|  | /* | 
|  | *  kernel/cpuset.c | 
|  | * | 
|  | *  Processor and Memory placement constraints for sets of tasks. | 
|  | * | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004-2007 Silicon Graphics, Inc. | 
|  | *  Copyright (C) 2006 Google, Inc | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr. | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson. | 
|  | *  2006 Rework by Paul Menage to use generic cgroups | 
|  | *  2008 Rework of the scheduler domains and CPU hotplug handling | 
|  | *       by Max Krasnyansky | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/sort.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/cgroup.h> | 
|  |  | 
|  | /* | 
|  | * Workqueue for cpuset related tasks. | 
|  | * | 
|  | * Using kevent workqueue may cause deadlock when memory_migrate | 
|  | * is set. So we create a separate workqueue thread for cpuset. | 
|  | */ | 
|  | static struct workqueue_struct *cpuset_wq; | 
|  |  | 
|  | /* | 
|  | * Tracks how many cpusets are currently defined in system. | 
|  | * When there is only one cpuset (the root cpuset) we can | 
|  | * short circuit some hooks. | 
|  | */ | 
|  | int number_of_cpusets __read_mostly; | 
|  |  | 
|  | /* Forward declare cgroup structures */ | 
|  | struct cgroup_subsys cpuset_subsys; | 
|  | struct cpuset; | 
|  |  | 
|  | /* See "Frequency meter" comments, below. */ | 
|  |  | 
|  | struct fmeter { | 
|  | int cnt;		/* unprocessed events count */ | 
|  | int val;		/* most recent output value */ | 
|  | time_t time;		/* clock (secs) when val computed */ | 
|  | spinlock_t lock;	/* guards read or write of above */ | 
|  | }; | 
|  |  | 
|  | struct cpuset { | 
|  | struct cgroup_subsys_state css; | 
|  |  | 
|  | unsigned long flags;		/* "unsigned long" so bitops work */ | 
|  | cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */ | 
|  | nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ | 
|  |  | 
|  | struct cpuset *parent;		/* my parent */ | 
|  |  | 
|  | struct fmeter fmeter;		/* memory_pressure filter */ | 
|  |  | 
|  | /* partition number for rebuild_sched_domains() */ | 
|  | int pn; | 
|  |  | 
|  | /* for custom sched domain */ | 
|  | int relax_domain_level; | 
|  |  | 
|  | /* used for walking a cpuset hierarchy */ | 
|  | struct list_head stack_list; | 
|  | }; | 
|  |  | 
|  | /* Retrieve the cpuset for a cgroup */ | 
|  | static inline struct cpuset *cgroup_cs(struct cgroup *cont) | 
|  | { | 
|  | return container_of(cgroup_subsys_state(cont, cpuset_subsys_id), | 
|  | struct cpuset, css); | 
|  | } | 
|  |  | 
|  | /* Retrieve the cpuset for a task */ | 
|  | static inline struct cpuset *task_cs(struct task_struct *task) | 
|  | { | 
|  | return container_of(task_subsys_state(task, cpuset_subsys_id), | 
|  | struct cpuset, css); | 
|  | } | 
|  |  | 
|  | /* bits in struct cpuset flags field */ | 
|  | typedef enum { | 
|  | CS_CPU_EXCLUSIVE, | 
|  | CS_MEM_EXCLUSIVE, | 
|  | CS_MEM_HARDWALL, | 
|  | CS_MEMORY_MIGRATE, | 
|  | CS_SCHED_LOAD_BALANCE, | 
|  | CS_SPREAD_PAGE, | 
|  | CS_SPREAD_SLAB, | 
|  | } cpuset_flagbits_t; | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_mem_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_mem_hardwall(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEM_HARDWALL, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_sched_load_balance(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_memory_migrate(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_MEMORY_MIGRATE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_spread_page(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_spread_slab(const struct cpuset *cs) | 
|  | { | 
|  | return test_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  | } | 
|  |  | 
|  | static struct cpuset top_cpuset = { | 
|  | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * There are two global mutexes guarding cpuset structures.  The first | 
|  | * is the main control groups cgroup_mutex, accessed via | 
|  | * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific | 
|  | * callback_mutex, below. They can nest.  It is ok to first take | 
|  | * cgroup_mutex, then nest callback_mutex.  We also require taking | 
|  | * task_lock() when dereferencing a task's cpuset pointer.  See "The | 
|  | * task_lock() exception", at the end of this comment. | 
|  | * | 
|  | * A task must hold both mutexes to modify cpusets.  If a task | 
|  | * holds cgroup_mutex, then it blocks others wanting that mutex, | 
|  | * ensuring that it is the only task able to also acquire callback_mutex | 
|  | * and be able to modify cpusets.  It can perform various checks on | 
|  | * the cpuset structure first, knowing nothing will change.  It can | 
|  | * also allocate memory while just holding cgroup_mutex.  While it is | 
|  | * performing these checks, various callback routines can briefly | 
|  | * acquire callback_mutex to query cpusets.  Once it is ready to make | 
|  | * the changes, it takes callback_mutex, blocking everyone else. | 
|  | * | 
|  | * Calls to the kernel memory allocator can not be made while holding | 
|  | * callback_mutex, as that would risk double tripping on callback_mutex | 
|  | * from one of the callbacks into the cpuset code from within | 
|  | * __alloc_pages(). | 
|  | * | 
|  | * If a task is only holding callback_mutex, then it has read-only | 
|  | * access to cpusets. | 
|  | * | 
|  | * Now, the task_struct fields mems_allowed and mempolicy may be changed | 
|  | * by other task, we use alloc_lock in the task_struct fields to protect | 
|  | * them. | 
|  | * | 
|  | * The cpuset_common_file_read() handlers only hold callback_mutex across | 
|  | * small pieces of code, such as when reading out possibly multi-word | 
|  | * cpumasks and nodemasks. | 
|  | * | 
|  | * Accessing a task's cpuset should be done in accordance with the | 
|  | * guidelines for accessing subsystem state in kernel/cgroup.c | 
|  | */ | 
|  |  | 
|  | static DEFINE_MUTEX(callback_mutex); | 
|  |  | 
|  | /* | 
|  | * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist | 
|  | * buffers.  They are statically allocated to prevent using excess stack | 
|  | * when calling cpuset_print_task_mems_allowed(). | 
|  | */ | 
|  | #define CPUSET_NAME_LEN		(128) | 
|  | #define	CPUSET_NODELIST_LEN	(256) | 
|  | static char cpuset_name[CPUSET_NAME_LEN]; | 
|  | static char cpuset_nodelist[CPUSET_NODELIST_LEN]; | 
|  | static DEFINE_SPINLOCK(cpuset_buffer_lock); | 
|  |  | 
|  | /* | 
|  | * This is ugly, but preserves the userspace API for existing cpuset | 
|  | * users. If someone tries to mount the "cpuset" filesystem, we | 
|  | * silently switch it to mount "cgroup" instead | 
|  | */ | 
|  | static struct dentry *cpuset_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, void *data) | 
|  | { | 
|  | struct file_system_type *cgroup_fs = get_fs_type("cgroup"); | 
|  | struct dentry *ret = ERR_PTR(-ENODEV); | 
|  | if (cgroup_fs) { | 
|  | char mountopts[] = | 
|  | "cpuset,noprefix," | 
|  | "release_agent=/sbin/cpuset_release_agent"; | 
|  | ret = cgroup_fs->mount(cgroup_fs, flags, | 
|  | unused_dev_name, mountopts); | 
|  | put_filesystem(cgroup_fs); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct file_system_type cpuset_fs_type = { | 
|  | .name = "cpuset", | 
|  | .mount = cpuset_mount, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return in pmask the portion of a cpusets's cpus_allowed that | 
|  | * are online.  If none are online, walk up the cpuset hierarchy | 
|  | * until we find one that does have some online cpus.  If we get | 
|  | * all the way to the top and still haven't found any online cpus, | 
|  | * return cpu_online_map.  Or if passed a NULL cs from an exit'ing | 
|  | * task, return cpu_online_map. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of cpu_online_map. | 
|  | * | 
|  | * Call with callback_mutex held. | 
|  | */ | 
|  |  | 
|  | static void guarantee_online_cpus(const struct cpuset *cs, | 
|  | struct cpumask *pmask) | 
|  | { | 
|  | while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask)) | 
|  | cs = cs->parent; | 
|  | if (cs) | 
|  | cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask); | 
|  | else | 
|  | cpumask_copy(pmask, cpu_online_mask); | 
|  | BUG_ON(!cpumask_intersects(pmask, cpu_online_mask)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return in *pmask the portion of a cpusets's mems_allowed that | 
|  | * are online, with memory.  If none are online with memory, walk | 
|  | * up the cpuset hierarchy until we find one that does have some | 
|  | * online mems.  If we get all the way to the top and still haven't | 
|  | * found any online mems, return node_states[N_HIGH_MEMORY]. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of node_states[N_HIGH_MEMORY]. | 
|  | * | 
|  | * Call with callback_mutex held. | 
|  | */ | 
|  |  | 
|  | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 
|  | { | 
|  | while (cs && !nodes_intersects(cs->mems_allowed, | 
|  | node_states[N_HIGH_MEMORY])) | 
|  | cs = cs->parent; | 
|  | if (cs) | 
|  | nodes_and(*pmask, cs->mems_allowed, | 
|  | node_states[N_HIGH_MEMORY]); | 
|  | else | 
|  | *pmask = node_states[N_HIGH_MEMORY]; | 
|  | BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY])); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update task's spread flag if cpuset's page/slab spread flag is set | 
|  | * | 
|  | * Called with callback_mutex/cgroup_mutex held | 
|  | */ | 
|  | static void cpuset_update_task_spread_flag(struct cpuset *cs, | 
|  | struct task_struct *tsk) | 
|  | { | 
|  | if (is_spread_page(cs)) | 
|  | tsk->flags |= PF_SPREAD_PAGE; | 
|  | else | 
|  | tsk->flags &= ~PF_SPREAD_PAGE; | 
|  | if (is_spread_slab(cs)) | 
|  | tsk->flags |= PF_SPREAD_SLAB; | 
|  | else | 
|  | tsk->flags &= ~PF_SPREAD_SLAB; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
|  | * | 
|  | * One cpuset is a subset of another if all its allowed CPUs and | 
|  | * Memory Nodes are a subset of the other, and its exclusive flags | 
|  | * are only set if the other's are set.  Call holding cgroup_mutex. | 
|  | */ | 
|  |  | 
|  | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
|  | { | 
|  | return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) && | 
|  | nodes_subset(p->mems_allowed, q->mems_allowed) && | 
|  | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
|  | is_mem_exclusive(p) <= is_mem_exclusive(q); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * alloc_trial_cpuset - allocate a trial cpuset | 
|  | * @cs: the cpuset that the trial cpuset duplicates | 
|  | */ | 
|  | static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs) | 
|  | { | 
|  | struct cpuset *trial; | 
|  |  | 
|  | trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); | 
|  | if (!trial) | 
|  | return NULL; | 
|  |  | 
|  | if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) { | 
|  | kfree(trial); | 
|  | return NULL; | 
|  | } | 
|  | cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); | 
|  |  | 
|  | return trial; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_trial_cpuset - free the trial cpuset | 
|  | * @trial: the trial cpuset to be freed | 
|  | */ | 
|  | static void free_trial_cpuset(struct cpuset *trial) | 
|  | { | 
|  | free_cpumask_var(trial->cpus_allowed); | 
|  | kfree(trial); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate_change() - Used to validate that any proposed cpuset change | 
|  | *		       follows the structural rules for cpusets. | 
|  | * | 
|  | * If we replaced the flag and mask values of the current cpuset | 
|  | * (cur) with those values in the trial cpuset (trial), would | 
|  | * our various subset and exclusive rules still be valid?  Presumes | 
|  | * cgroup_mutex held. | 
|  | * | 
|  | * 'cur' is the address of an actual, in-use cpuset.  Operations | 
|  | * such as list traversal that depend on the actual address of the | 
|  | * cpuset in the list must use cur below, not trial. | 
|  | * | 
|  | * 'trial' is the address of bulk structure copy of cur, with | 
|  | * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
|  | * or flags changed to new, trial values. | 
|  | * | 
|  | * Return 0 if valid, -errno if not. | 
|  | */ | 
|  |  | 
|  | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 
|  | { | 
|  | struct cgroup *cont; | 
|  | struct cpuset *c, *par; | 
|  |  | 
|  | /* Each of our child cpusets must be a subset of us */ | 
|  | list_for_each_entry(cont, &cur->css.cgroup->children, sibling) { | 
|  | if (!is_cpuset_subset(cgroup_cs(cont), trial)) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Remaining checks don't apply to root cpuset */ | 
|  | if (cur == &top_cpuset) | 
|  | return 0; | 
|  |  | 
|  | par = cur->parent; | 
|  |  | 
|  | /* We must be a subset of our parent cpuset */ | 
|  | if (!is_cpuset_subset(trial, par)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * If either I or some sibling (!= me) is exclusive, we can't | 
|  | * overlap | 
|  | */ | 
|  | list_for_each_entry(cont, &par->css.cgroup->children, sibling) { | 
|  | c = cgroup_cs(cont); | 
|  | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
|  | c != cur && | 
|  | cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
|  | return -EINVAL; | 
|  | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
|  | c != cur && | 
|  | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */ | 
|  | if (cgroup_task_count(cur->css.cgroup)) { | 
|  | if (cpumask_empty(trial->cpus_allowed) || | 
|  | nodes_empty(trial->mems_allowed)) { | 
|  | return -ENOSPC; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Helper routine for generate_sched_domains(). | 
|  | * Do cpusets a, b have overlapping cpus_allowed masks? | 
|  | */ | 
|  | static int cpusets_overlap(struct cpuset *a, struct cpuset *b) | 
|  | { | 
|  | return cpumask_intersects(a->cpus_allowed, b->cpus_allowed); | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) | 
|  | { | 
|  | if (dattr->relax_domain_level < c->relax_domain_level) | 
|  | dattr->relax_domain_level = c->relax_domain_level; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c) | 
|  | { | 
|  | LIST_HEAD(q); | 
|  |  | 
|  | list_add(&c->stack_list, &q); | 
|  | while (!list_empty(&q)) { | 
|  | struct cpuset *cp; | 
|  | struct cgroup *cont; | 
|  | struct cpuset *child; | 
|  |  | 
|  | cp = list_first_entry(&q, struct cpuset, stack_list); | 
|  | list_del(q.next); | 
|  |  | 
|  | if (cpumask_empty(cp->cpus_allowed)) | 
|  | continue; | 
|  |  | 
|  | if (is_sched_load_balance(cp)) | 
|  | update_domain_attr(dattr, cp); | 
|  |  | 
|  | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | child = cgroup_cs(cont); | 
|  | list_add_tail(&child->stack_list, &q); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * generate_sched_domains() | 
|  | * | 
|  | * This function builds a partial partition of the systems CPUs | 
|  | * A 'partial partition' is a set of non-overlapping subsets whose | 
|  | * union is a subset of that set. | 
|  | * The output of this function needs to be passed to kernel/sched.c | 
|  | * partition_sched_domains() routine, which will rebuild the scheduler's | 
|  | * load balancing domains (sched domains) as specified by that partial | 
|  | * partition. | 
|  | * | 
|  | * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt | 
|  | * for a background explanation of this. | 
|  | * | 
|  | * Does not return errors, on the theory that the callers of this | 
|  | * routine would rather not worry about failures to rebuild sched | 
|  | * domains when operating in the severe memory shortage situations | 
|  | * that could cause allocation failures below. | 
|  | * | 
|  | * Must be called with cgroup_lock held. | 
|  | * | 
|  | * The three key local variables below are: | 
|  | *    q  - a linked-list queue of cpuset pointers, used to implement a | 
|  | *	   top-down scan of all cpusets.  This scan loads a pointer | 
|  | *	   to each cpuset marked is_sched_load_balance into the | 
|  | *	   array 'csa'.  For our purposes, rebuilding the schedulers | 
|  | *	   sched domains, we can ignore !is_sched_load_balance cpusets. | 
|  | *  csa  - (for CpuSet Array) Array of pointers to all the cpusets | 
|  | *	   that need to be load balanced, for convenient iterative | 
|  | *	   access by the subsequent code that finds the best partition, | 
|  | *	   i.e the set of domains (subsets) of CPUs such that the | 
|  | *	   cpus_allowed of every cpuset marked is_sched_load_balance | 
|  | *	   is a subset of one of these domains, while there are as | 
|  | *	   many such domains as possible, each as small as possible. | 
|  | * doms  - Conversion of 'csa' to an array of cpumasks, for passing to | 
|  | *	   the kernel/sched.c routine partition_sched_domains() in a | 
|  | *	   convenient format, that can be easily compared to the prior | 
|  | *	   value to determine what partition elements (sched domains) | 
|  | *	   were changed (added or removed.) | 
|  | * | 
|  | * Finding the best partition (set of domains): | 
|  | *	The triple nested loops below over i, j, k scan over the | 
|  | *	load balanced cpusets (using the array of cpuset pointers in | 
|  | *	csa[]) looking for pairs of cpusets that have overlapping | 
|  | *	cpus_allowed, but which don't have the same 'pn' partition | 
|  | *	number and gives them in the same partition number.  It keeps | 
|  | *	looping on the 'restart' label until it can no longer find | 
|  | *	any such pairs. | 
|  | * | 
|  | *	The union of the cpus_allowed masks from the set of | 
|  | *	all cpusets having the same 'pn' value then form the one | 
|  | *	element of the partition (one sched domain) to be passed to | 
|  | *	partition_sched_domains(). | 
|  | */ | 
|  | static int generate_sched_domains(cpumask_var_t **domains, | 
|  | struct sched_domain_attr **attributes) | 
|  | { | 
|  | LIST_HEAD(q);		/* queue of cpusets to be scanned */ | 
|  | struct cpuset *cp;	/* scans q */ | 
|  | struct cpuset **csa;	/* array of all cpuset ptrs */ | 
|  | int csn;		/* how many cpuset ptrs in csa so far */ | 
|  | int i, j, k;		/* indices for partition finding loops */ | 
|  | cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */ | 
|  | struct sched_domain_attr *dattr;  /* attributes for custom domains */ | 
|  | int ndoms = 0;		/* number of sched domains in result */ | 
|  | int nslot;		/* next empty doms[] struct cpumask slot */ | 
|  |  | 
|  | doms = NULL; | 
|  | dattr = NULL; | 
|  | csa = NULL; | 
|  |  | 
|  | /* Special case for the 99% of systems with one, full, sched domain */ | 
|  | if (is_sched_load_balance(&top_cpuset)) { | 
|  | ndoms = 1; | 
|  | doms = alloc_sched_domains(ndoms); | 
|  | if (!doms) | 
|  | goto done; | 
|  |  | 
|  | dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  | if (dattr) { | 
|  | *dattr = SD_ATTR_INIT; | 
|  | update_domain_attr_tree(dattr, &top_cpuset); | 
|  | } | 
|  | cpumask_copy(doms[0], top_cpuset.cpus_allowed); | 
|  |  | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL); | 
|  | if (!csa) | 
|  | goto done; | 
|  | csn = 0; | 
|  |  | 
|  | list_add(&top_cpuset.stack_list, &q); | 
|  | while (!list_empty(&q)) { | 
|  | struct cgroup *cont; | 
|  | struct cpuset *child;   /* scans child cpusets of cp */ | 
|  |  | 
|  | cp = list_first_entry(&q, struct cpuset, stack_list); | 
|  | list_del(q.next); | 
|  |  | 
|  | if (cpumask_empty(cp->cpus_allowed)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * All child cpusets contain a subset of the parent's cpus, so | 
|  | * just skip them, and then we call update_domain_attr_tree() | 
|  | * to calc relax_domain_level of the corresponding sched | 
|  | * domain. | 
|  | */ | 
|  | if (is_sched_load_balance(cp)) { | 
|  | csa[csn++] = cp; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | child = cgroup_cs(cont); | 
|  | list_add_tail(&child->stack_list, &q); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < csn; i++) | 
|  | csa[i]->pn = i; | 
|  | ndoms = csn; | 
|  |  | 
|  | restart: | 
|  | /* Find the best partition (set of sched domains) */ | 
|  | for (i = 0; i < csn; i++) { | 
|  | struct cpuset *a = csa[i]; | 
|  | int apn = a->pn; | 
|  |  | 
|  | for (j = 0; j < csn; j++) { | 
|  | struct cpuset *b = csa[j]; | 
|  | int bpn = b->pn; | 
|  |  | 
|  | if (apn != bpn && cpusets_overlap(a, b)) { | 
|  | for (k = 0; k < csn; k++) { | 
|  | struct cpuset *c = csa[k]; | 
|  |  | 
|  | if (c->pn == bpn) | 
|  | c->pn = apn; | 
|  | } | 
|  | ndoms--;	/* one less element */ | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we know how many domains to create. | 
|  | * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. | 
|  | */ | 
|  | doms = alloc_sched_domains(ndoms); | 
|  | if (!doms) | 
|  | goto done; | 
|  |  | 
|  | /* | 
|  | * The rest of the code, including the scheduler, can deal with | 
|  | * dattr==NULL case. No need to abort if alloc fails. | 
|  | */ | 
|  | dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); | 
|  |  | 
|  | for (nslot = 0, i = 0; i < csn; i++) { | 
|  | struct cpuset *a = csa[i]; | 
|  | struct cpumask *dp; | 
|  | int apn = a->pn; | 
|  |  | 
|  | if (apn < 0) { | 
|  | /* Skip completed partitions */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | dp = doms[nslot]; | 
|  |  | 
|  | if (nslot == ndoms) { | 
|  | static int warnings = 10; | 
|  | if (warnings) { | 
|  | printk(KERN_WARNING | 
|  | "rebuild_sched_domains confused:" | 
|  | " nslot %d, ndoms %d, csn %d, i %d," | 
|  | " apn %d\n", | 
|  | nslot, ndoms, csn, i, apn); | 
|  | warnings--; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cpumask_clear(dp); | 
|  | if (dattr) | 
|  | *(dattr + nslot) = SD_ATTR_INIT; | 
|  | for (j = i; j < csn; j++) { | 
|  | struct cpuset *b = csa[j]; | 
|  |  | 
|  | if (apn == b->pn) { | 
|  | cpumask_or(dp, dp, b->cpus_allowed); | 
|  | if (dattr) | 
|  | update_domain_attr_tree(dattr + nslot, b); | 
|  |  | 
|  | /* Done with this partition */ | 
|  | b->pn = -1; | 
|  | } | 
|  | } | 
|  | nslot++; | 
|  | } | 
|  | BUG_ON(nslot != ndoms); | 
|  |  | 
|  | done: | 
|  | kfree(csa); | 
|  |  | 
|  | /* | 
|  | * Fallback to the default domain if kmalloc() failed. | 
|  | * See comments in partition_sched_domains(). | 
|  | */ | 
|  | if (doms == NULL) | 
|  | ndoms = 1; | 
|  |  | 
|  | *domains    = doms; | 
|  | *attributes = dattr; | 
|  | return ndoms; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild scheduler domains. | 
|  | * | 
|  | * Call with neither cgroup_mutex held nor within get_online_cpus(). | 
|  | * Takes both cgroup_mutex and get_online_cpus(). | 
|  | * | 
|  | * Cannot be directly called from cpuset code handling changes | 
|  | * to the cpuset pseudo-filesystem, because it cannot be called | 
|  | * from code that already holds cgroup_mutex. | 
|  | */ | 
|  | static void do_rebuild_sched_domains(struct work_struct *unused) | 
|  | { | 
|  | struct sched_domain_attr *attr; | 
|  | cpumask_var_t *doms; | 
|  | int ndoms; | 
|  |  | 
|  | get_online_cpus(); | 
|  |  | 
|  | /* Generate domain masks and attrs */ | 
|  | cgroup_lock(); | 
|  | ndoms = generate_sched_domains(&doms, &attr); | 
|  | cgroup_unlock(); | 
|  |  | 
|  | /* Have scheduler rebuild the domains */ | 
|  | partition_sched_domains(ndoms, doms, attr); | 
|  |  | 
|  | put_online_cpus(); | 
|  | } | 
|  | #else /* !CONFIG_SMP */ | 
|  | static void do_rebuild_sched_domains(struct work_struct *unused) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int generate_sched_domains(cpumask_var_t **domains, | 
|  | struct sched_domain_attr **attributes) | 
|  | { | 
|  | *domains = NULL; | 
|  | return 1; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains); | 
|  |  | 
|  | /* | 
|  | * Rebuild scheduler domains, asynchronously via workqueue. | 
|  | * | 
|  | * If the flag 'sched_load_balance' of any cpuset with non-empty | 
|  | * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset | 
|  | * which has that flag enabled, or if any cpuset with a non-empty | 
|  | * 'cpus' is removed, then call this routine to rebuild the | 
|  | * scheduler's dynamic sched domains. | 
|  | * | 
|  | * The rebuild_sched_domains() and partition_sched_domains() | 
|  | * routines must nest cgroup_lock() inside get_online_cpus(), | 
|  | * but such cpuset changes as these must nest that locking the | 
|  | * other way, holding cgroup_lock() for much of the code. | 
|  | * | 
|  | * So in order to avoid an ABBA deadlock, the cpuset code handling | 
|  | * these user changes delegates the actual sched domain rebuilding | 
|  | * to a separate workqueue thread, which ends up processing the | 
|  | * above do_rebuild_sched_domains() function. | 
|  | */ | 
|  | static void async_rebuild_sched_domains(void) | 
|  | { | 
|  | queue_work(cpuset_wq, &rebuild_sched_domains_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Accomplishes the same scheduler domain rebuild as the above | 
|  | * async_rebuild_sched_domains(), however it directly calls the | 
|  | * rebuild routine synchronously rather than calling it via an | 
|  | * asynchronous work thread. | 
|  | * | 
|  | * This can only be called from code that is not holding | 
|  | * cgroup_mutex (not nested in a cgroup_lock() call.) | 
|  | */ | 
|  | void rebuild_sched_domains(void) | 
|  | { | 
|  | do_rebuild_sched_domains(NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's | 
|  | * @tsk: task to test | 
|  | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
|  | * | 
|  | * Call with cgroup_mutex held.  May take callback_mutex during call. | 
|  | * Called for each task in a cgroup by cgroup_scan_tasks(). | 
|  | * Return nonzero if this tasks's cpus_allowed mask should be changed (in other | 
|  | * words, if its mask is not equal to its cpuset's mask). | 
|  | */ | 
|  | static int cpuset_test_cpumask(struct task_struct *tsk, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | return !cpumask_equal(&tsk->cpus_allowed, | 
|  | (cgroup_cs(scan->cg))->cpus_allowed); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's | 
|  | * @tsk: task to test | 
|  | * @scan: struct cgroup_scanner containing the cgroup of the task | 
|  | * | 
|  | * Called by cgroup_scan_tasks() for each task in a cgroup whose | 
|  | * cpus_allowed mask needs to be changed. | 
|  | * | 
|  | * We don't need to re-check for the cgroup/cpuset membership, since we're | 
|  | * holding cgroup_lock() at this point. | 
|  | */ | 
|  | static void cpuset_change_cpumask(struct task_struct *tsk, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed | 
|  | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | * | 
|  | * Called with cgroup_mutex held | 
|  | * | 
|  | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | * calling callback functions for each. | 
|  | * | 
|  | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | * if @heap != NULL. | 
|  | */ | 
|  | static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap) | 
|  | { | 
|  | struct cgroup_scanner scan; | 
|  |  | 
|  | scan.cg = cs->css.cgroup; | 
|  | scan.test_task = cpuset_test_cpumask; | 
|  | scan.process_task = cpuset_change_cpumask; | 
|  | scan.heap = heap; | 
|  | cgroup_scan_tasks(&scan); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it | 
|  | * @cs: the cpuset to consider | 
|  | * @buf: buffer of cpu numbers written to this cpuset | 
|  | */ | 
|  | static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | const char *buf) | 
|  | { | 
|  | struct ptr_heap heap; | 
|  | int retval; | 
|  | int is_load_balanced; | 
|  |  | 
|  | /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */ | 
|  | if (cs == &top_cpuset) | 
|  | return -EACCES; | 
|  |  | 
|  | /* | 
|  | * An empty cpus_allowed is ok only if the cpuset has no tasks. | 
|  | * Since cpulist_parse() fails on an empty mask, we special case | 
|  | * that parsing.  The validate_change() call ensures that cpusets | 
|  | * with tasks have cpus. | 
|  | */ | 
|  | if (!*buf) { | 
|  | cpumask_clear(trialcs->cpus_allowed); | 
|  | } else { | 
|  | retval = cpulist_parse(buf, trialcs->cpus_allowed); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask)) | 
|  | return -EINVAL; | 
|  | } | 
|  | retval = validate_change(cs, trialcs); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  |  | 
|  | /* Nothing to do if the cpus didn't change */ | 
|  | if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) | 
|  | return 0; | 
|  |  | 
|  | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | is_load_balanced = is_sched_load_balance(trialcs); | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | /* | 
|  | * Scan tasks in the cpuset, and update the cpumasks of any | 
|  | * that need an update. | 
|  | */ | 
|  | update_tasks_cpumask(cs, &heap); | 
|  |  | 
|  | heap_free(&heap); | 
|  |  | 
|  | if (is_load_balanced) | 
|  | async_rebuild_sched_domains(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpuset_migrate_mm | 
|  | * | 
|  | *    Migrate memory region from one set of nodes to another. | 
|  | * | 
|  | *    Temporarilly set tasks mems_allowed to target nodes of migration, | 
|  | *    so that the migration code can allocate pages on these nodes. | 
|  | * | 
|  | *    Call holding cgroup_mutex, so current's cpuset won't change | 
|  | *    during this call, as manage_mutex holds off any cpuset_attach() | 
|  | *    calls.  Therefore we don't need to take task_lock around the | 
|  | *    call to guarantee_online_mems(), as we know no one is changing | 
|  | *    our task's cpuset. | 
|  | * | 
|  | *    While the mm_struct we are migrating is typically from some | 
|  | *    other task, the task_struct mems_allowed that we are hacking | 
|  | *    is for our current task, which must allocate new pages for that | 
|  | *    migrating memory region. | 
|  | */ | 
|  |  | 
|  | static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, | 
|  | const nodemask_t *to) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | tsk->mems_allowed = *to; | 
|  |  | 
|  | do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL); | 
|  |  | 
|  | guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy | 
|  | * @tsk: the task to change | 
|  | * @newmems: new nodes that the task will be set | 
|  | * | 
|  | * In order to avoid seeing no nodes if the old and new nodes are disjoint, | 
|  | * we structure updates as setting all new allowed nodes, then clearing newly | 
|  | * disallowed ones. | 
|  | */ | 
|  | static void cpuset_change_task_nodemask(struct task_struct *tsk, | 
|  | nodemask_t *newmems) | 
|  | { | 
|  | repeat: | 
|  | /* | 
|  | * Allow tasks that have access to memory reserves because they have | 
|  | * been OOM killed to get memory anywhere. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | return; | 
|  | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
|  | return; | 
|  |  | 
|  | task_lock(tsk); | 
|  | nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); | 
|  | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * ensure checking ->mems_allowed_change_disable after setting all new | 
|  | * allowed nodes. | 
|  | * | 
|  | * the read-side task can see an nodemask with new allowed nodes and | 
|  | * old allowed nodes. and if it allocates page when cpuset clears newly | 
|  | * disallowed ones continuous, it can see the new allowed bits. | 
|  | * | 
|  | * And if setting all new allowed nodes is after the checking, setting | 
|  | * all new allowed nodes and clearing newly disallowed ones will be done | 
|  | * continuous, and the read-side task may find no node to alloc page. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * Allocation of memory is very fast, we needn't sleep when waiting | 
|  | * for the read-side. | 
|  | */ | 
|  | while (ACCESS_ONCE(tsk->mems_allowed_change_disable)) { | 
|  | task_unlock(tsk); | 
|  | if (!task_curr(tsk)) | 
|  | yield(); | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ensure checking ->mems_allowed_change_disable before clearing all new | 
|  | * disallowed nodes. | 
|  | * | 
|  | * if clearing newly disallowed bits before the checking, the read-side | 
|  | * task may find no node to alloc page. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); | 
|  | tsk->mems_allowed = *newmems; | 
|  | task_unlock(tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy | 
|  | * of it to cpuset's new mems_allowed, and migrate pages to new nodes if | 
|  | * memory_migrate flag is set. Called with cgroup_mutex held. | 
|  | */ | 
|  | static void cpuset_change_nodemask(struct task_struct *p, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct cpuset *cs; | 
|  | int migrate; | 
|  | const nodemask_t *oldmem = scan->data; | 
|  | static nodemask_t newmems;	/* protected by cgroup_mutex */ | 
|  |  | 
|  | cs = cgroup_cs(scan->cg); | 
|  | guarantee_online_mems(cs, &newmems); | 
|  |  | 
|  | cpuset_change_task_nodemask(p, &newmems); | 
|  |  | 
|  | mm = get_task_mm(p); | 
|  | if (!mm) | 
|  | return; | 
|  |  | 
|  | migrate = is_memory_migrate(cs); | 
|  |  | 
|  | mpol_rebind_mm(mm, &cs->mems_allowed); | 
|  | if (migrate) | 
|  | cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed); | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | static void *cpuset_being_rebound; | 
|  |  | 
|  | /** | 
|  | * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's mems_allowed mask needs to be changed | 
|  | * @oldmem: old mems_allowed of cpuset cs | 
|  | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | * | 
|  | * Called with cgroup_mutex held | 
|  | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | * if @heap != NULL. | 
|  | */ | 
|  | static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem, | 
|  | struct ptr_heap *heap) | 
|  | { | 
|  | struct cgroup_scanner scan; | 
|  |  | 
|  | cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */ | 
|  |  | 
|  | scan.cg = cs->css.cgroup; | 
|  | scan.test_task = NULL; | 
|  | scan.process_task = cpuset_change_nodemask; | 
|  | scan.heap = heap; | 
|  | scan.data = (nodemask_t *)oldmem; | 
|  |  | 
|  | /* | 
|  | * The mpol_rebind_mm() call takes mmap_sem, which we couldn't | 
|  | * take while holding tasklist_lock.  Forks can happen - the | 
|  | * mpol_dup() cpuset_being_rebound check will catch such forks, | 
|  | * and rebind their vma mempolicies too.  Because we still hold | 
|  | * the global cgroup_mutex, we know that no other rebind effort | 
|  | * will be contending for the global variable cpuset_being_rebound. | 
|  | * It's ok if we rebind the same mm twice; mpol_rebind_mm() | 
|  | * is idempotent.  Also migrate pages in each mm to new nodes. | 
|  | */ | 
|  | cgroup_scan_tasks(&scan); | 
|  |  | 
|  | /* We're done rebinding vmas to this cpuset's new mems_allowed. */ | 
|  | cpuset_being_rebound = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle user request to change the 'mems' memory placement | 
|  | * of a cpuset.  Needs to validate the request, update the | 
|  | * cpusets mems_allowed, and for each task in the cpuset, | 
|  | * update mems_allowed and rebind task's mempolicy and any vma | 
|  | * mempolicies and if the cpuset is marked 'memory_migrate', | 
|  | * migrate the tasks pages to the new memory. | 
|  | * | 
|  | * Call with cgroup_mutex held.  May take callback_mutex during call. | 
|  | * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, | 
|  | * lock each such tasks mm->mmap_sem, scan its vma's and rebind | 
|  | * their mempolicies to the cpusets new mems_allowed. | 
|  | */ | 
|  | static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, | 
|  | const char *buf) | 
|  | { | 
|  | NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL); | 
|  | int retval; | 
|  | struct ptr_heap heap; | 
|  |  | 
|  | if (!oldmem) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY]; | 
|  | * it's read-only | 
|  | */ | 
|  | if (cs == &top_cpuset) { | 
|  | retval = -EACCES; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * An empty mems_allowed is ok iff there are no tasks in the cpuset. | 
|  | * Since nodelist_parse() fails on an empty mask, we special case | 
|  | * that parsing.  The validate_change() call ensures that cpusets | 
|  | * with tasks have memory. | 
|  | */ | 
|  | if (!*buf) { | 
|  | nodes_clear(trialcs->mems_allowed); | 
|  | } else { | 
|  | retval = nodelist_parse(buf, trialcs->mems_allowed); | 
|  | if (retval < 0) | 
|  | goto done; | 
|  |  | 
|  | if (!nodes_subset(trialcs->mems_allowed, | 
|  | node_states[N_HIGH_MEMORY])) { | 
|  | retval =  -EINVAL; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | *oldmem = cs->mems_allowed; | 
|  | if (nodes_equal(*oldmem, trialcs->mems_allowed)) { | 
|  | retval = 0;		/* Too easy - nothing to do */ | 
|  | goto done; | 
|  | } | 
|  | retval = validate_change(cs, trialcs); | 
|  | if (retval < 0) | 
|  | goto done; | 
|  |  | 
|  | retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | if (retval < 0) | 
|  | goto done; | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | cs->mems_allowed = trialcs->mems_allowed; | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | update_tasks_nodemask(cs, oldmem, &heap); | 
|  |  | 
|  | heap_free(&heap); | 
|  | done: | 
|  | NODEMASK_FREE(oldmem); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int current_cpuset_is_being_rebound(void) | 
|  | { | 
|  | return task_cs(current) == cpuset_being_rebound; | 
|  | } | 
|  |  | 
|  | static int update_relax_domain_level(struct cpuset *cs, s64 val) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (val < -1 || val >= SD_LV_MAX) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | if (val != cs->relax_domain_level) { | 
|  | cs->relax_domain_level = val; | 
|  | if (!cpumask_empty(cs->cpus_allowed) && | 
|  | is_sched_load_balance(cs)) | 
|  | async_rebuild_sched_domains(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpuset_change_flag - make a task's spread flags the same as its cpuset's | 
|  | * @tsk: task to be updated | 
|  | * @scan: struct cgroup_scanner containing the cgroup of the task | 
|  | * | 
|  | * Called by cgroup_scan_tasks() for each task in a cgroup. | 
|  | * | 
|  | * We don't need to re-check for the cgroup/cpuset membership, since we're | 
|  | * holding cgroup_lock() at this point. | 
|  | */ | 
|  | static void cpuset_change_flag(struct task_struct *tsk, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_tasks_flags - update the spread flags of tasks in the cpuset. | 
|  | * @cs: the cpuset in which each task's spread flags needs to be changed | 
|  | * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks() | 
|  | * | 
|  | * Called with cgroup_mutex held | 
|  | * | 
|  | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | * calling callback functions for each. | 
|  | * | 
|  | * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0 | 
|  | * if @heap != NULL. | 
|  | */ | 
|  | static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap) | 
|  | { | 
|  | struct cgroup_scanner scan; | 
|  |  | 
|  | scan.cg = cs->css.cgroup; | 
|  | scan.test_task = NULL; | 
|  | scan.process_task = cpuset_change_flag; | 
|  | scan.heap = heap; | 
|  | cgroup_scan_tasks(&scan); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_flag - read a 0 or a 1 in a file and update associated flag | 
|  | * bit:		the bit to update (see cpuset_flagbits_t) | 
|  | * cs:		the cpuset to update | 
|  | * turning_on: 	whether the flag is being set or cleared | 
|  | * | 
|  | * Call with cgroup_mutex held. | 
|  | */ | 
|  |  | 
|  | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, | 
|  | int turning_on) | 
|  | { | 
|  | struct cpuset *trialcs; | 
|  | int balance_flag_changed; | 
|  | int spread_flag_changed; | 
|  | struct ptr_heap heap; | 
|  | int err; | 
|  |  | 
|  | trialcs = alloc_trial_cpuset(cs); | 
|  | if (!trialcs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (turning_on) | 
|  | set_bit(bit, &trialcs->flags); | 
|  | else | 
|  | clear_bit(bit, &trialcs->flags); | 
|  |  | 
|  | err = validate_change(cs, trialcs); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | balance_flag_changed = (is_sched_load_balance(cs) != | 
|  | is_sched_load_balance(trialcs)); | 
|  |  | 
|  | spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) | 
|  | || (is_spread_page(cs) != is_spread_page(trialcs))); | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | cs->flags = trialcs->flags; | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) | 
|  | async_rebuild_sched_domains(); | 
|  |  | 
|  | if (spread_flag_changed) | 
|  | update_tasks_flags(cs, &heap); | 
|  | heap_free(&heap); | 
|  | out: | 
|  | free_trial_cpuset(trialcs); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Frequency meter - How fast is some event occurring? | 
|  | * | 
|  | * These routines manage a digitally filtered, constant time based, | 
|  | * event frequency meter.  There are four routines: | 
|  | *   fmeter_init() - initialize a frequency meter. | 
|  | *   fmeter_markevent() - called each time the event happens. | 
|  | *   fmeter_getrate() - returns the recent rate of such events. | 
|  | *   fmeter_update() - internal routine used to update fmeter. | 
|  | * | 
|  | * A common data structure is passed to each of these routines, | 
|  | * which is used to keep track of the state required to manage the | 
|  | * frequency meter and its digital filter. | 
|  | * | 
|  | * The filter works on the number of events marked per unit time. | 
|  | * The filter is single-pole low-pass recursive (IIR).  The time unit | 
|  | * is 1 second.  Arithmetic is done using 32-bit integers scaled to | 
|  | * simulate 3 decimal digits of precision (multiplied by 1000). | 
|  | * | 
|  | * With an FM_COEF of 933, and a time base of 1 second, the filter | 
|  | * has a half-life of 10 seconds, meaning that if the events quit | 
|  | * happening, then the rate returned from the fmeter_getrate() | 
|  | * will be cut in half each 10 seconds, until it converges to zero. | 
|  | * | 
|  | * It is not worth doing a real infinitely recursive filter.  If more | 
|  | * than FM_MAXTICKS ticks have elapsed since the last filter event, | 
|  | * just compute FM_MAXTICKS ticks worth, by which point the level | 
|  | * will be stable. | 
|  | * | 
|  | * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid | 
|  | * arithmetic overflow in the fmeter_update() routine. | 
|  | * | 
|  | * Given the simple 32 bit integer arithmetic used, this meter works | 
|  | * best for reporting rates between one per millisecond (msec) and | 
|  | * one per 32 (approx) seconds.  At constant rates faster than one | 
|  | * per msec it maxes out at values just under 1,000,000.  At constant | 
|  | * rates between one per msec, and one per second it will stabilize | 
|  | * to a value N*1000, where N is the rate of events per second. | 
|  | * At constant rates between one per second and one per 32 seconds, | 
|  | * it will be choppy, moving up on the seconds that have an event, | 
|  | * and then decaying until the next event.  At rates slower than | 
|  | * about one in 32 seconds, it decays all the way back to zero between | 
|  | * each event. | 
|  | */ | 
|  |  | 
|  | #define FM_COEF 933		/* coefficient for half-life of 10 secs */ | 
|  | #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */ | 
|  | #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */ | 
|  | #define FM_SCALE 1000		/* faux fixed point scale */ | 
|  |  | 
|  | /* Initialize a frequency meter */ | 
|  | static void fmeter_init(struct fmeter *fmp) | 
|  | { | 
|  | fmp->cnt = 0; | 
|  | fmp->val = 0; | 
|  | fmp->time = 0; | 
|  | spin_lock_init(&fmp->lock); | 
|  | } | 
|  |  | 
|  | /* Internal meter update - process cnt events and update value */ | 
|  | static void fmeter_update(struct fmeter *fmp) | 
|  | { | 
|  | time_t now = get_seconds(); | 
|  | time_t ticks = now - fmp->time; | 
|  |  | 
|  | if (ticks == 0) | 
|  | return; | 
|  |  | 
|  | ticks = min(FM_MAXTICKS, ticks); | 
|  | while (ticks-- > 0) | 
|  | fmp->val = (FM_COEF * fmp->val) / FM_SCALE; | 
|  | fmp->time = now; | 
|  |  | 
|  | fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; | 
|  | fmp->cnt = 0; | 
|  | } | 
|  |  | 
|  | /* Process any previous ticks, then bump cnt by one (times scale). */ | 
|  | static void fmeter_markevent(struct fmeter *fmp) | 
|  | { | 
|  | spin_lock(&fmp->lock); | 
|  | fmeter_update(fmp); | 
|  | fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); | 
|  | spin_unlock(&fmp->lock); | 
|  | } | 
|  |  | 
|  | /* Process any previous ticks, then return current value. */ | 
|  | static int fmeter_getrate(struct fmeter *fmp) | 
|  | { | 
|  | int val; | 
|  |  | 
|  | spin_lock(&fmp->lock); | 
|  | fmeter_update(fmp); | 
|  | val = fmp->val; | 
|  | spin_unlock(&fmp->lock); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Protected by cgroup_lock */ | 
|  | static cpumask_var_t cpus_attach; | 
|  |  | 
|  | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 
|  | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, | 
|  | struct task_struct *tsk, bool threadgroup) | 
|  | { | 
|  | int ret; | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  |  | 
|  | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * Kthreads bound to specific cpus cannot be moved to a new cpuset; we | 
|  | * cannot change their cpu affinity and isolating such threads by their | 
|  | * set of allowed nodes is unnecessary.  Thus, cpusets are not | 
|  | * applicable for such threads.  This prevents checking for success of | 
|  | * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may | 
|  | * be changed. | 
|  | */ | 
|  | if (tsk->flags & PF_THREAD_BOUND) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = security_task_setscheduler(tsk); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (threadgroup) { | 
|  | struct task_struct *c; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | 
|  | ret = security_task_setscheduler(c); | 
|  | if (ret) { | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | 
|  | struct cpuset *cs) | 
|  | { | 
|  | int err; | 
|  | /* | 
|  | * can_attach beforehand should guarantee that this doesn't fail. | 
|  | * TODO: have a better way to handle failure here | 
|  | */ | 
|  | err = set_cpus_allowed_ptr(tsk, cpus_attach); | 
|  | WARN_ON_ONCE(err); | 
|  |  | 
|  | cpuset_change_task_nodemask(tsk, to); | 
|  | cpuset_update_task_spread_flag(cs, tsk); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, | 
|  | struct cgroup *oldcont, struct task_struct *tsk, | 
|  | bool threadgroup) | 
|  | { | 
|  | struct mm_struct *mm; | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  | struct cpuset *oldcs = cgroup_cs(oldcont); | 
|  | static nodemask_t to;		/* protected by cgroup_mutex */ | 
|  |  | 
|  | if (cs == &top_cpuset) { | 
|  | cpumask_copy(cpus_attach, cpu_possible_mask); | 
|  | } else { | 
|  | guarantee_online_cpus(cs, cpus_attach); | 
|  | } | 
|  | guarantee_online_mems(cs, &to); | 
|  |  | 
|  | /* do per-task migration stuff possibly for each in the threadgroup */ | 
|  | cpuset_attach_task(tsk, &to, cs); | 
|  | if (threadgroup) { | 
|  | struct task_struct *c; | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | 
|  | cpuset_attach_task(c, &to, cs); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* change mm; only needs to be done once even if threadgroup */ | 
|  | to = cs->mems_allowed; | 
|  | mm = get_task_mm(tsk); | 
|  | if (mm) { | 
|  | mpol_rebind_mm(mm, &to); | 
|  | if (is_memory_migrate(cs)) | 
|  | cpuset_migrate_mm(mm, &oldcs->mems_allowed, &to); | 
|  | mmput(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The various types of files and directories in a cpuset file system */ | 
|  |  | 
|  | typedef enum { | 
|  | FILE_MEMORY_MIGRATE, | 
|  | FILE_CPULIST, | 
|  | FILE_MEMLIST, | 
|  | FILE_CPU_EXCLUSIVE, | 
|  | FILE_MEM_EXCLUSIVE, | 
|  | FILE_MEM_HARDWALL, | 
|  | FILE_SCHED_LOAD_BALANCE, | 
|  | FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | FILE_MEMORY_PRESSURE_ENABLED, | 
|  | FILE_MEMORY_PRESSURE, | 
|  | FILE_SPREAD_PAGE, | 
|  | FILE_SPREAD_SLAB, | 
|  | } cpuset_filetype_t; | 
|  |  | 
|  | static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val) | 
|  | { | 
|  | int retval = 0; | 
|  | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | cpuset_filetype_t type = cft->private; | 
|  |  | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); | 
|  | break; | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); | 
|  | break; | 
|  | case FILE_MEM_HARDWALL: | 
|  | retval = update_flag(CS_MEM_HARDWALL, cs, val); | 
|  | break; | 
|  | case FILE_SCHED_LOAD_BALANCE: | 
|  | retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); | 
|  | break; | 
|  | case FILE_MEMORY_MIGRATE: | 
|  | retval = update_flag(CS_MEMORY_MIGRATE, cs, val); | 
|  | break; | 
|  | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | cpuset_memory_pressure_enabled = !!val; | 
|  | break; | 
|  | case FILE_MEMORY_PRESSURE: | 
|  | retval = -EACCES; | 
|  | break; | 
|  | case FILE_SPREAD_PAGE: | 
|  | retval = update_flag(CS_SPREAD_PAGE, cs, val); | 
|  | break; | 
|  | case FILE_SPREAD_SLAB: | 
|  | retval = update_flag(CS_SPREAD_SLAB, cs, val); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  | cgroup_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val) | 
|  | { | 
|  | int retval = 0; | 
|  | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | cpuset_filetype_t type = cft->private; | 
|  |  | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | retval = update_relax_domain_level(cs, val); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  | cgroup_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common handling for a write to a "cpus" or "mems" file. | 
|  | */ | 
|  | static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buf) | 
|  | { | 
|  | int retval = 0; | 
|  | struct cpuset *cs = cgroup_cs(cgrp); | 
|  | struct cpuset *trialcs; | 
|  |  | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | trialcs = alloc_trial_cpuset(cs); | 
|  | if (!trialcs) { | 
|  | retval = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | switch (cft->private) { | 
|  | case FILE_CPULIST: | 
|  | retval = update_cpumask(cs, trialcs, buf); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | retval = update_nodemask(cs, trialcs, buf); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | free_trial_cpuset(trialcs); | 
|  | out: | 
|  | cgroup_unlock(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These ascii lists should be read in a single call, by using a user | 
|  | * buffer large enough to hold the entire map.  If read in smaller | 
|  | * chunks, there is no guarantee of atomicity.  Since the display format | 
|  | * used, list of ranges of sequential numbers, is variable length, | 
|  | * and since these maps can change value dynamically, one could read | 
|  | * gibberish by doing partial reads while a list was changing. | 
|  | * A single large read to a buffer that crosses a page boundary is | 
|  | * ok, because the result being copied to user land is not recomputed | 
|  | * across a page fault. | 
|  | */ | 
|  |  | 
|  | static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 
|  | { | 
|  | size_t count; | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed); | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 
|  | { | 
|  | size_t count; | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed); | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t cpuset_common_file_read(struct cgroup *cont, | 
|  | struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | char *page; | 
|  | ssize_t retval = 0; | 
|  | char *s; | 
|  |  | 
|  | if (!(page = (char *)__get_free_page(GFP_TEMPORARY))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | s = page; | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPULIST: | 
|  | s += cpuset_sprintf_cpulist(s, cs); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | s += cpuset_sprintf_memlist(s, cs); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | *s++ = '\n'; | 
|  |  | 
|  | retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page); | 
|  | out: | 
|  | free_page((unsigned long)page); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | switch (type) { | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | return is_cpu_exclusive(cs); | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | return is_mem_exclusive(cs); | 
|  | case FILE_MEM_HARDWALL: | 
|  | return is_mem_hardwall(cs); | 
|  | case FILE_SCHED_LOAD_BALANCE: | 
|  | return is_sched_load_balance(cs); | 
|  | case FILE_MEMORY_MIGRATE: | 
|  | return is_memory_migrate(cs); | 
|  | case FILE_MEMORY_PRESSURE_ENABLED: | 
|  | return cpuset_memory_pressure_enabled; | 
|  | case FILE_MEMORY_PRESSURE: | 
|  | return fmeter_getrate(&cs->fmeter); | 
|  | case FILE_SPREAD_PAGE: | 
|  | return is_spread_page(cs); | 
|  | case FILE_SPREAD_SLAB: | 
|  | return is_spread_slab(cs); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Unreachable but makes gcc happy */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | switch (type) { | 
|  | case FILE_SCHED_RELAX_DOMAIN_LEVEL: | 
|  | return cs->relax_domain_level; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Unrechable but makes gcc happy */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * for the common functions, 'private' gives the type of file | 
|  | */ | 
|  |  | 
|  | static struct cftype files[] = { | 
|  | { | 
|  | .name = "cpus", | 
|  | .read = cpuset_common_file_read, | 
|  | .write_string = cpuset_write_resmask, | 
|  | .max_write_len = (100U + 6 * NR_CPUS), | 
|  | .private = FILE_CPULIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mems", | 
|  | .read = cpuset_common_file_read, | 
|  | .write_string = cpuset_write_resmask, | 
|  | .max_write_len = (100U + 6 * MAX_NUMNODES), | 
|  | .private = FILE_MEMLIST, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "cpu_exclusive", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_CPU_EXCLUSIVE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mem_exclusive", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEM_EXCLUSIVE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "mem_hardwall", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEM_HARDWALL, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "sched_load_balance", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SCHED_LOAD_BALANCE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "sched_relax_domain_level", | 
|  | .read_s64 = cpuset_read_s64, | 
|  | .write_s64 = cpuset_write_s64, | 
|  | .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_migrate", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEMORY_MIGRATE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_pressure", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEMORY_PRESSURE, | 
|  | .mode = S_IRUGO, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_spread_page", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SPREAD_PAGE, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "memory_spread_slab", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_SPREAD_SLAB, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_memory_pressure_enabled = { | 
|  | .name = "memory_pressure_enabled", | 
|  | .read_u64 = cpuset_read_u64, | 
|  | .write_u64 = cpuset_write_u64, | 
|  | .private = FILE_MEMORY_PRESSURE_ENABLED, | 
|  | }; | 
|  |  | 
|  | static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | 
|  | if (err) | 
|  | return err; | 
|  | /* memory_pressure_enabled is in root cpuset only */ | 
|  | if (!cont->parent) | 
|  | err = cgroup_add_file(cont, ss, | 
|  | &cft_memory_pressure_enabled); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * post_clone() is called at the end of cgroup_clone(). | 
|  | * 'cgroup' was just created automatically as a result of | 
|  | * a cgroup_clone(), and the current task is about to | 
|  | * be moved into 'cgroup'. | 
|  | * | 
|  | * Currently we refuse to set up the cgroup - thereby | 
|  | * refusing the task to be entered, and as a result refusing | 
|  | * the sys_unshare() or clone() which initiated it - if any | 
|  | * sibling cpusets have exclusive cpus or mem. | 
|  | * | 
|  | * If this becomes a problem for some users who wish to | 
|  | * allow that scenario, then cpuset_post_clone() could be | 
|  | * changed to grant parent->cpus_allowed-sibling_cpus_exclusive | 
|  | * (and likewise for mems) to the new cgroup. Called with cgroup_mutex | 
|  | * held. | 
|  | */ | 
|  | static void cpuset_post_clone(struct cgroup_subsys *ss, | 
|  | struct cgroup *cgroup) | 
|  | { | 
|  | struct cgroup *parent, *child; | 
|  | struct cpuset *cs, *parent_cs; | 
|  |  | 
|  | parent = cgroup->parent; | 
|  | list_for_each_entry(child, &parent->children, sibling) { | 
|  | cs = cgroup_cs(child); | 
|  | if (is_mem_exclusive(cs) || is_cpu_exclusive(cs)) | 
|  | return; | 
|  | } | 
|  | cs = cgroup_cs(cgroup); | 
|  | parent_cs = cgroup_cs(parent); | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | cs->mems_allowed = parent_cs->mems_allowed; | 
|  | cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed); | 
|  | mutex_unlock(&callback_mutex); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	cpuset_create - create a cpuset | 
|  | *	ss:	cpuset cgroup subsystem | 
|  | *	cont:	control group that the new cpuset will be part of | 
|  | */ | 
|  |  | 
|  | static struct cgroup_subsys_state *cpuset_create( | 
|  | struct cgroup_subsys *ss, | 
|  | struct cgroup *cont) | 
|  | { | 
|  | struct cpuset *cs; | 
|  | struct cpuset *parent; | 
|  |  | 
|  | if (!cont->parent) { | 
|  | return &top_cpuset.css; | 
|  | } | 
|  | parent = cgroup_cs(cont->parent); | 
|  | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 
|  | if (!cs) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) { | 
|  | kfree(cs); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | cs->flags = 0; | 
|  | if (is_spread_page(parent)) | 
|  | set_bit(CS_SPREAD_PAGE, &cs->flags); | 
|  | if (is_spread_slab(parent)) | 
|  | set_bit(CS_SPREAD_SLAB, &cs->flags); | 
|  | set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); | 
|  | cpumask_clear(cs->cpus_allowed); | 
|  | nodes_clear(cs->mems_allowed); | 
|  | fmeter_init(&cs->fmeter); | 
|  | cs->relax_domain_level = -1; | 
|  |  | 
|  | cs->parent = parent; | 
|  | number_of_cpusets++; | 
|  | return &cs->css ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the cpuset being removed has its flag 'sched_load_balance' | 
|  | * enabled, then simulate turning sched_load_balance off, which | 
|  | * will call async_rebuild_sched_domains(). | 
|  | */ | 
|  |  | 
|  | static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | struct cpuset *cs = cgroup_cs(cont); | 
|  |  | 
|  | if (is_sched_load_balance(cs)) | 
|  | update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); | 
|  |  | 
|  | number_of_cpusets--; | 
|  | free_cpumask_var(cs->cpus_allowed); | 
|  | kfree(cs); | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys cpuset_subsys = { | 
|  | .name = "cpuset", | 
|  | .create = cpuset_create, | 
|  | .destroy = cpuset_destroy, | 
|  | .can_attach = cpuset_can_attach, | 
|  | .attach = cpuset_attach, | 
|  | .populate = cpuset_populate, | 
|  | .post_clone = cpuset_post_clone, | 
|  | .subsys_id = cpuset_subsys_id, | 
|  | .early_init = 1, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cpuset_init - initialize cpusets at system boot | 
|  | * | 
|  | * Description: Initialize top_cpuset and the cpuset internal file system, | 
|  | **/ | 
|  |  | 
|  | int __init cpuset_init(void) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) | 
|  | BUG(); | 
|  |  | 
|  | cpumask_setall(top_cpuset.cpus_allowed); | 
|  | nodes_setall(top_cpuset.mems_allowed); | 
|  |  | 
|  | fmeter_init(&top_cpuset.fmeter); | 
|  | set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); | 
|  | top_cpuset.relax_domain_level = -1; | 
|  |  | 
|  | err = register_filesystem(&cpuset_fs_type); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) | 
|  | BUG(); | 
|  |  | 
|  | number_of_cpusets = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_do_move_task - move a given task to another cpuset | 
|  | * @tsk: pointer to task_struct the task to move | 
|  | * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner | 
|  | * | 
|  | * Called by cgroup_scan_tasks() for each task in a cgroup. | 
|  | * Return nonzero to stop the walk through the tasks. | 
|  | */ | 
|  | static void cpuset_do_move_task(struct task_struct *tsk, | 
|  | struct cgroup_scanner *scan) | 
|  | { | 
|  | struct cgroup *new_cgroup = scan->data; | 
|  |  | 
|  | cgroup_attach_task(new_cgroup, tsk); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * move_member_tasks_to_cpuset - move tasks from one cpuset to another | 
|  | * @from: cpuset in which the tasks currently reside | 
|  | * @to: cpuset to which the tasks will be moved | 
|  | * | 
|  | * Called with cgroup_mutex held | 
|  | * callback_mutex must not be held, as cpuset_attach() will take it. | 
|  | * | 
|  | * The cgroup_scan_tasks() function will scan all the tasks in a cgroup, | 
|  | * calling callback functions for each. | 
|  | */ | 
|  | static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to) | 
|  | { | 
|  | struct cgroup_scanner scan; | 
|  |  | 
|  | scan.cg = from->css.cgroup; | 
|  | scan.test_task = NULL; /* select all tasks in cgroup */ | 
|  | scan.process_task = cpuset_do_move_task; | 
|  | scan.heap = NULL; | 
|  | scan.data = to->css.cgroup; | 
|  |  | 
|  | if (cgroup_scan_tasks(&scan)) | 
|  | printk(KERN_ERR "move_member_tasks_to_cpuset: " | 
|  | "cgroup_scan_tasks failed\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If CPU and/or memory hotplug handlers, below, unplug any CPUs | 
|  | * or memory nodes, we need to walk over the cpuset hierarchy, | 
|  | * removing that CPU or node from all cpusets.  If this removes the | 
|  | * last CPU or node from a cpuset, then move the tasks in the empty | 
|  | * cpuset to its next-highest non-empty parent. | 
|  | * | 
|  | * Called with cgroup_mutex held | 
|  | * callback_mutex must not be held, as cpuset_attach() will take it. | 
|  | */ | 
|  | static void remove_tasks_in_empty_cpuset(struct cpuset *cs) | 
|  | { | 
|  | struct cpuset *parent; | 
|  |  | 
|  | /* | 
|  | * The cgroup's css_sets list is in use if there are tasks | 
|  | * in the cpuset; the list is empty if there are none; | 
|  | * the cs->css.refcnt seems always 0. | 
|  | */ | 
|  | if (list_empty(&cs->css.cgroup->css_sets)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Find its next-highest non-empty parent, (top cpuset | 
|  | * has online cpus, so can't be empty). | 
|  | */ | 
|  | parent = cs->parent; | 
|  | while (cpumask_empty(parent->cpus_allowed) || | 
|  | nodes_empty(parent->mems_allowed)) | 
|  | parent = parent->parent; | 
|  |  | 
|  | move_member_tasks_to_cpuset(cs, parent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the specified cpuset subtree and look for empty cpusets. | 
|  | * The tasks of such cpuset must be moved to a parent cpuset. | 
|  | * | 
|  | * Called with cgroup_mutex held.  We take callback_mutex to modify | 
|  | * cpus_allowed and mems_allowed. | 
|  | * | 
|  | * This walk processes the tree from top to bottom, completing one layer | 
|  | * before dropping down to the next.  It always processes a node before | 
|  | * any of its children. | 
|  | * | 
|  | * For now, since we lack memory hot unplug, we'll never see a cpuset | 
|  | * that has tasks along with an empty 'mems'.  But if we did see such | 
|  | * a cpuset, we'd handle it just like we do if its 'cpus' was empty. | 
|  | */ | 
|  | static void scan_for_empty_cpusets(struct cpuset *root) | 
|  | { | 
|  | LIST_HEAD(queue); | 
|  | struct cpuset *cp;	/* scans cpusets being updated */ | 
|  | struct cpuset *child;	/* scans child cpusets of cp */ | 
|  | struct cgroup *cont; | 
|  | static nodemask_t oldmems;	/* protected by cgroup_mutex */ | 
|  |  | 
|  | list_add_tail((struct list_head *)&root->stack_list, &queue); | 
|  |  | 
|  | while (!list_empty(&queue)) { | 
|  | cp = list_first_entry(&queue, struct cpuset, stack_list); | 
|  | list_del(queue.next); | 
|  | list_for_each_entry(cont, &cp->css.cgroup->children, sibling) { | 
|  | child = cgroup_cs(cont); | 
|  | list_add_tail(&child->stack_list, &queue); | 
|  | } | 
|  |  | 
|  | /* Continue past cpusets with all cpus, mems online */ | 
|  | if (cpumask_subset(cp->cpus_allowed, cpu_active_mask) && | 
|  | nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY])) | 
|  | continue; | 
|  |  | 
|  | oldmems = cp->mems_allowed; | 
|  |  | 
|  | /* Remove offline cpus and mems from this cpuset. */ | 
|  | mutex_lock(&callback_mutex); | 
|  | cpumask_and(cp->cpus_allowed, cp->cpus_allowed, | 
|  | cpu_active_mask); | 
|  | nodes_and(cp->mems_allowed, cp->mems_allowed, | 
|  | node_states[N_HIGH_MEMORY]); | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | /* Move tasks from the empty cpuset to a parent */ | 
|  | if (cpumask_empty(cp->cpus_allowed) || | 
|  | nodes_empty(cp->mems_allowed)) | 
|  | remove_tasks_in_empty_cpuset(cp); | 
|  | else { | 
|  | update_tasks_cpumask(cp, NULL); | 
|  | update_tasks_nodemask(cp, &oldmems, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The top_cpuset tracks what CPUs and Memory Nodes are online, | 
|  | * period.  This is necessary in order to make cpusets transparent | 
|  | * (of no affect) on systems that are actively using CPU hotplug | 
|  | * but making no active use of cpusets. | 
|  | * | 
|  | * This routine ensures that top_cpuset.cpus_allowed tracks | 
|  | * cpu_active_mask on each CPU hotplug (cpuhp) event. | 
|  | * | 
|  | * Called within get_online_cpus().  Needs to call cgroup_lock() | 
|  | * before calling generate_sched_domains(). | 
|  | */ | 
|  | void cpuset_update_active_cpus(void) | 
|  | { | 
|  | struct sched_domain_attr *attr; | 
|  | cpumask_var_t *doms; | 
|  | int ndoms; | 
|  |  | 
|  | cgroup_lock(); | 
|  | mutex_lock(&callback_mutex); | 
|  | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); | 
|  | mutex_unlock(&callback_mutex); | 
|  | scan_for_empty_cpusets(&top_cpuset); | 
|  | ndoms = generate_sched_domains(&doms, &attr); | 
|  | cgroup_unlock(); | 
|  |  | 
|  | /* Have scheduler rebuild the domains */ | 
|  | partition_sched_domains(ndoms, doms, attr); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY]. | 
|  | * Call this routine anytime after node_states[N_HIGH_MEMORY] changes. | 
|  | * See also the previous routine cpuset_track_online_cpus(). | 
|  | */ | 
|  | static int cpuset_track_online_nodes(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | static nodemask_t oldmems;	/* protected by cgroup_mutex */ | 
|  |  | 
|  | cgroup_lock(); | 
|  | switch (action) { | 
|  | case MEM_ONLINE: | 
|  | oldmems = top_cpuset.mems_allowed; | 
|  | mutex_lock(&callback_mutex); | 
|  | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
|  | mutex_unlock(&callback_mutex); | 
|  | update_tasks_nodemask(&top_cpuset, &oldmems, NULL); | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | /* | 
|  | * needn't update top_cpuset.mems_allowed explicitly because | 
|  | * scan_for_empty_cpusets() will update it. | 
|  | */ | 
|  | scan_for_empty_cpusets(&top_cpuset); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | cgroup_unlock(); | 
|  |  | 
|  | return NOTIFY_OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * cpuset_init_smp - initialize cpus_allowed | 
|  | * | 
|  | * Description: Finish top cpuset after cpu, node maps are initialized | 
|  | **/ | 
|  |  | 
|  | void __init cpuset_init_smp(void) | 
|  | { | 
|  | cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); | 
|  | top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY]; | 
|  |  | 
|  | hotplug_memory_notifier(cpuset_track_online_nodes, 10); | 
|  |  | 
|  | cpuset_wq = create_singlethread_workqueue("cpuset"); | 
|  | BUG_ON(!cpuset_wq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
|  | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
|  | * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. | 
|  | * | 
|  | * Description: Returns the cpumask_var_t cpus_allowed of the cpuset | 
|  | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | * subset of cpu_online_map, even if this means going outside the | 
|  | * tasks cpuset. | 
|  | **/ | 
|  |  | 
|  | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 
|  | { | 
|  | mutex_lock(&callback_mutex); | 
|  | task_lock(tsk); | 
|  | guarantee_online_cpus(task_cs(tsk), pmask); | 
|  | task_unlock(tsk); | 
|  | mutex_unlock(&callback_mutex); | 
|  | } | 
|  |  | 
|  | int cpuset_cpus_allowed_fallback(struct task_struct *tsk) | 
|  | { | 
|  | const struct cpuset *cs; | 
|  | int cpu; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cs = task_cs(tsk); | 
|  | if (cs) | 
|  | cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* | 
|  | * We own tsk->cpus_allowed, nobody can change it under us. | 
|  | * | 
|  | * But we used cs && cs->cpus_allowed lockless and thus can | 
|  | * race with cgroup_attach_task() or update_cpumask() and get | 
|  | * the wrong tsk->cpus_allowed. However, both cases imply the | 
|  | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | 
|  | * which takes task_rq_lock(). | 
|  | * | 
|  | * If we are called after it dropped the lock we must see all | 
|  | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | 
|  | * set any mask even if it is not right from task_cs() pov, | 
|  | * the pending set_cpus_allowed_ptr() will fix things. | 
|  | */ | 
|  |  | 
|  | cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); | 
|  | if (cpu >= nr_cpu_ids) { | 
|  | /* | 
|  | * Either tsk->cpus_allowed is wrong (see above) or it | 
|  | * is actually empty. The latter case is only possible | 
|  | * if we are racing with remove_tasks_in_empty_cpuset(). | 
|  | * Like above we can temporary set any mask and rely on | 
|  | * set_cpus_allowed_ptr() as synchronization point. | 
|  | */ | 
|  | cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); | 
|  | cpu = cpumask_any(cpu_active_mask); | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | void cpuset_init_current_mems_allowed(void) | 
|  | { | 
|  | nodes_setall(current->mems_allowed); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. | 
|  | * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. | 
|  | * | 
|  | * Description: Returns the nodemask_t mems_allowed of the cpuset | 
|  | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | * subset of node_states[N_HIGH_MEMORY], even if this means going outside the | 
|  | * tasks cpuset. | 
|  | **/ | 
|  |  | 
|  | nodemask_t cpuset_mems_allowed(struct task_struct *tsk) | 
|  | { | 
|  | nodemask_t mask; | 
|  |  | 
|  | mutex_lock(&callback_mutex); | 
|  | task_lock(tsk); | 
|  | guarantee_online_mems(task_cs(tsk), &mask); | 
|  | task_unlock(tsk); | 
|  | mutex_unlock(&callback_mutex); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed | 
|  | * @nodemask: the nodemask to be checked | 
|  | * | 
|  | * Are any of the nodes in the nodemask allowed in current->mems_allowed? | 
|  | */ | 
|  | int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) | 
|  | { | 
|  | return nodes_intersects(*nodemask, current->mems_allowed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or | 
|  | * mem_hardwall ancestor to the specified cpuset.  Call holding | 
|  | * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall | 
|  | * (an unusual configuration), then returns the root cpuset. | 
|  | */ | 
|  | static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs) | 
|  | { | 
|  | while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent) | 
|  | cs = cs->parent; | 
|  | return cs; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_node_allowed_softwall - Can we allocate on a memory node? | 
|  | * @node: is this an allowed node? | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is | 
|  | * set, yes, we can always allocate.  If node is in our task's mems_allowed, | 
|  | * yes.  If it's not a __GFP_HARDWALL request and this node is in the nearest | 
|  | * hardwalled cpuset ancestor to this task's cpuset, yes.  If the task has been | 
|  | * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE | 
|  | * flag, yes. | 
|  | * Otherwise, no. | 
|  | * | 
|  | * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to | 
|  | * cpuset_node_allowed_hardwall().  Otherwise, cpuset_node_allowed_softwall() | 
|  | * might sleep, and might allow a node from an enclosing cpuset. | 
|  | * | 
|  | * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall | 
|  | * cpusets, and never sleeps. | 
|  | * | 
|  | * The __GFP_THISNODE placement logic is really handled elsewhere, | 
|  | * by forcibly using a zonelist starting at a specified node, and by | 
|  | * (in get_page_from_freelist()) refusing to consider the zones for | 
|  | * any node on the zonelist except the first.  By the time any such | 
|  | * calls get to this routine, we should just shut up and say 'yes'. | 
|  | * | 
|  | * GFP_USER allocations are marked with the __GFP_HARDWALL bit, | 
|  | * and do not allow allocations outside the current tasks cpuset | 
|  | * unless the task has been OOM killed as is marked TIF_MEMDIE. | 
|  | * GFP_KERNEL allocations are not so marked, so can escape to the | 
|  | * nearest enclosing hardwalled ancestor cpuset. | 
|  | * | 
|  | * Scanning up parent cpusets requires callback_mutex.  The | 
|  | * __alloc_pages() routine only calls here with __GFP_HARDWALL bit | 
|  | * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the | 
|  | * current tasks mems_allowed came up empty on the first pass over | 
|  | * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the | 
|  | * cpuset are short of memory, might require taking the callback_mutex | 
|  | * mutex. | 
|  | * | 
|  | * The first call here from mm/page_alloc:get_page_from_freelist() | 
|  | * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, | 
|  | * so no allocation on a node outside the cpuset is allowed (unless | 
|  | * in interrupt, of course). | 
|  | * | 
|  | * The second pass through get_page_from_freelist() doesn't even call | 
|  | * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages() | 
|  | * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set | 
|  | * in alloc_flags.  That logic and the checks below have the combined | 
|  | * affect that: | 
|  | *	in_interrupt - any node ok (current task context irrelevant) | 
|  | *	GFP_ATOMIC   - any node ok | 
|  | *	TIF_MEMDIE   - any node ok | 
|  | *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok | 
|  | *	GFP_USER     - only nodes in current tasks mems allowed ok. | 
|  | * | 
|  | * Rule: | 
|  | *    Don't call cpuset_node_allowed_softwall if you can't sleep, unless you | 
|  | *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables | 
|  | *    the code that might scan up ancestor cpusets and sleep. | 
|  | */ | 
|  | int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask) | 
|  | { | 
|  | const struct cpuset *cs;	/* current cpuset ancestors */ | 
|  | int allowed;			/* is allocation in zone z allowed? */ | 
|  |  | 
|  | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
|  | return 1; | 
|  | might_sleep_if(!(gfp_mask & __GFP_HARDWALL)); | 
|  | if (node_isset(node, current->mems_allowed)) | 
|  | return 1; | 
|  | /* | 
|  | * Allow tasks that have access to memory reserves because they have | 
|  | * been OOM killed to get memory anywhere. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | return 1; | 
|  | if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */ | 
|  | return 0; | 
|  |  | 
|  | if (current->flags & PF_EXITING) /* Let dying task have memory */ | 
|  | return 1; | 
|  |  | 
|  | /* Not hardwall and node outside mems_allowed: scan up cpusets */ | 
|  | mutex_lock(&callback_mutex); | 
|  |  | 
|  | task_lock(current); | 
|  | cs = nearest_hardwall_ancestor(task_cs(current)); | 
|  | task_unlock(current); | 
|  |  | 
|  | allowed = node_isset(node, cs->mems_allowed); | 
|  | mutex_unlock(&callback_mutex); | 
|  | return allowed; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpuset_node_allowed_hardwall - Can we allocate on a memory node? | 
|  | * @node: is this an allowed node? | 
|  | * @gfp_mask: memory allocation flags | 
|  | * | 
|  | * If we're in interrupt, yes, we can always allocate.  If __GFP_THISNODE is | 
|  | * set, yes, we can always allocate.  If node is in our task's mems_allowed, | 
|  | * yes.  If the task has been OOM killed and has access to memory reserves as | 
|  | * specified by the TIF_MEMDIE flag, yes. | 
|  | * Otherwise, no. | 
|  | * | 
|  | * The __GFP_THISNODE placement logic is really handled elsewhere, | 
|  | * by forcibly using a zonelist starting at a specified node, and by | 
|  | * (in get_page_from_freelist()) refusing to consider the zones for | 
|  | * any node on the zonelist except the first.  By the time any such | 
|  | * calls get to this routine, we should just shut up and say 'yes'. | 
|  | * | 
|  | * Unlike the cpuset_node_allowed_softwall() variant, above, | 
|  | * this variant requires that the node be in the current task's | 
|  | * mems_allowed or that we're in interrupt.  It does not scan up the | 
|  | * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset. | 
|  | * It never sleeps. | 
|  | */ | 
|  | int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | 
|  | { | 
|  | if (in_interrupt() || (gfp_mask & __GFP_THISNODE)) | 
|  | return 1; | 
|  | if (node_isset(node, current->mems_allowed)) | 
|  | return 1; | 
|  | /* | 
|  | * Allow tasks that have access to memory reserves because they have | 
|  | * been OOM killed to get memory anywhere. | 
|  | */ | 
|  | if (unlikely(test_thread_flag(TIF_MEMDIE))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_unlock - release lock on cpuset changes | 
|  | * | 
|  | * Undo the lock taken in a previous cpuset_lock() call. | 
|  | */ | 
|  |  | 
|  | void cpuset_unlock(void) | 
|  | { | 
|  | mutex_unlock(&callback_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_mem_spread_node() - On which node to begin search for a file page | 
|  | * cpuset_slab_spread_node() - On which node to begin search for a slab page | 
|  | * | 
|  | * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for | 
|  | * tasks in a cpuset with is_spread_page or is_spread_slab set), | 
|  | * and if the memory allocation used cpuset_mem_spread_node() | 
|  | * to determine on which node to start looking, as it will for | 
|  | * certain page cache or slab cache pages such as used for file | 
|  | * system buffers and inode caches, then instead of starting on the | 
|  | * local node to look for a free page, rather spread the starting | 
|  | * node around the tasks mems_allowed nodes. | 
|  | * | 
|  | * We don't have to worry about the returned node being offline | 
|  | * because "it can't happen", and even if it did, it would be ok. | 
|  | * | 
|  | * The routines calling guarantee_online_mems() are careful to | 
|  | * only set nodes in task->mems_allowed that are online.  So it | 
|  | * should not be possible for the following code to return an | 
|  | * offline node.  But if it did, that would be ok, as this routine | 
|  | * is not returning the node where the allocation must be, only | 
|  | * the node where the search should start.  The zonelist passed to | 
|  | * __alloc_pages() will include all nodes.  If the slab allocator | 
|  | * is passed an offline node, it will fall back to the local node. | 
|  | * See kmem_cache_alloc_node(). | 
|  | */ | 
|  |  | 
|  | static int cpuset_spread_node(int *rotor) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | node = next_node(*rotor, current->mems_allowed); | 
|  | if (node == MAX_NUMNODES) | 
|  | node = first_node(current->mems_allowed); | 
|  | *rotor = node; | 
|  | return node; | 
|  | } | 
|  |  | 
|  | int cpuset_mem_spread_node(void) | 
|  | { | 
|  | return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); | 
|  | } | 
|  |  | 
|  | int cpuset_slab_spread_node(void) | 
|  | { | 
|  | return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); | 
|  |  | 
|  | /** | 
|  | * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? | 
|  | * @tsk1: pointer to task_struct of some task. | 
|  | * @tsk2: pointer to task_struct of some other task. | 
|  | * | 
|  | * Description: Return true if @tsk1's mems_allowed intersects the | 
|  | * mems_allowed of @tsk2.  Used by the OOM killer to determine if | 
|  | * one of the task's memory usage might impact the memory available | 
|  | * to the other. | 
|  | **/ | 
|  |  | 
|  | int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, | 
|  | const struct task_struct *tsk2) | 
|  | { | 
|  | return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed | 
|  | * @task: pointer to task_struct of some task. | 
|  | * | 
|  | * Description: Prints @task's name, cpuset name, and cached copy of its | 
|  | * mems_allowed to the kernel log.  Must hold task_lock(task) to allow | 
|  | * dereferencing task_cs(task). | 
|  | */ | 
|  | void cpuset_print_task_mems_allowed(struct task_struct *tsk) | 
|  | { | 
|  | struct dentry *dentry; | 
|  |  | 
|  | dentry = task_cs(tsk)->css.cgroup->dentry; | 
|  | spin_lock(&cpuset_buffer_lock); | 
|  | snprintf(cpuset_name, CPUSET_NAME_LEN, | 
|  | dentry ? (const char *)dentry->d_name.name : "/"); | 
|  | nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN, | 
|  | tsk->mems_allowed); | 
|  | printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n", | 
|  | tsk->comm, cpuset_name, cpuset_nodelist); | 
|  | spin_unlock(&cpuset_buffer_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Collection of memory_pressure is suppressed unless | 
|  | * this flag is enabled by writing "1" to the special | 
|  | * cpuset file 'memory_pressure_enabled' in the root cpuset. | 
|  | */ | 
|  |  | 
|  | int cpuset_memory_pressure_enabled __read_mostly; | 
|  |  | 
|  | /** | 
|  | * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. | 
|  | * | 
|  | * Keep a running average of the rate of synchronous (direct) | 
|  | * page reclaim efforts initiated by tasks in each cpuset. | 
|  | * | 
|  | * This represents the rate at which some task in the cpuset | 
|  | * ran low on memory on all nodes it was allowed to use, and | 
|  | * had to enter the kernels page reclaim code in an effort to | 
|  | * create more free memory by tossing clean pages or swapping | 
|  | * or writing dirty pages. | 
|  | * | 
|  | * Display to user space in the per-cpuset read-only file | 
|  | * "memory_pressure".  Value displayed is an integer | 
|  | * representing the recent rate of entry into the synchronous | 
|  | * (direct) page reclaim by any task attached to the cpuset. | 
|  | **/ | 
|  |  | 
|  | void __cpuset_memory_pressure_bump(void) | 
|  | { | 
|  | task_lock(current); | 
|  | fmeter_markevent(&task_cs(current)->fmeter); | 
|  | task_unlock(current); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_PID_CPUSET | 
|  | /* | 
|  | * proc_cpuset_show() | 
|  | *  - Print tasks cpuset path into seq_file. | 
|  | *  - Used for /proc/<pid>/cpuset. | 
|  | *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it | 
|  | *    doesn't really matter if tsk->cpuset changes after we read it, | 
|  | *    and we take cgroup_mutex, keeping cpuset_attach() from changing it | 
|  | *    anyway. | 
|  | */ | 
|  | static int proc_cpuset_show(struct seq_file *m, void *unused_v) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct task_struct *tsk; | 
|  | char *buf; | 
|  | struct cgroup_subsys_state *css; | 
|  | int retval; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | goto out; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | pid = m->private; | 
|  | tsk = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!tsk) | 
|  | goto out_free; | 
|  |  | 
|  | retval = -EINVAL; | 
|  | cgroup_lock(); | 
|  | css = task_subsys_state(tsk, cpuset_subsys_id); | 
|  | retval = cgroup_path(css->cgroup, buf, PAGE_SIZE); | 
|  | if (retval < 0) | 
|  | goto out_unlock; | 
|  | seq_puts(m, buf); | 
|  | seq_putc(m, '\n'); | 
|  | out_unlock: | 
|  | cgroup_unlock(); | 
|  | put_task_struct(tsk); | 
|  | out_free: | 
|  | kfree(buf); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cpuset_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct pid *pid = PROC_I(inode)->pid; | 
|  | return single_open(file, proc_cpuset_show, pid); | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_cpuset_operations = { | 
|  | .open		= cpuset_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  | #endif /* CONFIG_PROC_PID_CPUSET */ | 
|  |  | 
|  | /* Display task mems_allowed in /proc/<pid>/status file. */ | 
|  | void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) | 
|  | { | 
|  | seq_printf(m, "Mems_allowed:\t"); | 
|  | seq_nodemask(m, &task->mems_allowed); | 
|  | seq_printf(m, "\n"); | 
|  | seq_printf(m, "Mems_allowed_list:\t"); | 
|  | seq_nodemask_list(m, &task->mems_allowed); | 
|  | seq_printf(m, "\n"); | 
|  | } |