  | if (unlikely(rl_write_locked)) { | 
|  | up_write(&ni->runlist.lock); | 
|  | rl_write_locked = false; | 
|  | } else if (unlikely(rl)) | 
|  | up_read(&ni->runlist.lock); | 
|  | rl = NULL; | 
|  | } | 
|  | /* If we issued read requests, let them complete. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | initialized_size = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | while (wait_bh > wait) { | 
|  | bh = *--wait_bh; | 
|  | wait_on_buffer(bh); | 
|  | if (likely(buffer_uptodate(bh))) { | 
|  | page = bh->b_page; | 
|  | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + | 
|  | bh_offset(bh); | 
|  | /* | 
|  | * If the buffer overflows the initialized size, need | 
|  | * to zero the overflowing region. | 
|  | */ | 
|  | if (unlikely(bh_pos + blocksize > initialized_size)) { | 
|  | int ofs = 0; | 
|  |  | 
|  | if (likely(bh_pos < initialized_size)) | 
|  | ofs = initialized_size - bh_pos; | 
|  | zero_user_segment(page, bh_offset(bh) + ofs, | 
|  | blocksize); | 
|  | } | 
|  | } else /* if (unlikely(!buffer_uptodate(bh))) */ | 
|  | err = -EIO; | 
|  | } | 
|  | if (likely(!err)) { | 
|  | /* Clear buffer_new on all buffers. */ | 
|  | u = 0; | 
|  | do { | 
|  | bh = head = page_buffers(pages[u]); | 
|  | do { | 
|  | if (buffer_new(bh)) | 
|  | clear_buffer_new(bh); | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } while (++u < nr_pages); | 
|  | ntfs_debug("Done."); | 
|  | return err; | 
|  | } | 
|  | if (status.attr_switched) { | 
|  | /* Get back to the attribute extent we modified. */ | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to find required " | 
|  | "attribute extent of attribute in " | 
|  | "error code path.  Run chkdsk to " | 
|  | "recover."); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->itype.compressed.size += vol->cluster_size; | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | /* | 
|  | * The only thing that is now wrong is the compressed | 
|  | * size of the base attribute extent which chkdsk | 
|  | * should be able to fix. | 
|  | */ | 
|  | NVolSetErrors(vol); | 
|  | } else { | 
|  | m = ctx->mrec; | 
|  | a = ctx->attr; | 
|  | status.attr_switched = 0; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If the runlist has been modified, need to restore it by punching a | 
|  | * hole into it and we then need to deallocate the on-disk cluster as | 
|  | * well.  Note, we only modify the runlist if we are able to generate a | 
|  | * new mapping pairs array, i.e. only when the mapped attribute extent | 
|  | * is not switched. | 
|  | */ | 
|  | if (status.runlist_merged && !status.attr_switched) { | 
|  | BUG_ON(!rl_write_locked); | 
|  | /* Make the file cluster we allocated sparse in the runlist. */ | 
|  | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { | 
|  | ntfs_error(vol->sb, "Failed to punch hole into " | 
|  | "attribute runlist in error code " | 
|  | "path.  Run chkdsk to recover the " | 
|  | "lost cluster."); | 
|  | NVolSetErrors(vol); | 
|  | } else /* if (success) */ { | 
|  | status.runlist_merged = 0; | 
|  | /* | 
|  | * Deallocate the on-disk cluster we allocated but only | 
|  | * if we succeeded in punching its vcn out of the | 
|  | * runlist. | 
|  | */ | 
|  | down_write(&vol->lcnbmp_lock); | 
|  | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | 
|  | ntfs_error(vol->sb, "Failed to release " | 
|  | "allocated cluster in error " | 
|  | "code path.  Run chkdsk to " | 
|  | "recover the lost cluster."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | up_write(&vol->lcnbmp_lock); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Resize the attribute record to its old size and rebuild the mapping | 
|  | * pairs array.  Note, we only can do this if the runlist has been | 
|  | * restored to its old state which also implies that the mapped | 
|  | * attribute extent is not switched. | 
|  | */ | 
|  | if (status.mp_rebuilt && !status.runlist_merged) { | 
|  | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { | 
|  | ntfs_error(vol->sb, "Failed to restore attribute " | 
|  | "record in error code path.  Run " | 
|  | "chkdsk to recover."); | 
|  | NVolSetErrors(vol); | 
|  | } else /* if (success) */ { | 
|  | if (ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | le16_to_cpu(a->data.non_resident. | 
|  | mapping_pairs_offset), attr_rec_len - | 
|  | le16_to_cpu(a->data.non_resident. | 
|  | mapping_pairs_offset), ni->runlist.rl, | 
|  | vcn, highest_vcn, NULL)) { | 
|  | ntfs_error(vol->sb, "Failed to restore " | 
|  | "mapping pairs array in error " | 
|  | "code path.  Run chkdsk to " | 
|  | "recover."); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | } | 
|  | } | 
|  | /* Release the mft record and the attribute. */ | 
|  | if (status.mft_attr_mapped) { | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | } | 
|  | /* Release the runlist lock. */ | 
|  | if (rl_write_locked) | 
|  | up_write(&ni->runlist.lock); | 
|  | else if (rl) | 
|  | up_read(&ni->runlist.lock); | 
|  | /* | 
|  | * Zero out any newly allocated blocks to avoid exposing stale data. | 
|  | * If BH_New is set, we know that the block was newly allocated above | 
|  | * and that it has not been fully zeroed and marked dirty yet. | 
|  | */ | 
|  | nr_pages = u; | 
|  | u = 0; | 
|  | end = bh_cpos << vol->cluster_size_bits; | 
|  | do { | 
|  | page = pages[u]; | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (u == nr_pages && | 
|  | ((s64)page->index << PAGE_CACHE_SHIFT) + | 
|  | bh_offset(bh) >= end) | 
|  | break; | 
|  | if (!buffer_new(bh)) | 
|  | continue; | 
|  | clear_buffer_new(bh); | 
|  | if (!buffer_uptodate(bh)) { | 
|  | if (PageUptodate(page)) | 
|  | set_buffer_uptodate(bh); | 
|  | else { | 
|  | zero_user(page, bh_offset(bh), | 
|  | blocksize); | 
|  | set_buffer_uptodate(bh); | 
|  | } | 
|  | } | 
|  | mark_buffer_dirty(bh); | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } while (++u <= nr_pages); | 
|  | ntfs_error(vol->sb, "Failed.  Returning error code %i.", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy as much as we can into the pages and return the number of bytes which | 
|  | * were successfully copied.  If a fault is encountered then clear the pages | 
|  | * out to (ofs + bytes) and return the number of bytes which were copied. | 
|  | */ | 
|  | static inline size_t ntfs_copy_from_user(struct page **pages, | 
|  | unsigned nr_pages, unsigned ofs, const char __user *buf, | 
|  | size_t bytes) | 
|  | { | 
|  | struct page **last_page = pages + nr_pages; | 
|  | char *addr; | 
|  | size_t total = 0; | 
|  | unsigned len; | 
|  | int left; | 
|  |  | 
|  | do { | 
|  | len = PAGE_CACHE_SIZE - ofs; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | addr = kmap_atomic(*pages, KM_USER0); | 
|  | left = __copy_from_user_inatomic(addr + ofs, buf, len); | 
|  | kunmap_atomic(addr, KM_USER0); | 
|  | if (unlikely(left)) { | 
|  | /* Do it the slow way. */ | 
|  | addr = kmap(*pages); | 
|  | left = __copy_from_user(addr + ofs, buf, len); | 
|  | kunmap(*pages); | 
|  | if (unlikely(left)) | 
|  | goto err_out; | 
|  | } | 
|  | total += len; | 
|  | bytes -= len; | 
|  | if (!bytes) | 
|  | break; | 
|  | buf += len; | 
|  | ofs = 0; | 
|  | } while (++pages < last_page); | 
|  | out: | 
|  | return total; | 
|  | err_out: | 
|  | total += len - left; | 
|  | /* Zero the rest of the target like __copy_from_user(). */ | 
|  | while (++pages < last_page) { | 
|  | bytes -= len; | 
|  | if (!bytes) | 
|  | break; | 
|  | len = PAGE_CACHE_SIZE; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | zero_user(*pages, 0, len); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr, | 
|  | const struct iovec *iov, size_t iov_ofs, size_t bytes) | 
|  | { | 
|  | size_t total = 0; | 
|  |  | 
|  | while (1) { | 
|  | const char __user *buf = iov->iov_base + iov_ofs; | 
|  | unsigned len; | 
|  | size_t left; | 
|  |  | 
|  | len = iov->iov_len - iov_ofs; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | left = __copy_from_user_inatomic(vaddr, buf, len); | 
|  | total += len; | 
|  | bytes -= len; | 
|  | vaddr += len; | 
|  | if (unlikely(left)) { | 
|  | total -= left; | 
|  | break; | 
|  | } | 
|  | if (!bytes) | 
|  | break; | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static inline void ntfs_set_next_iovec(const struct iovec **iovp, | 
|  | size_t *iov_ofsp, size_t bytes) | 
|  | { | 
|  | const struct iovec *iov = *iovp; | 
|  | size_t iov_ofs = *iov_ofsp; | 
|  |  | 
|  | while (bytes) { | 
|  | unsigned len; | 
|  |  | 
|  | len = iov->iov_len - iov_ofs; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | bytes -= len; | 
|  | iov_ofs += len; | 
|  | if (iov->iov_len == iov_ofs) { | 
|  | iov++; | 
|  | iov_ofs = 0; | 
|  | } | 
|  | } | 
|  | *iovp = iov; | 
|  | *iov_ofsp = iov_ofs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This has the same side-effects and return value as ntfs_copy_from_user(). | 
|  | * The difference is that on a fault we need to memset the remainder of the | 
|  | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s | 
|  | * single-segment behaviour. | 
|  | * | 
|  | * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when | 
|  | * atomic and when not atomic.  This is ok because it calls | 
|  | * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In | 
|  | * fact, the only difference between __copy_from_user_inatomic() and | 
|  | * __copy_from_user() is that the latter calls might_sleep() and the former | 
|  | * should not zero the tail of the buffer on error.  And on many architectures | 
|  | * __copy_from_user_inatomic() is just defined to __copy_from_user() so it | 
|  | * makes no difference at all on those architectures. | 
|  | */ | 
|  | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, | 
|  | unsigned nr_pages, unsigned ofs, const struct iovec **iov, | 
|  | size_t *iov_ofs, size_t bytes) | 
|  | { | 
|  | struct page **last_page = pages + nr_pages; | 
|  | char *addr; | 
|  | size_t copied, len, total = 0; | 
|  |  | 
|  | do { | 
|  | len = PAGE_CACHE_SIZE - ofs; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | addr = kmap_atomic(*pages, KM_USER0); | 
|  | copied = __ntfs_copy_from_user_iovec_inatomic(addr + ofs, | 
|  | *iov, *iov_ofs, len); | 
|  | kunmap_atomic(addr, KM_USER0); | 
|  | if (unlikely(copied != len)) { | 
|  | /* Do it the slow way. */ | 
|  | addr = kmap(*pages); | 
|  | copied = __ntfs_copy_from_user_iovec_inatomic(addr + | 
|  | ofs, *iov, *iov_ofs, len); | 
|  | if (unlikely(copied != len)) | 
|  | goto err_out; | 
|  | kunmap(*pages); | 
|  | } | 
|  | total += len; | 
|  | ntfs_set_next_iovec(iov, iov_ofs, len); | 
|  | bytes -= len; | 
|  | if (!bytes) | 
|  | break; | 
|  | ofs = 0; | 
|  | } while (++pages < last_page); | 
|  | out: | 
|  | return total; | 
|  | err_out: | 
|  | BUG_ON(copied > len); | 
|  | /* Zero the rest of the target like __copy_from_user(). */ | 
|  | memset(addr + ofs + copied, 0, len - copied); | 
|  | kunmap(*pages); | 
|  | total += copied; | 
|  | ntfs_set_next_iovec(iov, iov_ofs, copied); | 
|  | while (++pages < last_page) { | 
|  | bytes -= len; | 
|  | if (!bytes) | 
|  | break; | 
|  | len = PAGE_CACHE_SIZE; | 
|  | if (len > bytes) | 
|  | len = bytes; | 
|  | zero_user(*pages, 0, len); | 
|  | } | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static inline void ntfs_flush_dcache_pages(struct page **pages, | 
|  | unsigned nr_pages) | 
|  | { | 
|  | BUG_ON(!nr_pages); | 
|  | /* | 
|  | * Warning: Do not do the decrement at the same time as the call to | 
|  | * flush_dcache_page() because it is a NULL macro on i386 and hence the | 
|  | * decrement never happens so the loop never terminates. | 
|  | */ | 
|  | do { | 
|  | --nr_pages; | 
|  | flush_dcache_page(pages[nr_pages]); | 
|  | } while (nr_pages > 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_commit_pages_after_non_resident_write - commit the received data | 
|  | * @pages:	array of destination pages | 
|  | * @nr_pages:	number of pages in @pages | 
|  | * @pos:	byte position in file at which the write begins | 
|  | * @bytes:	number of bytes to be written | 
|  | * | 
|  | * See description of ntfs_commit_pages_after_write(), below. | 
|  | */ | 
|  | static inline int ntfs_commit_pages_after_non_resident_write( | 
|  | struct page **pages, const unsigned nr_pages, | 
|  | s64 pos, size_t bytes) | 
|  | { | 
|  | s64 end, initialized_size; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni, *base_ni; | 
|  | struct buffer_head *bh, *head; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | unsigned long flags; | 
|  | unsigned blocksize, u; | 
|  | int err; | 
|  |  | 
|  | vi = pages[0]->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | blocksize = vi->i_sb->s_blocksize; | 
|  | end = pos + bytes; | 
|  | u = 0; | 
|  | do { | 
|  | s64 bh_pos; | 
|  | struct page *page; | 
|  | bool partial; | 
|  |  | 
|  | page = pages[u]; | 
|  | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | 
|  | bh = head = page_buffers(page); | 
|  | partial = false; | 
|  | do { | 
|  | s64 bh_end; | 
|  |  | 
|  | bh_end = bh_pos + blocksize; | 
|  | if (bh_end <= pos || bh_pos >= end) { | 
|  | if (!buffer_uptodate(bh)) | 
|  | partial = true; | 
|  | } else { | 
|  | set_buffer_uptodate(bh); | 
|  | mark_buffer_dirty(bh); | 
|  | } | 
|  | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | 
|  | /* | 
|  | * If all buffers are now uptodate but the page is not, set the | 
|  | * page uptodate. | 
|  | */ | 
|  | if (!partial && !PageUptodate(page)) | 
|  | SetPageUptodate(page); | 
|  | } while (++u < nr_pages); | 
|  | /* | 
|  | * Finally, if we do not need to update initialized_size or i_size we | 
|  | * are finished. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | initialized_size = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (end <= initialized_size) { | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Update initialized_size/i_size as appropriate, both in the inode and | 
|  | * the mft record. | 
|  | */ | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | /* Map, pin, and lock the mft record. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | BUG_ON(!NInoNonResident(ni)); | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | BUG_ON(!a->non_resident); | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | BUG_ON(end > ni->allocated_size); | 
|  | ni->initialized_size = end; | 
|  | a->data.non_resident.initialized_size = cpu_to_sle64(end); | 
|  | if (end > i_size_read(vi)) { | 
|  | i_size_write(vi, end); | 
|  | a->data.non_resident.data_size = | 
|  | a->data.non_resident.initialized_size; | 
|  | } | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* Mark the mft record dirty, so it gets written back. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | err_out: | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " | 
|  | "code %i).", err); | 
|  | if (err != -ENOMEM) | 
|  | NVolSetErrors(ni->vol); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_commit_pages_after_write - commit the received data | 
|  | * @pages:	array of destination pages | 
|  | * @nr_pages:	number of pages in @pages | 
|  | * @pos:	byte position in file at which the write begins | 
|  | * @bytes:	number of bytes to be written | 
|  | * | 
|  | * This is called from ntfs_file_buffered_write() with i_mutex held on the inode | 
|  | * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are | 
|  | * locked but not kmap()ped.  The source data has already been copied into the | 
|  | * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before | 
|  | * the data was copied (for non-resident attributes only) and it returned | 
|  | * success. | 
|  | * | 
|  | * Need to set uptodate and mark dirty all buffers within the boundary of the | 
|  | * write.  If all buffers in a page are uptodate we set the page uptodate, too. | 
|  | * | 
|  | * Setting the buffers dirty ensures that they get written out later when | 
|  | * ntfs_writepage() is invoked by the VM. | 
|  | * | 
|  | * Finally, we need to update i_size and initialized_size as appropriate both | 
|  | * in the inode and the mft record. | 
|  | * | 
|  | * This is modelled after fs/buffer.c::generic_commit_write(), which marks | 
|  | * buffers uptodate and dirty, sets the page uptodate if all buffers in the | 
|  | * page are uptodate, and updates i_size if the end of io is beyond i_size.  In | 
|  | * that case, it also marks the inode dirty. | 
|  | * | 
|  | * If things have gone as outlined in | 
|  | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page | 
|  | * content modifications here for non-resident attributes.  For resident | 
|  | * attributes we need to do the uptodate bringing here which we combine with | 
|  | * the copying into the mft record which means we save one atomic kmap. | 
|  | * | 
|  | * Return 0 on success or -errno on error. | 
|  | */ | 
|  | static int ntfs_commit_pages_after_write(struct page **pages, | 
|  | const unsigned nr_pages, s64 pos, size_t bytes) | 
|  | { | 
|  | s64 end, initialized_size; | 
|  | loff_t i_size; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni, *base_ni; | 
|  | struct page *page; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | char *kattr, *kaddr; | 
|  | unsigned long flags; | 
|  | u32 attr_len; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(!nr_pages); | 
|  | BUG_ON(!pages); | 
|  | page = pages[0]; | 
|  | BUG_ON(!page); | 
|  | vi = page->mapping->host; | 
|  | ni = NTFS_I(vi); | 
|  | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | 
|  | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | 
|  | vi->i_ino, ni->type, page->index, nr_pages, | 
|  | (long long)pos, bytes); | 
|  | if (NInoNonResident(ni)) | 
|  | return ntfs_commit_pages_after_non_resident_write(pages, | 
|  | nr_pages, pos, bytes); | 
|  | BUG_ON(nr_pages > 1); | 
|  | /* | 
|  | * Attribute is resident, implying it is not compressed, encrypted, or | 
|  | * sparse. | 
|  | */ | 
|  | if (!NInoAttr(ni)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | BUG_ON(NInoNonResident(ni)); | 
|  | /* Map, pin, and lock the mft record. */ | 
|  | m = map_mft_record(base_ni); | 
|  | if (IS_ERR(m)) { | 
|  | err = PTR_ERR(m); | 
|  | m = NULL; | 
|  | ctx = NULL; | 
|  | goto err_out; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | err = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | if (err == -ENOENT) | 
|  | err = -EIO; | 
|  | goto err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | BUG_ON(a->non_resident); | 
|  | /* The total length of the attribute value. */ | 
|  | attr_len = le32_to_cpu(a->data.resident.value_length); | 
|  | i_size = i_size_read(vi); | 
|  | BUG_ON(attr_len != i_size); | 
|  | BUG_ON(pos > attr_len); | 
|  | end = pos + bytes; | 
|  | BUG_ON(end > le32_to_cpu(a->length) - | 
|  | le16_to_cpu(a->data.resident.value_offset)); | 
|  | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  | /* Copy the received data from the page to the mft record. */ | 
|  | memcpy(kattr + pos, kaddr + pos, bytes); | 
|  | /* Update the attribute length if necessary. */ | 
|  | if (end > attr_len) { | 
|  | attr_len = end; | 
|  | a->data.resident.value_length = cpu_to_le32(attr_len); | 
|  | } | 
|  | /* | 
|  | * If the page is not uptodate, bring the out of bounds area(s) | 
|  | * uptodate by copying data from the mft record to the page. | 
|  | */ | 
|  | if (!PageUptodate(page)) { | 
|  | if (pos > 0) | 
|  | memcpy(kaddr, kattr, pos); | 
|  | if (end < attr_len) | 
|  | memcpy(kaddr + end, kattr + end, attr_len - end); | 
|  | /* Zero the region outside the end of the attribute value. */ | 
|  | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | } | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | /* Update initialized_size/i_size if necessary. */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | initialized_size = ni->initialized_size; | 
|  | BUG_ON(end > ni->allocated_size); | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | BUG_ON(initialized_size != i_size); | 
|  | if (end > initialized_size) { | 
|  | write_lock_irqsave(&ni->size_lock, flags); | 
|  | ni->initialized_size = end; | 
|  | i_size_write(vi, end); | 
|  | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | } | 
|  | /* Mark the mft record dirty, so it gets written back. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(base_ni); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | err_out: | 
|  | if (err == -ENOMEM) { | 
|  | ntfs_warning(vi->i_sb, "Error allocating memory required to " | 
|  | "commit the write."); | 
|  | if (PageUptodate(page)) { | 
|  | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | 
|  | "dirty so the write will be retried " | 
|  | "later on by the VM."); | 
|  | /* | 
|  | * Put the page on mapping->dirty_pages, but leave its | 
|  | * buffers' dirty state as-is. | 
|  | */ | 
|  | __set_page_dirty_nobuffers(page); | 
|  | err = 0; | 
|  | } else | 
|  | ntfs_error(vi->i_sb, "Page is not uptodate.  Written " | 
|  | "data has been lost."); | 
|  | } else { | 
|  | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | 
|  | "with error %i.", err); | 
|  | NVolSetErrors(ni->vol); | 
|  | } | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (m) | 
|  | unmap_mft_record(base_ni); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_file_buffered_write - | 
|  | * | 
|  | * Locking: The vfs is holding ->i_mutex on the inode. | 
|  | */ | 
|  | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, | 
|  | const struct iovec *iov, unsigned long nr_segs, | 
|  | loff_t pos, loff_t *ppos, size_t count) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *vi = mapping->host; | 
|  | ntfs_inode *ni = NTFS_I(vi); | 
|  | ntfs_volume *vol = ni->vol; | 
|  | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; | 
|  | struct page *cached_page = NULL; | 
|  | char __user *buf = NULL; | 
|  | s64 end, ll; | 
|  | VCN last_vcn; | 
|  | LCN lcn; | 
|  | unsigned long flags; | 
|  | size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */ | 
|  | ssize_t status, written; | 
|  | unsigned nr_pages; | 
|  | int err; | 
|  |  | 
|  | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | 
|  | "pos 0x%llx, count 0x%lx.", | 
|  | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | 
|  | (unsigned long long)pos, (unsigned long)count); | 
|  | if (unlikely(!count)) | 
|  | return 0; | 
|  | BUG_ON(NInoMstProtected(ni)); | 
|  | /* | 
|  | * If the attribute is not an index root and it is encrypted or | 
|  | * compressed, we cannot write to it yet.  Note we need to check for | 
|  | * AT_INDEX_ALLOCATION since this is the type of both directory and | 
|  | * index inodes. | 
|  | */ | 
|  | if (ni->type != AT_INDEX_ALLOCATION) { | 
|  | /* If file is encrypted, deny access, just like NT4. */ | 
|  | if (NInoEncrypted(ni)) { | 
|  | /* | 
|  | * Reminder for later: Encrypted files are _always_ | 
|  | * non-resident so that the content can always be | 
|  | * encrypted. | 
|  | */ | 
|  | ntfs_debug("Denying write access to encrypted file."); | 
|  | return -EACCES; | 
|  | } | 
|  | if (NInoCompressed(ni)) { | 
|  | /* Only unnamed $DATA attribute can be compressed. */ | 
|  | BUG_ON(ni->type != AT_DATA); | 
|  | BUG_ON(ni->name_len); | 
|  | /* | 
|  | * Reminder for later: If resident, the data is not | 
|  | * actually compressed.  Only on the switch to non- | 
|  | * resident does compression kick in.  This is in | 
|  | * contrast to encrypted files (see above). | 
|  | */ | 
|  | ntfs_error(vi->i_sb, "Writing to compressed files is " | 
|  | "not implemented yet.  Sorry."); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If a previous ntfs_truncate() failed, repeat it and abort if it | 
|  | * fails again. | 
|  | */ | 
|  | if (unlikely(NInoTruncateFailed(ni))) { | 
|  | down_write(&vi->i_alloc_sem); | 
|  | err = ntfs_truncate(vi); | 
|  | up_write(&vi->i_alloc_sem); | 
|  | if (err || NInoTruncateFailed(ni)) { | 
|  | if (!err) | 
|  | err = -EIO; | 
|  | ntfs_error(vol->sb, "Cannot perform write to inode " | 
|  | "0x%lx, attribute type 0x%x, because " | 
|  | "ntfs_truncate() failed (error code " | 
|  | "%i).", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | /* The first byte after the write. */ | 
|  | end = pos + count; | 
|  | /* | 
|  | * If the write goes beyond the allocated size, extend the allocation | 
|  | * to cover the whole of the write, rounded up to the nearest cluster. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | ll = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (end > ll) { | 
|  | /* Extend the allocation without changing the data size. */ | 
|  | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); | 
|  | if (likely(ll >= 0)) { | 
|  | BUG_ON(pos >= ll); | 
|  | /* If the extension was partial truncate the write. */ | 
|  | if (end > ll) { | 
|  | ntfs_debug("Truncating write to inode 0x%lx, " | 
|  | "attribute type 0x%x, because " | 
|  | "the allocation was only " | 
|  | "partially extended.", | 
|  | vi->i_ino, (unsigned) | 
|  | le32_to_cpu(ni->type)); | 
|  | end = ll; | 
|  | count = ll - pos; | 
|  | } | 
|  | } else { | 
|  | err = ll; | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | ll = ni->allocated_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | /* Perform a partial write if possible or fail. */ | 
|  | if (pos < ll) { | 
|  | ntfs_debug("Truncating write to inode 0x%lx, " | 
|  | "attribute type 0x%x, because " | 
|  | "extending the allocation " | 
|  | "failed (error code %i).", | 
|  | vi->i_ino, (unsigned) | 
|  | le32_to_cpu(ni->type), err); | 
|  | end = ll; | 
|  | count = ll - pos; | 
|  | } else { | 
|  | ntfs_error(vol->sb, "Cannot perform write to " | 
|  | "inode 0x%lx, attribute type " | 
|  | "0x%x, because extending the " | 
|  | "allocation failed (error " | 
|  | "code %i).", vi->i_ino, | 
|  | (unsigned) | 
|  | le32_to_cpu(ni->type), err); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | written = 0; | 
|  | /* | 
|  | * If the write starts beyond the initialized size, extend it up to the | 
|  | * beginning of the write and initialize all non-sparse space between | 
|  | * the old initialized size and the new one.  This automatically also | 
|  | * increments the vfs inode->i_size to keep it above or equal to the | 
|  | * initialized_size. | 
|  | */ | 
|  | read_lock_irqsave(&ni->size_lock, flags); | 
|  | ll = ni->initialized_size; | 
|  | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | if (pos > ll) { | 
|  | err = ntfs_attr_extend_initialized(ni, pos); | 
|  | if (err < 0) { | 
|  | ntfs_error(vol->sb, "Cannot perform write to inode " | 
|  | "0x%lx, attribute type 0x%x, because " | 
|  | "extending the initialized size " | 
|  | "failed (error code %i).", vi->i_ino, | 
|  | (unsigned)le32_to_cpu(ni->type), err); | 
|  | status = err; | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Determine the number of pages per cluster for non-resident | 
|  | * attributes. | 
|  | */ | 
|  | nr_pages = 1; | 
|  | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) | 
|  | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; | 
|  | /* Finally, perform the actual write. */ | 
|  | last_vcn = -1; | 
|  | if (likely(nr_segs == 1)) | 
|  | buf = iov->iov_base; | 
|  | do { | 
|  | VCN vcn; | 
|  | pgoff_t idx, start_idx; | 
|  | unsigned ofs, do_pages, u; | 
|  | size_t copied; | 
|  |  | 
|  | start_idx = idx = pos >> PAGE_CACHE_SHIFT; | 
|  | ofs = pos & ~PAGE_CACHE_MASK; | 
|  | bytes = PAGE_CACHE_SIZE - ofs; | 
|  | do_pages = 1; | 
|  | if (nr_pages > 1) { | 
|  | vcn = pos >> vol->cluster_size_bits; | 
|  | if (vcn != last_vcn) { | 
|  | last_vcn = vcn; | 
|  | /* | 
|  | * Get the lcn of the vcn the write is in.  If | 
|  | * it is a hole, need to lock down all pages in | 
|  | * the cluster. | 
|  | */ | 
|  | down_read(&ni->runlist.lock); | 
|  | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> | 
|  | vol->cluster_size_bits, false); | 
|  | up_read(&ni->runlist.lock); | 
|  | if (unlikely(lcn < LCN_HOLE)) { | 
|  | status = -EIO; | 
|  | if (lcn == LCN_ENOMEM) | 
|  | status = -ENOMEM; | 
|  | else | 
|  | ntfs_error(vol->sb, "Cannot " | 
|  | "perform write to " | 
|  | "inode 0x%lx, " | 
|  | "attribute type 0x%x, " | 
|  | "because the attribute " | 
|  | "is corrupt.", | 
|  | vi->i_ino, (unsigned) | 
|  | le32_to_cpu(ni->type)); | 
|  | break; | 
|  | } | 
|  | if (lcn == LCN_HOLE) { | 
|  | start_idx = (pos & ~(s64) | 
|  | vol->cluster_size_mask) | 
|  | >> PAGE_CACHE_SHIFT; | 
|  | bytes = vol->cluster_size - (pos & | 
|  | vol->cluster_size_mask); | 
|  | do_pages = nr_pages; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (bytes > count) | 
|  | bytes = count; | 
|  | /* | 
|  | * Bring in the user page(s) that we will copy from _first_. | 
|  | * Otherwise there is a nasty deadlock on copying from the same | 
|  | * page(s) as we are writing to, without it/them being marked | 
|  | * up-to-date.  Note, at present there is nothing to stop the | 
|  | * pages being swapped out between us bringing them into memory | 
|  | * and doing the actual copying. | 
|  | */ | 
|  | if (likely(nr_segs == 1)) | 
|  | ntfs_fault_in_pages_readable(buf, bytes); | 
|  | else | 
|  | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); | 
|  | /* Get and lock @do_pages starting at index @start_idx. */ | 
|  | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, | 
|  | pages, &cached_page); | 
|  | if (unlikely(status)) | 
|  | break; | 
|  | /* | 
|  | * For non-resident attributes, we need to fill any holes with | 
|  | * actual clusters and ensure all bufferes are mapped.  We also | 
|  | * need to bring uptodate any buffers that are only partially | 
|  | * being written to. | 
|  | */ | 
|  | if (NInoNonResident(ni)) { | 
|  | status = ntfs_prepare_pages_for_non_resident_write( | 
|  | pages, do_pages, pos, bytes); | 
|  | if (unlikely(status)) { | 
|  | loff_t i_size; | 
|  |  | 
|  | do { | 
|  | unlock_page(pages[--do_pages]); | 
|  | page_cache_release(pages[do_pages]); | 
|  | } while (do_pages); | 
|  | /* | 
|  | * The write preparation may have instantiated | 
|  | * allocated space outside i_size.  Trim this | 
|  | * off again.  We can ignore any errors in this | 
|  | * case as we will just be waisting a bit of | 
|  | * allocated space, which is not a disaster. | 
|  | */ | 
|  | i_size = i_size_read(vi); | 
|  | if (pos + bytes > i_size) | 
|  | vmtruncate(vi, i_size); | 
|  | break; | 
|  | } | 
|  | } | 
|  | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; | 
|  | if (likely(nr_segs == 1)) { | 
|  | copied = ntfs_copy_from_user(pages + u, do_pages - u, | 
|  | ofs, buf, bytes); | 
|  | buf += copied; | 
|  | } else | 
|  | copied = ntfs_copy_from_user_iovec(pages + u, | 
|  | do_pages - u, ofs, &iov, &iov_ofs, | 
|  | bytes); | 
|  | ntfs_flush_dcache_pages(pages + u, do_pages - u); | 
|  | status = ntfs_commit_pages_after_write(pages, do_pages, pos, | 
|  | bytes); | 
|  | if (likely(!status)) { | 
|  | written += copied; | 
|  | count -= copied; | 
|  | pos += copied; | 
|  | if (unlikely(copied != bytes)) | 
|  | status = -EFAULT; | 
|  | } | 
|  | do { | 
|  | unlock_page(pages[--do_pages]); | 
|  | mark_page_accessed(pages[do_pages]); | 
|  | page_cache_release(pages[do_pages]); | 
|  | } while (do_pages); | 
|  | if (unlikely(status)) | 
|  | break; | 
|  | balance_dirty_pages_ratelimited(mapping); | 
|  | cond_resched(); | 
|  | } while (count); | 
|  | err_out: | 
|  | *ppos = pos; | 
|  | if (cached_page) | 
|  | page_cache_release(cached_page); | 
|  | ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).", | 
|  | written ? "written" : "status", (unsigned long)written, | 
|  | (long)status); | 
|  | return written ? written : status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_file_aio_write_nolock - | 
|  | */ | 
|  | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, | 
|  | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | loff_t pos; | 
|  | size_t count;		/* after file limit checks */ | 
|  | ssize_t written, err; | 
|  |  | 
|  | count = 0; | 
|  | err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ); | 
|  | if (err) | 
|  | return err; | 
|  | pos = *ppos; | 
|  | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
|  | /* We can write back this queue in page reclaim. */ | 
|  | current->backing_dev_info = mapping->backing_dev_info; | 
|  | written = 0; | 
|  | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
|  | if (err) | 
|  | goto out; | 
|  | if (!count) | 
|  | goto out; | 
|  | err = file_remove_suid(file); | 
|  | if (err) | 
|  | goto out; | 
|  | file_update_time(file); | 
|  | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, | 
|  | count); | 
|  | out: | 
|  | current->backing_dev_info = NULL; | 
|  | return written ? written : err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_file_aio_write - | 
|  | */ | 
|  | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov, | 
|  | unsigned long nr_segs, loff_t pos) | 
|  | { | 
|  | struct file *file = iocb->ki_filp; | 
|  | struct address_space *mapping = file->f_mapping; | 
|  | struct inode *inode = mapping->host; | 
|  | ssize_t ret; | 
|  |  | 
|  | BUG_ON(iocb->ki_pos != pos); | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | if (ret > 0) { | 
|  | int err = generic_write_sync(file, pos, ret); | 
|  | if (err < 0) | 
|  | ret = err; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_file_fsync - sync a file to disk | 
|  | * @filp:	file to be synced | 
|  | * @datasync:	if non-zero only flush user data and not metadata | 
|  | * | 
|  | * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync | 
|  | * system calls.  This function is inspired by fs/buffer.c::file_fsync(). | 
|  | * | 
|  | * If @datasync is false, write the mft record and all associated extent mft | 
|  | * records as well as the $DATA attribute and then sync the block device. | 
|  | * | 
|  | * If @datasync is true and the attribute is non-resident, we skip the writing | 
|  | * of the mft record and all associated extent mft records (this might still | 
|  | * happen due to the write_inode_now() call). | 
|  | * | 
|  | * Also, if @datasync is true, we do not wait on the inode to be written out | 
|  | * but we always wait on the page cache pages to be written out. | 
|  | * | 
|  | * Locking: Caller must hold i_mutex on the inode. | 
|  | * | 
|  | * TODO: We should probably also write all attribute/index inodes associated | 
|  | * with this inode but since we have no simple way of getting to them we ignore | 
|  | * this problem for now. | 
|  | */ | 
|  | static int ntfs_file_fsync(struct file *filp, int datasync) | 
|  | { | 
|  | struct inode *vi = filp->f_mapping->host; | 
|  | int err, ret = 0; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); | 
|  | BUG_ON(S_ISDIR(vi->i_mode)); | 
|  | if (!datasync || !NInoNonResident(NTFS_I(vi))) | 
|  | ret = __ntfs_write_inode(vi, 1); | 
|  | write_inode_now(vi, !datasync); | 
|  | /* | 
|  | * NOTE: If we were to use mapping->private_list (see ext2 and | 
|  | * fs/buffer.c) for dirty blocks then we could optimize the below to be | 
|  | * sync_mapping_buffers(vi->i_mapping). | 
|  | */ | 
|  | err = sync_blockdev(vi->i_sb->s_bdev); | 
|  | if (unlikely(err && !ret)) | 
|  | ret = err; | 
|  | if (likely(!ret)) | 
|  | ntfs_debug("Done."); | 
|  | else | 
|  | ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error " | 
|  | "%u.", datasync ? "data" : "", vi->i_ino, -ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* NTFS_RW */ | 
|  |  | 
|  | const struct file_operations ntfs_file_ops = { | 
|  | .llseek		= generic_file_llseek,	 /* Seek inside file. */ | 
|  | .read		= do_sync_read,		 /* Read from file. */ | 
|  | .aio_read	= generic_file_aio_read, /* Async read from file. */ | 
|  | #ifdef NTFS_RW | 
|  | .write		= do_sync_write,	 /* Write to file. */ | 
|  | .aio_write	= ntfs_file_aio_write,	 /* Async write to file. */ | 
|  | /*.release	= ,*/			 /* Last file is closed.  See | 
|  | fs/ext2/file.c:: | 
|  | ext2_release_file() for | 
|  | how to use this to discard | 
|  | preallocated space for | 
|  | write opened files. */ | 
|  | .fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */ | 
|  | /*.aio_fsync	= ,*/			 /* Sync all outstanding async | 
|  | i/o operations on a | 
|  | kiocb. */ | 
|  | #endif /* NTFS_RW */ | 
|  | /*.ioctl	= ,*/			 /* Perform function on the | 
|  | mounted filesystem. */ | 
|  | .mmap		= generic_file_mmap,	 /* Mmap file. */ | 
|  | .open		= ntfs_file_open,	 /* Open file. */ | 
|  | .splice_read	= generic_file_splice_read /* Zero-copy data send with | 
|  | the data source being on | 
|  | the ntfs partition.  We do | 
|  | not need to care about the | 
|  | data destination. */ | 
|  | /*.sendpage	= ,*/			 /* Zero-copy data send with | 
|  | the data destination being | 
|  | on the ntfs partition.  We | 
|  | do not need to care about | 
|  | the data source. */ | 
|  | }; | 
|  |  | 
|  | const struct inode_operations ntfs_file_inode_ops = { | 
|  | #ifdef NTFS_RW | 
|  | .truncate	= ntfs_truncate_vfs, | 
|  | .setattr	= ntfs_setattr, | 
|  | #endif /* NTFS_RW */ | 
|  | }; | 
|  |  | 
|  | const struct file_operations ntfs_empty_file_ops = {}; | 
|  |  | 
|  | const struct inode_operations ntfs_empty_inode_ops = {}; |