|  | /* | 
|  | * SLUB: A slab allocator that limits cache line use instead of queuing | 
|  | * objects in per cpu and per node lists. | 
|  | * | 
|  | * The allocator synchronizes using per slab locks and only | 
|  | * uses a centralized lock to manage a pool of partial slabs. | 
|  | * | 
|  | * (C) 2007 SGI, Christoph Lameter | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> /* struct reclaim_state */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/bit_spinlock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/kmemcheck.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/debugobjects.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/memory.h> | 
|  | #include <linux/math64.h> | 
|  | #include <linux/fault-inject.h> | 
|  |  | 
|  | #include <trace/events/kmem.h> | 
|  |  | 
|  | /* | 
|  | * Lock order: | 
|  | *   1. slab_lock(page) | 
|  | *   2. slab->list_lock | 
|  | * | 
|  | *   The slab_lock protects operations on the object of a particular | 
|  | *   slab and its metadata in the page struct. If the slab lock | 
|  | *   has been taken then no allocations nor frees can be performed | 
|  | *   on the objects in the slab nor can the slab be added or removed | 
|  | *   from the partial or full lists since this would mean modifying | 
|  | *   the page_struct of the slab. | 
|  | * | 
|  | *   The list_lock protects the partial and full list on each node and | 
|  | *   the partial slab counter. If taken then no new slabs may be added or | 
|  | *   removed from the lists nor make the number of partial slabs be modified. | 
|  | *   (Note that the total number of slabs is an atomic value that may be | 
|  | *   modified without taking the list lock). | 
|  | * | 
|  | *   The list_lock is a centralized lock and thus we avoid taking it as | 
|  | *   much as possible. As long as SLUB does not have to handle partial | 
|  | *   slabs, operations can continue without any centralized lock. F.e. | 
|  | *   allocating a long series of objects that fill up slabs does not require | 
|  | *   the list lock. | 
|  | * | 
|  | *   The lock order is sometimes inverted when we are trying to get a slab | 
|  | *   off a list. We take the list_lock and then look for a page on the list | 
|  | *   to use. While we do that objects in the slabs may be freed. We can | 
|  | *   only operate on the slab if we have also taken the slab_lock. So we use | 
|  | *   a slab_trylock() on the slab. If trylock was successful then no frees | 
|  | *   can occur anymore and we can use the slab for allocations etc. If the | 
|  | *   slab_trylock() does not succeed then frees are in progress in the slab and | 
|  | *   we must stay away from it for a while since we may cause a bouncing | 
|  | *   cacheline if we try to acquire the lock. So go onto the next slab. | 
|  | *   If all pages are busy then we may allocate a new slab instead of reusing | 
|  | *   a partial slab. A new slab has no one operating on it and thus there is | 
|  | *   no danger of cacheline contention. | 
|  | * | 
|  | *   Interrupts are disabled during allocation and deallocation in order to | 
|  | *   make the slab allocator safe to use in the context of an irq. In addition | 
|  | *   interrupts are disabled to ensure that the processor does not change | 
|  | *   while handling per_cpu slabs, due to kernel preemption. | 
|  | * | 
|  | * SLUB assigns one slab for allocation to each processor. | 
|  | * Allocations only occur from these slabs called cpu slabs. | 
|  | * | 
|  | * Slabs with free elements are kept on a partial list and during regular | 
|  | * operations no list for full slabs is used. If an object in a full slab is | 
|  | * freed then the slab will show up again on the partial lists. | 
|  | * We track full slabs for debugging purposes though because otherwise we | 
|  | * cannot scan all objects. | 
|  | * | 
|  | * Slabs are freed when they become empty. Teardown and setup is | 
|  | * minimal so we rely on the page allocators per cpu caches for | 
|  | * fast frees and allocs. | 
|  | * | 
|  | * Overloading of page flags that are otherwise used for LRU management. | 
|  | * | 
|  | * PageActive 		The slab is frozen and exempt from list processing. | 
|  | * 			This means that the slab is dedicated to a purpose | 
|  | * 			such as satisfying allocations for a specific | 
|  | * 			processor. Objects may be freed in the slab while | 
|  | * 			it is frozen but slab_free will then skip the usual | 
|  | * 			list operations. It is up to the processor holding | 
|  | * 			the slab to integrate the slab into the slab lists | 
|  | * 			when the slab is no longer needed. | 
|  | * | 
|  | * 			One use of this flag is to mark slabs that are | 
|  | * 			used for allocations. Then such a slab becomes a cpu | 
|  | * 			slab. The cpu slab may be equipped with an additional | 
|  | * 			freelist that allows lockless access to | 
|  | * 			free objects in addition to the regular freelist | 
|  | * 			that requires the slab lock. | 
|  | * | 
|  | * PageError		Slab requires special handling due to debug | 
|  | * 			options set. This moves	slab handling out of | 
|  | * 			the fast path and disables lockless freelists. | 
|  | */ | 
|  |  | 
|  | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE | SLAB_DEBUG_FREE) | 
|  |  | 
|  | static inline int kmem_cache_debug(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | return unlikely(s->flags & SLAB_DEBUG_FLAGS); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issues still to be resolved: | 
|  | * | 
|  | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
|  | * | 
|  | * - Variable sizing of the per node arrays | 
|  | */ | 
|  |  | 
|  | /* Enable to test recovery from slab corruption on boot */ | 
|  | #undef SLUB_RESILIENCY_TEST | 
|  |  | 
|  | /* | 
|  | * Mininum number of partial slabs. These will be left on the partial | 
|  | * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
|  | */ | 
|  | #define MIN_PARTIAL 5 | 
|  |  | 
|  | /* | 
|  | * Maximum number of desirable partial slabs. | 
|  | * The existence of more partial slabs makes kmem_cache_shrink | 
|  | * sort the partial list by the number of objects in the. | 
|  | */ | 
|  | #define MAX_PARTIAL 10 | 
|  |  | 
|  | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 
|  | SLAB_POISON | SLAB_STORE_USER) | 
|  |  | 
|  | /* | 
|  | * Debugging flags that require metadata to be stored in the slab.  These get | 
|  | * disabled when slub_debug=O is used and a cache's min order increases with | 
|  | * metadata. | 
|  | */ | 
|  | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
|  |  | 
|  | /* | 
|  | * Set of flags that will prevent slab merging | 
|  | */ | 
|  | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ | 
|  | SLAB_FAILSLAB) | 
|  |  | 
|  | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 
|  | SLAB_CACHE_DMA | SLAB_NOTRACK) | 
|  |  | 
|  | #define OO_SHIFT	16 | 
|  | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
|  | #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */ | 
|  |  | 
|  | /* Internal SLUB flags */ | 
|  | #define __OBJECT_POISON		0x80000000UL /* Poison object */ | 
|  |  | 
|  | static int kmem_size = sizeof(struct kmem_cache); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static struct notifier_block slab_notifier; | 
|  | #endif | 
|  |  | 
|  | static enum { | 
|  | DOWN,		/* No slab functionality available */ | 
|  | PARTIAL,	/* Kmem_cache_node works */ | 
|  | UP,		/* Everything works but does not show up in sysfs */ | 
|  | SYSFS		/* Sysfs up */ | 
|  | } slab_state = DOWN; | 
|  |  | 
|  | /* A list of all slab caches on the system */ | 
|  | static DECLARE_RWSEM(slub_lock); | 
|  | static LIST_HEAD(slab_caches); | 
|  |  | 
|  | /* | 
|  | * Tracking user of a slab. | 
|  | */ | 
|  | struct track { | 
|  | unsigned long addr;	/* Called from address */ | 
|  | int cpu;		/* Was running on cpu */ | 
|  | int pid;		/* Pid context */ | 
|  | unsigned long when;	/* When did the operation occur */ | 
|  | }; | 
|  |  | 
|  | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static int sysfs_slab_add(struct kmem_cache *); | 
|  | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
|  | static void sysfs_slab_remove(struct kmem_cache *); | 
|  |  | 
|  | #else | 
|  | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
|  | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
|  | { return 0; } | 
|  | static inline void sysfs_slab_remove(struct kmem_cache *s) | 
|  | { | 
|  | kfree(s->name); | 
|  | kfree(s); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | __this_cpu_inc(s->cpu_slab->stat[si]); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * 			Core slab cache functions | 
|  | *******************************************************************/ | 
|  |  | 
|  | int slab_is_available(void) | 
|  | { | 
|  | return slab_state >= UP; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 
|  | { | 
|  | return s->node[node]; | 
|  | } | 
|  |  | 
|  | /* Verify that a pointer has an address that is valid within a slab page */ | 
|  | static inline int check_valid_pointer(struct kmem_cache *s, | 
|  | struct page *page, const void *object) | 
|  | { | 
|  | void *base; | 
|  |  | 
|  | if (!object) | 
|  | return 1; | 
|  |  | 
|  | base = page_address(page); | 
|  | if (object < base || object >= base + page->objects * s->size || | 
|  | (object - base) % s->size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
|  | { | 
|  | return *(void **)(object + s->offset); | 
|  | } | 
|  |  | 
|  | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
|  | { | 
|  | *(void **)(object + s->offset) = fp; | 
|  | } | 
|  |  | 
|  | /* Loop over all objects in a slab */ | 
|  | #define for_each_object(__p, __s, __addr, __objects) \ | 
|  | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | 
|  | __p += (__s)->size) | 
|  |  | 
|  | /* Scan freelist */ | 
|  | #define for_each_free_object(__p, __s, __free) \ | 
|  | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | 
|  |  | 
|  | /* Determine object index from a given position */ | 
|  | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | 
|  | { | 
|  | return (p - addr) / s->size; | 
|  | } | 
|  |  | 
|  | static inline size_t slab_ksize(const struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Debugging requires use of the padding between object | 
|  | * and whatever may come after it. | 
|  | */ | 
|  | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
|  | return s->objsize; | 
|  |  | 
|  | #endif | 
|  | /* | 
|  | * If we have the need to store the freelist pointer | 
|  | * back there or track user information then we can | 
|  | * only use the space before that information. | 
|  | */ | 
|  | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 
|  | return s->inuse; | 
|  | /* | 
|  | * Else we can use all the padding etc for the allocation | 
|  | */ | 
|  | return s->size; | 
|  | } | 
|  |  | 
|  | static inline int order_objects(int order, unsigned long size, int reserved) | 
|  | { | 
|  | return ((PAGE_SIZE << order) - reserved) / size; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_cache_order_objects oo_make(int order, | 
|  | unsigned long size, int reserved) | 
|  | { | 
|  | struct kmem_cache_order_objects x = { | 
|  | (order << OO_SHIFT) + order_objects(order, size, reserved) | 
|  | }; | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static inline int oo_order(struct kmem_cache_order_objects x) | 
|  | { | 
|  | return x.x >> OO_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline int oo_objects(struct kmem_cache_order_objects x) | 
|  | { | 
|  | return x.x & OO_MASK; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Debug settings: | 
|  | */ | 
|  | #ifdef CONFIG_SLUB_DEBUG_ON | 
|  | static int slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | #else | 
|  | static int slub_debug; | 
|  | #endif | 
|  |  | 
|  | static char *slub_debug_slabs; | 
|  | static int disable_higher_order_debug; | 
|  |  | 
|  | /* | 
|  | * Object debugging | 
|  | */ | 
|  | static void print_section(char *text, u8 *addr, unsigned int length) | 
|  | { | 
|  | int i, offset; | 
|  | int newline = 1; | 
|  | char ascii[17]; | 
|  |  | 
|  | ascii[16] = 0; | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | if (newline) { | 
|  | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); | 
|  | newline = 0; | 
|  | } | 
|  | printk(KERN_CONT " %02x", addr[i]); | 
|  | offset = i % 16; | 
|  | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | 
|  | if (offset == 15) { | 
|  | printk(KERN_CONT " %s\n", ascii); | 
|  | newline = 1; | 
|  | } | 
|  | } | 
|  | if (!newline) { | 
|  | i %= 16; | 
|  | while (i < 16) { | 
|  | printk(KERN_CONT "   "); | 
|  | ascii[i] = ' '; | 
|  | i++; | 
|  | } | 
|  | printk(KERN_CONT " %s\n", ascii); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct track *get_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc) | 
|  | { | 
|  | struct track *p; | 
|  |  | 
|  | if (s->offset) | 
|  | p = object + s->offset + sizeof(void *); | 
|  | else | 
|  | p = object + s->inuse; | 
|  |  | 
|  | return p + alloc; | 
|  | } | 
|  |  | 
|  | static void set_track(struct kmem_cache *s, void *object, | 
|  | enum track_item alloc, unsigned long addr) | 
|  | { | 
|  | struct track *p = get_track(s, object, alloc); | 
|  |  | 
|  | if (addr) { | 
|  | p->addr = addr; | 
|  | p->cpu = smp_processor_id(); | 
|  | p->pid = current->pid; | 
|  | p->when = jiffies; | 
|  | } else | 
|  | memset(p, 0, sizeof(struct track)); | 
|  | } | 
|  |  | 
|  | static void init_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | set_track(s, object, TRACK_FREE, 0UL); | 
|  | set_track(s, object, TRACK_ALLOC, 0UL); | 
|  | } | 
|  |  | 
|  | static void print_track(const char *s, struct track *t) | 
|  | { | 
|  | if (!t->addr) | 
|  | return; | 
|  |  | 
|  | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
|  | s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); | 
|  | } | 
|  |  | 
|  | static void print_tracking(struct kmem_cache *s, void *object) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | 
|  | print_track("Freed", get_track(s, object, TRACK_FREE)); | 
|  | } | 
|  |  | 
|  | static void print_page_info(struct page *page) | 
|  | { | 
|  | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
|  | page, page->objects, page->inuse, page->freelist, page->flags); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | printk(KERN_ERR "========================================" | 
|  | "=====================================\n"); | 
|  | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | 
|  | printk(KERN_ERR "----------------------------------------" | 
|  | "-------------------------------------\n\n"); | 
|  | } | 
|  |  | 
|  | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | 
|  | } | 
|  |  | 
|  | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned int off;	/* Offset of last byte */ | 
|  | u8 *addr = page_address(page); | 
|  |  | 
|  | print_tracking(s, p); | 
|  |  | 
|  | print_page_info(page); | 
|  |  | 
|  | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
|  | p, p - addr, get_freepointer(s, p)); | 
|  |  | 
|  | if (p > addr + 16) | 
|  | print_section("Bytes b4", p - 16, 16); | 
|  |  | 
|  | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | print_section("Redzone", p + s->objsize, | 
|  | s->inuse - s->objsize); | 
|  |  | 
|  | if (s->offset) | 
|  | off = s->offset + sizeof(void *); | 
|  | else | 
|  | off = s->inuse; | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | if (off != s->size) | 
|  | /* Beginning of the filler is the free pointer */ | 
|  | print_section("Padding", p + off, s->size - off); | 
|  |  | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void object_err(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *reason) | 
|  | { | 
|  | slab_bug(s, "%s", reason); | 
|  | print_trailer(s, page, object); | 
|  | } | 
|  |  | 
|  | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char buf[100]; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | vsnprintf(buf, sizeof(buf), fmt, args); | 
|  | va_end(args); | 
|  | slab_bug(s, "%s", buf); | 
|  | print_page_info(page); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
|  | { | 
|  | u8 *p = object; | 
|  |  | 
|  | if (s->flags & __OBJECT_POISON) { | 
|  | memset(p, POISON_FREE, s->objsize - 1); | 
|  | p[s->objsize - 1] = POISON_END; | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) | 
|  | memset(p + s->objsize, val, s->inuse - s->objsize); | 
|  | } | 
|  |  | 
|  | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) | 
|  | { | 
|  | while (bytes) { | 
|  | if (*start != (u8)value) | 
|  | return start; | 
|  | start++; | 
|  | bytes--; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
|  | void *from, void *to) | 
|  | { | 
|  | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
|  | memset(from, data, to - from); | 
|  | } | 
|  |  | 
|  | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
|  | u8 *object, char *what, | 
|  | u8 *start, unsigned int value, unsigned int bytes) | 
|  | { | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  |  | 
|  | fault = check_bytes(start, value, bytes); | 
|  | if (!fault) | 
|  | return 1; | 
|  |  | 
|  | end = start + bytes; | 
|  | while (end > fault && end[-1] == value) | 
|  | end--; | 
|  |  | 
|  | slab_bug(s, "%s overwritten", what); | 
|  | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
|  | fault, end - 1, fault[0], value); | 
|  | print_trailer(s, page, object); | 
|  |  | 
|  | restore_bytes(s, what, value, fault, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Object layout: | 
|  | * | 
|  | * object address | 
|  | * 	Bytes of the object to be managed. | 
|  | * 	If the freepointer may overlay the object then the free | 
|  | * 	pointer is the first word of the object. | 
|  | * | 
|  | * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
|  | * 	0xa5 (POISON_END) | 
|  | * | 
|  | * object + s->objsize | 
|  | * 	Padding to reach word boundary. This is also used for Redzoning. | 
|  | * 	Padding is extended by another word if Redzoning is enabled and | 
|  | * 	objsize == inuse. | 
|  | * | 
|  | * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
|  | * 	0xcc (RED_ACTIVE) for objects in use. | 
|  | * | 
|  | * object + s->inuse | 
|  | * 	Meta data starts here. | 
|  | * | 
|  | * 	A. Free pointer (if we cannot overwrite object on free) | 
|  | * 	B. Tracking data for SLAB_STORE_USER | 
|  | * 	C. Padding to reach required alignment boundary or at mininum | 
|  | * 		one word if debugging is on to be able to detect writes | 
|  | * 		before the word boundary. | 
|  | * | 
|  | *	Padding is done using 0x5a (POISON_INUSE) | 
|  | * | 
|  | * object + s->size | 
|  | * 	Nothing is used beyond s->size. | 
|  | * | 
|  | * If slabcaches are merged then the objsize and inuse boundaries are mostly | 
|  | * ignored. And therefore no slab options that rely on these boundaries | 
|  | * may be used with merged slabcaches. | 
|  | */ | 
|  |  | 
|  | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
|  | { | 
|  | unsigned long off = s->inuse;	/* The end of info */ | 
|  |  | 
|  | if (s->offset) | 
|  | /* Freepointer is placed after the object. */ | 
|  | off += sizeof(void *); | 
|  |  | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | /* We also have user information there */ | 
|  | off += 2 * sizeof(struct track); | 
|  |  | 
|  | if (s->size == off) | 
|  | return 1; | 
|  |  | 
|  | return check_bytes_and_report(s, page, p, "Object padding", | 
|  | p + off, POISON_INUSE, s->size - off); | 
|  | } | 
|  |  | 
|  | /* Check the pad bytes at the end of a slab page */ | 
|  | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | u8 *start; | 
|  | u8 *fault; | 
|  | u8 *end; | 
|  | int length; | 
|  | int remainder; | 
|  |  | 
|  | if (!(s->flags & SLAB_POISON)) | 
|  | return 1; | 
|  |  | 
|  | start = page_address(page); | 
|  | length = (PAGE_SIZE << compound_order(page)) - s->reserved; | 
|  | end = start + length; | 
|  | remainder = length % s->size; | 
|  | if (!remainder) | 
|  | return 1; | 
|  |  | 
|  | fault = check_bytes(end - remainder, POISON_INUSE, remainder); | 
|  | if (!fault) | 
|  | return 1; | 
|  | while (end > fault && end[-1] == POISON_INUSE) | 
|  | end--; | 
|  |  | 
|  | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
|  | print_section("Padding", end - remainder, remainder); | 
|  |  | 
|  | restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, u8 val) | 
|  | { | 
|  | u8 *p = object; | 
|  | u8 *endobject = object + s->objsize; | 
|  |  | 
|  | if (s->flags & SLAB_RED_ZONE) { | 
|  | if (!check_bytes_and_report(s, page, object, "Redzone", | 
|  | endobject, val, s->inuse - s->objsize)) | 
|  | return 0; | 
|  | } else { | 
|  | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { | 
|  | check_bytes_and_report(s, page, p, "Alignment padding", | 
|  | endobject, POISON_INUSE, s->inuse - s->objsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s->flags & SLAB_POISON) { | 
|  | if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
|  | (!check_bytes_and_report(s, page, p, "Poison", p, | 
|  | POISON_FREE, s->objsize - 1) || | 
|  | !check_bytes_and_report(s, page, p, "Poison", | 
|  | p + s->objsize - 1, POISON_END, 1))) | 
|  | return 0; | 
|  | /* | 
|  | * check_pad_bytes cleans up on its own. | 
|  | */ | 
|  | check_pad_bytes(s, page, p); | 
|  | } | 
|  |  | 
|  | if (!s->offset && val == SLUB_RED_ACTIVE) | 
|  | /* | 
|  | * Object and freepointer overlap. Cannot check | 
|  | * freepointer while object is allocated. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | /* Check free pointer validity */ | 
|  | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
|  | object_err(s, page, p, "Freepointer corrupt"); | 
|  | /* | 
|  | * No choice but to zap it and thus lose the remainder | 
|  | * of the free objects in this slab. May cause | 
|  | * another error because the object count is now wrong. | 
|  | */ | 
|  | set_freepointer(s, p, NULL); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | int maxobj; | 
|  |  | 
|  | VM_BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | if (!PageSlab(page)) { | 
|  | slab_err(s, page, "Not a valid slab page"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | maxobj = order_objects(compound_order(page), s->size, s->reserved); | 
|  | if (page->objects > maxobj) { | 
|  | slab_err(s, page, "objects %u > max %u", | 
|  | s->name, page->objects, maxobj); | 
|  | return 0; | 
|  | } | 
|  | if (page->inuse > page->objects) { | 
|  | slab_err(s, page, "inuse %u > max %u", | 
|  | s->name, page->inuse, page->objects); | 
|  | return 0; | 
|  | } | 
|  | /* Slab_pad_check fixes things up after itself */ | 
|  | slab_pad_check(s, page); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a certain object on a page is on the freelist. Must hold the | 
|  | * slab lock to guarantee that the chains are in a consistent state. | 
|  | */ | 
|  | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
|  | { | 
|  | int nr = 0; | 
|  | void *fp = page->freelist; | 
|  | void *object = NULL; | 
|  | unsigned long max_objects; | 
|  |  | 
|  | while (fp && nr <= page->objects) { | 
|  | if (fp == search) | 
|  | return 1; | 
|  | if (!check_valid_pointer(s, page, fp)) { | 
|  | if (object) { | 
|  | object_err(s, page, object, | 
|  | "Freechain corrupt"); | 
|  | set_freepointer(s, object, NULL); | 
|  | break; | 
|  | } else { | 
|  | slab_err(s, page, "Freepointer corrupt"); | 
|  | page->freelist = NULL; | 
|  | page->inuse = page->objects; | 
|  | slab_fix(s, "Freelist cleared"); | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | object = fp; | 
|  | fp = get_freepointer(s, object); | 
|  | nr++; | 
|  | } | 
|  |  | 
|  | max_objects = order_objects(compound_order(page), s->size, s->reserved); | 
|  | if (max_objects > MAX_OBJS_PER_PAGE) | 
|  | max_objects = MAX_OBJS_PER_PAGE; | 
|  |  | 
|  | if (page->objects != max_objects) { | 
|  | slab_err(s, page, "Wrong number of objects. Found %d but " | 
|  | "should be %d", page->objects, max_objects); | 
|  | page->objects = max_objects; | 
|  | slab_fix(s, "Number of objects adjusted."); | 
|  | } | 
|  | if (page->inuse != page->objects - nr) { | 
|  | slab_err(s, page, "Wrong object count. Counter is %d but " | 
|  | "counted were %d", page->inuse, page->objects - nr); | 
|  | page->inuse = page->objects - nr; | 
|  | slab_fix(s, "Object count adjusted."); | 
|  | } | 
|  | return search == NULL; | 
|  | } | 
|  |  | 
|  | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
|  | int alloc) | 
|  | { | 
|  | if (s->flags & SLAB_TRACE) { | 
|  | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
|  | s->name, | 
|  | alloc ? "alloc" : "free", | 
|  | object, page->inuse, | 
|  | page->freelist); | 
|  |  | 
|  | if (!alloc) | 
|  | print_section("Object", (void *)object, s->objsize); | 
|  |  | 
|  | dump_stack(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hooks for other subsystems that check memory allocations. In a typical | 
|  | * production configuration these hooks all should produce no code at all. | 
|  | */ | 
|  | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | 
|  | { | 
|  | flags &= gfp_allowed_mask; | 
|  | lockdep_trace_alloc(flags); | 
|  | might_sleep_if(flags & __GFP_WAIT); | 
|  |  | 
|  | return should_failslab(s->objsize, flags, s->flags); | 
|  | } | 
|  |  | 
|  | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) | 
|  | { | 
|  | flags &= gfp_allowed_mask; | 
|  | kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); | 
|  | kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); | 
|  | } | 
|  |  | 
|  | static inline void slab_free_hook(struct kmem_cache *s, void *x) | 
|  | { | 
|  | kmemleak_free_recursive(x, s->flags); | 
|  |  | 
|  | /* | 
|  | * Trouble is that we may no longer disable interupts in the fast path | 
|  | * So in order to make the debug calls that expect irqs to be | 
|  | * disabled we need to disable interrupts temporarily. | 
|  | */ | 
|  | #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | kmemcheck_slab_free(s, x, s->objsize); | 
|  | debug_check_no_locks_freed(x, s->objsize); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | #endif | 
|  | if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
|  | debug_check_no_obj_freed(x, s->objsize); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tracking of fully allocated slabs for debugging purposes. | 
|  | */ | 
|  | static void add_full(struct kmem_cache_node *n, struct page *page) | 
|  | { | 
|  | spin_lock(&n->list_lock); | 
|  | list_add(&page->lru, &n->full); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static void remove_full(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return; | 
|  |  | 
|  | n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_del(&page->lru); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | /* Tracking of the number of slabs for debugging purposes */ | 
|  | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | return atomic_long_read(&n->nr_slabs); | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | { | 
|  | return atomic_long_read(&n->nr_slabs); | 
|  | } | 
|  |  | 
|  | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | /* | 
|  | * May be called early in order to allocate a slab for the | 
|  | * kmem_cache_node structure. Solve the chicken-egg | 
|  | * dilemma by deferring the increment of the count during | 
|  | * bootstrap (see early_kmem_cache_node_alloc). | 
|  | */ | 
|  | if (n) { | 
|  | atomic_long_inc(&n->nr_slabs); | 
|  | atomic_long_add(objects, &n->total_objects); | 
|  | } | 
|  | } | 
|  | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | atomic_long_dec(&n->nr_slabs); | 
|  | atomic_long_sub(objects, &n->total_objects); | 
|  | } | 
|  |  | 
|  | /* Object debug checks for alloc/free paths */ | 
|  | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
|  | return; | 
|  |  | 
|  | init_object(s, object, SLUB_RED_INACTIVE); | 
|  | init_tracking(s, object); | 
|  | } | 
|  |  | 
|  | static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, | 
|  | void *object, unsigned long addr) | 
|  | { | 
|  | if (!check_slab(s, page)) | 
|  | goto bad; | 
|  |  | 
|  | if (!on_freelist(s, page, object)) { | 
|  | object_err(s, page, object, "Object already allocated"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | object_err(s, page, object, "Freelist Pointer check fails"); | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
|  | goto bad; | 
|  |  | 
|  | /* Success perform special debug activities for allocs */ | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_ALLOC, addr); | 
|  | trace(s, page, object, 1); | 
|  | init_object(s, object, SLUB_RED_ACTIVE); | 
|  | return 1; | 
|  |  | 
|  | bad: | 
|  | if (PageSlab(page)) { | 
|  | /* | 
|  | * If this is a slab page then lets do the best we can | 
|  | * to avoid issues in the future. Marking all objects | 
|  | * as used avoids touching the remaining objects. | 
|  | */ | 
|  | slab_fix(s, "Marking all objects used"); | 
|  | page->inuse = page->objects; | 
|  | page->freelist = NULL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int free_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, unsigned long addr) | 
|  | { | 
|  | if (!check_slab(s, page)) | 
|  | goto fail; | 
|  |  | 
|  | if (!check_valid_pointer(s, page, object)) { | 
|  | slab_err(s, page, "Invalid object pointer 0x%p", object); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (on_freelist(s, page, object)) { | 
|  | object_err(s, page, object, "Object already free"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
|  | return 0; | 
|  |  | 
|  | if (unlikely(s != page->slab)) { | 
|  | if (!PageSlab(page)) { | 
|  | slab_err(s, page, "Attempt to free object(0x%p) " | 
|  | "outside of slab", object); | 
|  | } else if (!page->slab) { | 
|  | printk(KERN_ERR | 
|  | "SLUB <none>: no slab for object 0x%p.\n", | 
|  | object); | 
|  | dump_stack(); | 
|  | } else | 
|  | object_err(s, page, object, | 
|  | "page slab pointer corrupt."); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Special debug activities for freeing objects */ | 
|  | if (!PageSlubFrozen(page) && !page->freelist) | 
|  | remove_full(s, page); | 
|  | if (s->flags & SLAB_STORE_USER) | 
|  | set_track(s, object, TRACK_FREE, addr); | 
|  | trace(s, page, object, 0); | 
|  | init_object(s, object, SLUB_RED_INACTIVE); | 
|  | return 1; | 
|  |  | 
|  | fail: | 
|  | slab_fix(s, "Object at 0x%p not freed", object); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init setup_slub_debug(char *str) | 
|  | { | 
|  | slub_debug = DEBUG_DEFAULT_FLAGS; | 
|  | if (*str++ != '=' || !*str) | 
|  | /* | 
|  | * No options specified. Switch on full debugging. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | if (*str == ',') | 
|  | /* | 
|  | * No options but restriction on slabs. This means full | 
|  | * debugging for slabs matching a pattern. | 
|  | */ | 
|  | goto check_slabs; | 
|  |  | 
|  | if (tolower(*str) == 'o') { | 
|  | /* | 
|  | * Avoid enabling debugging on caches if its minimum order | 
|  | * would increase as a result. | 
|  | */ | 
|  | disable_higher_order_debug = 1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | slub_debug = 0; | 
|  | if (*str == '-') | 
|  | /* | 
|  | * Switch off all debugging measures. | 
|  | */ | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Determine which debug features should be switched on | 
|  | */ | 
|  | for (; *str && *str != ','; str++) { | 
|  | switch (tolower(*str)) { | 
|  | case 'f': | 
|  | slub_debug |= SLAB_DEBUG_FREE; | 
|  | break; | 
|  | case 'z': | 
|  | slub_debug |= SLAB_RED_ZONE; | 
|  | break; | 
|  | case 'p': | 
|  | slub_debug |= SLAB_POISON; | 
|  | break; | 
|  | case 'u': | 
|  | slub_debug |= SLAB_STORE_USER; | 
|  | break; | 
|  | case 't': | 
|  | slub_debug |= SLAB_TRACE; | 
|  | break; | 
|  | case 'a': | 
|  | slub_debug |= SLAB_FAILSLAB; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "slub_debug option '%c' " | 
|  | "unknown. skipped\n", *str); | 
|  | } | 
|  | } | 
|  |  | 
|  | check_slabs: | 
|  | if (*str == ',') | 
|  | slub_debug_slabs = str + 1; | 
|  | out: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_debug", setup_slub_debug); | 
|  |  | 
|  | static unsigned long kmem_cache_flags(unsigned long objsize, | 
|  | unsigned long flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | /* | 
|  | * Enable debugging if selected on the kernel commandline. | 
|  | */ | 
|  | if (slub_debug && (!slub_debug_slabs || | 
|  | !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) | 
|  | flags |= slub_debug; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  | #else | 
|  | static inline void setup_object_debug(struct kmem_cache *s, | 
|  | struct page *page, void *object) {} | 
|  |  | 
|  | static inline int alloc_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, unsigned long addr) { return 0; } | 
|  |  | 
|  | static inline int free_debug_processing(struct kmem_cache *s, | 
|  | struct page *page, void *object, unsigned long addr) { return 0; } | 
|  |  | 
|  | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
|  | { return 1; } | 
|  | static inline int check_object(struct kmem_cache *s, struct page *page, | 
|  | void *object, u8 val) { return 1; } | 
|  | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 
|  | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 
|  | unsigned long flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | return flags; | 
|  | } | 
|  | #define slub_debug 0 | 
|  |  | 
|  | #define disable_higher_order_debug 0 | 
|  |  | 
|  | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
|  | { return 0; } | 
|  | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
|  | { return 0; } | 
|  | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
|  | int objects) {} | 
|  | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
|  | int objects) {} | 
|  |  | 
|  | static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) | 
|  | { return 0; } | 
|  |  | 
|  | static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, | 
|  | void *object) {} | 
|  |  | 
|  | static inline void slab_free_hook(struct kmem_cache *s, void *x) {} | 
|  |  | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | /* | 
|  | * Slab allocation and freeing | 
|  | */ | 
|  | static inline struct page *alloc_slab_page(gfp_t flags, int node, | 
|  | struct kmem_cache_order_objects oo) | 
|  | { | 
|  | int order = oo_order(oo); | 
|  |  | 
|  | flags |= __GFP_NOTRACK; | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | return alloc_pages(flags, order); | 
|  | else | 
|  | return alloc_pages_exact_node(node, flags, order); | 
|  | } | 
|  |  | 
|  | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_order_objects oo = s->oo; | 
|  | gfp_t alloc_gfp; | 
|  |  | 
|  | flags |= s->allocflags; | 
|  |  | 
|  | /* | 
|  | * Let the initial higher-order allocation fail under memory pressure | 
|  | * so we fall-back to the minimum order allocation. | 
|  | */ | 
|  | alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
|  |  | 
|  | page = alloc_slab_page(alloc_gfp, node, oo); | 
|  | if (unlikely(!page)) { | 
|  | oo = s->min; | 
|  | /* | 
|  | * Allocation may have failed due to fragmentation. | 
|  | * Try a lower order alloc if possible | 
|  | */ | 
|  | page = alloc_slab_page(flags, node, oo); | 
|  | if (!page) | 
|  | return NULL; | 
|  |  | 
|  | stat(s, ORDER_FALLBACK); | 
|  | } | 
|  |  | 
|  | if (kmemcheck_enabled | 
|  | && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { | 
|  | int pages = 1 << oo_order(oo); | 
|  |  | 
|  | kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); | 
|  |  | 
|  | /* | 
|  | * Objects from caches that have a constructor don't get | 
|  | * cleared when they're allocated, so we need to do it here. | 
|  | */ | 
|  | if (s->ctor) | 
|  | kmemcheck_mark_uninitialized_pages(page, pages); | 
|  | else | 
|  | kmemcheck_mark_unallocated_pages(page, pages); | 
|  | } | 
|  |  | 
|  | page->objects = oo_objects(oo); | 
|  | mod_zone_page_state(page_zone(page), | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | 1 << oo_order(oo)); | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void setup_object(struct kmem_cache *s, struct page *page, | 
|  | void *object) | 
|  | { | 
|  | setup_object_debug(s, page, object); | 
|  | if (unlikely(s->ctor)) | 
|  | s->ctor(object); | 
|  | } | 
|  |  | 
|  | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | void *start; | 
|  | void *last; | 
|  | void *p; | 
|  |  | 
|  | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 
|  |  | 
|  | page = allocate_slab(s, | 
|  | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
|  | if (!page) | 
|  | goto out; | 
|  |  | 
|  | inc_slabs_node(s, page_to_nid(page), page->objects); | 
|  | page->slab = s; | 
|  | page->flags |= 1 << PG_slab; | 
|  |  | 
|  | start = page_address(page); | 
|  |  | 
|  | if (unlikely(s->flags & SLAB_POISON)) | 
|  | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); | 
|  |  | 
|  | last = start; | 
|  | for_each_object(p, s, start, page->objects) { | 
|  | setup_object(s, page, last); | 
|  | set_freepointer(s, last, p); | 
|  | last = p; | 
|  | } | 
|  | setup_object(s, page, last); | 
|  | set_freepointer(s, last, NULL); | 
|  |  | 
|  | page->freelist = start; | 
|  | page->inuse = 0; | 
|  | out: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void __free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | int order = compound_order(page); | 
|  | int pages = 1 << order; | 
|  |  | 
|  | if (kmem_cache_debug(s)) { | 
|  | void *p; | 
|  |  | 
|  | slab_pad_check(s, page); | 
|  | for_each_object(p, s, page_address(page), | 
|  | page->objects) | 
|  | check_object(s, page, p, SLUB_RED_INACTIVE); | 
|  | } | 
|  |  | 
|  | kmemcheck_free_shadow(page, compound_order(page)); | 
|  |  | 
|  | mod_zone_page_state(page_zone(page), | 
|  | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
|  | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
|  | -pages); | 
|  |  | 
|  | __ClearPageSlab(page); | 
|  | reset_page_mapcount(page); | 
|  | if (current->reclaim_state) | 
|  | current->reclaim_state->reclaimed_slab += pages; | 
|  | __free_pages(page, order); | 
|  | } | 
|  |  | 
|  | #define need_reserve_slab_rcu						\ | 
|  | (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) | 
|  |  | 
|  | static void rcu_free_slab(struct rcu_head *h) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (need_reserve_slab_rcu) | 
|  | page = virt_to_head_page(h); | 
|  | else | 
|  | page = container_of((struct list_head *)h, struct page, lru); | 
|  |  | 
|  | __free_slab(page->slab, page); | 
|  | } | 
|  |  | 
|  | static void free_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 
|  | struct rcu_head *head; | 
|  |  | 
|  | if (need_reserve_slab_rcu) { | 
|  | int order = compound_order(page); | 
|  | int offset = (PAGE_SIZE << order) - s->reserved; | 
|  |  | 
|  | VM_BUG_ON(s->reserved != sizeof(*head)); | 
|  | head = page_address(page) + offset; | 
|  | } else { | 
|  | /* | 
|  | * RCU free overloads the RCU head over the LRU | 
|  | */ | 
|  | head = (void *)&page->lru; | 
|  | } | 
|  |  | 
|  | call_rcu(head, rcu_free_slab); | 
|  | } else | 
|  | __free_slab(s, page); | 
|  | } | 
|  |  | 
|  | static void discard_slab(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | dec_slabs_node(s, page_to_nid(page), page->objects); | 
|  | free_slab(s, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per slab locking using the pagelock | 
|  | */ | 
|  | static __always_inline void slab_lock(struct page *page) | 
|  | { | 
|  | bit_spin_lock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static __always_inline void slab_unlock(struct page *page) | 
|  | { | 
|  | __bit_spin_unlock(PG_locked, &page->flags); | 
|  | } | 
|  |  | 
|  | static __always_inline int slab_trylock(struct page *page) | 
|  | { | 
|  | int rc = 1; | 
|  |  | 
|  | rc = bit_spin_trylock(PG_locked, &page->flags); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Management of partially allocated slabs | 
|  | */ | 
|  | static void add_partial(struct kmem_cache_node *n, | 
|  | struct page *page, int tail) | 
|  | { | 
|  | spin_lock(&n->list_lock); | 
|  | n->nr_partial++; | 
|  | if (tail) | 
|  | list_add_tail(&page->lru, &n->partial); | 
|  | else | 
|  | list_add(&page->lru, &n->partial); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | static inline void __remove_partial(struct kmem_cache_node *n, | 
|  | struct page *page) | 
|  | { | 
|  | list_del(&page->lru); | 
|  | n->nr_partial--; | 
|  | } | 
|  |  | 
|  | static void remove_partial(struct kmem_cache *s, struct page *page) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | __remove_partial(n, page); | 
|  | spin_unlock(&n->list_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lock slab and remove from the partial list. | 
|  | * | 
|  | * Must hold list_lock. | 
|  | */ | 
|  | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, | 
|  | struct page *page) | 
|  | { | 
|  | if (slab_trylock(page)) { | 
|  | __remove_partial(n, page); | 
|  | __SetPageSlubFrozen(page); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to allocate a partial slab from a specific node. | 
|  | */ | 
|  | static struct page *get_partial_node(struct kmem_cache_node *n) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * Racy check. If we mistakenly see no partial slabs then we | 
|  | * just allocate an empty slab. If we mistakenly try to get a | 
|  | * partial slab and there is none available then get_partials() | 
|  | * will return NULL. | 
|  | */ | 
|  | if (!n || !n->nr_partial) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&n->list_lock); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | if (lock_and_freeze_slab(n, page)) | 
|  | goto out; | 
|  | page = NULL; | 
|  | out: | 
|  | spin_unlock(&n->list_lock); | 
|  | return page; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a page from somewhere. Search in increasing NUMA distances. | 
|  | */ | 
|  | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | struct zonelist *zonelist; | 
|  | struct zoneref *z; | 
|  | struct zone *zone; | 
|  | enum zone_type high_zoneidx = gfp_zone(flags); | 
|  | struct page *page; | 
|  |  | 
|  | /* | 
|  | * The defrag ratio allows a configuration of the tradeoffs between | 
|  | * inter node defragmentation and node local allocations. A lower | 
|  | * defrag_ratio increases the tendency to do local allocations | 
|  | * instead of attempting to obtain partial slabs from other nodes. | 
|  | * | 
|  | * If the defrag_ratio is set to 0 then kmalloc() always | 
|  | * returns node local objects. If the ratio is higher then kmalloc() | 
|  | * may return off node objects because partial slabs are obtained | 
|  | * from other nodes and filled up. | 
|  | * | 
|  | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes | 
|  | * defrag_ratio = 1000) then every (well almost) allocation will | 
|  | * first attempt to defrag slab caches on other nodes. This means | 
|  | * scanning over all nodes to look for partial slabs which may be | 
|  | * expensive if we do it every time we are trying to find a slab | 
|  | * with available objects. | 
|  | */ | 
|  | if (!s->remote_node_defrag_ratio || | 
|  | get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
|  | return NULL; | 
|  |  | 
|  | get_mems_allowed(); | 
|  | zonelist = node_zonelist(slab_node(current->mempolicy), flags); | 
|  | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | n = get_node(s, zone_to_nid(zone)); | 
|  |  | 
|  | if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 
|  | n->nr_partial > s->min_partial) { | 
|  | page = get_partial_node(n); | 
|  | if (page) { | 
|  | put_mems_allowed(); | 
|  | return page; | 
|  | } | 
|  | } | 
|  | } | 
|  | put_mems_allowed(); | 
|  | #endif | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a partial page, lock it and return it. | 
|  | */ | 
|  | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; | 
|  |  | 
|  | page = get_partial_node(get_node(s, searchnode)); | 
|  | if (page || node != -1) | 
|  | return page; | 
|  |  | 
|  | return get_any_partial(s, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a page back to the lists. | 
|  | * | 
|  | * Must be called with the slab lock held. | 
|  | * | 
|  | * On exit the slab lock will have been dropped. | 
|  | */ | 
|  | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | 
|  | __releases(bitlock) | 
|  | { | 
|  | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
|  |  | 
|  | __ClearPageSlubFrozen(page); | 
|  | if (page->inuse) { | 
|  |  | 
|  | if (page->freelist) { | 
|  | add_partial(n, page, tail); | 
|  | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 
|  | } else { | 
|  | stat(s, DEACTIVATE_FULL); | 
|  | if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) | 
|  | add_full(n, page); | 
|  | } | 
|  | slab_unlock(page); | 
|  | } else { | 
|  | stat(s, DEACTIVATE_EMPTY); | 
|  | if (n->nr_partial < s->min_partial) { | 
|  | /* | 
|  | * Adding an empty slab to the partial slabs in order | 
|  | * to avoid page allocator overhead. This slab needs | 
|  | * to come after the other slabs with objects in | 
|  | * so that the others get filled first. That way the | 
|  | * size of the partial list stays small. | 
|  | * | 
|  | * kmem_cache_shrink can reclaim any empty slabs from | 
|  | * the partial list. | 
|  | */ | 
|  | add_partial(n, page, 1); | 
|  | slab_unlock(page); | 
|  | } else { | 
|  | slab_unlock(page); | 
|  | stat(s, FREE_SLAB); | 
|  | discard_slab(s, page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * Calculate the next globally unique transaction for disambiguiation | 
|  | * during cmpxchg. The transactions start with the cpu number and are then | 
|  | * incremented by CONFIG_NR_CPUS. | 
|  | */ | 
|  | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
|  | #else | 
|  | /* | 
|  | * No preemption supported therefore also no need to check for | 
|  | * different cpus. | 
|  | */ | 
|  | #define TID_STEP 1 | 
|  | #endif | 
|  |  | 
|  | static inline unsigned long next_tid(unsigned long tid) | 
|  | { | 
|  | return tid + TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned int tid_to_cpu(unsigned long tid) | 
|  | { | 
|  | return tid % TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned long tid_to_event(unsigned long tid) | 
|  | { | 
|  | return tid / TID_STEP; | 
|  | } | 
|  |  | 
|  | static inline unsigned int init_tid(int cpu) | 
|  | { | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | static inline void note_cmpxchg_failure(const char *n, | 
|  | const struct kmem_cache *s, unsigned long tid) | 
|  | { | 
|  | #ifdef SLUB_DEBUG_CMPXCHG | 
|  | unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
|  |  | 
|  | printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
|  | printk("due to cpu change %d -> %d\n", | 
|  | tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
|  | else | 
|  | #endif | 
|  | if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
|  | printk("due to cpu running other code. Event %ld->%ld\n", | 
|  | tid_to_event(tid), tid_to_event(actual_tid)); | 
|  | else | 
|  | printk("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
|  | actual_tid, tid, next_tid(tid)); | 
|  | #endif | 
|  | stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void init_kmem_cache_cpus(struct kmem_cache *s) | 
|  | { | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
|  | #endif | 
|  |  | 
|  | } | 
|  | /* | 
|  | * Remove the cpu slab | 
|  | */ | 
|  | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | __releases(bitlock) | 
|  | { | 
|  | struct page *page = c->page; | 
|  | int tail = 1; | 
|  |  | 
|  | if (page->freelist) | 
|  | stat(s, DEACTIVATE_REMOTE_FREES); | 
|  | /* | 
|  | * Merge cpu freelist into slab freelist. Typically we get here | 
|  | * because both freelists are empty. So this is unlikely | 
|  | * to occur. | 
|  | */ | 
|  | while (unlikely(c->freelist)) { | 
|  | void **object; | 
|  |  | 
|  | tail = 0;	/* Hot objects. Put the slab first */ | 
|  |  | 
|  | /* Retrieve object from cpu_freelist */ | 
|  | object = c->freelist; | 
|  | c->freelist = get_freepointer(s, c->freelist); | 
|  |  | 
|  | /* And put onto the regular freelist */ | 
|  | set_freepointer(s, object, page->freelist); | 
|  | page->freelist = object; | 
|  | page->inuse--; | 
|  | } | 
|  | c->page = NULL; | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | c->tid = next_tid(c->tid); | 
|  | #endif | 
|  | unfreeze_slab(s, page, tail); | 
|  | } | 
|  |  | 
|  | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
|  | { | 
|  | stat(s, CPUSLAB_FLUSH); | 
|  | slab_lock(c->page); | 
|  | deactivate_slab(s, c); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush cpu slab. | 
|  | * | 
|  | * Called from IPI handler with interrupts disabled. | 
|  | */ | 
|  | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
|  | { | 
|  | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  |  | 
|  | if (likely(c && c->page)) | 
|  | flush_slab(s, c); | 
|  | } | 
|  |  | 
|  | static void flush_cpu_slab(void *d) | 
|  | { | 
|  | struct kmem_cache *s = d; | 
|  |  | 
|  | __flush_cpu_slab(s, smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void flush_all(struct kmem_cache *s) | 
|  | { | 
|  | on_each_cpu(flush_cpu_slab, s, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if the objects in a per cpu structure fit numa | 
|  | * locality expectations. | 
|  | */ | 
|  | static inline int node_match(struct kmem_cache_cpu *c, int node) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | if (node != NUMA_NO_NODE && c->node != node) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int count_free(struct page *page) | 
|  | { | 
|  | return page->objects - page->inuse; | 
|  | } | 
|  |  | 
|  | static unsigned long count_partial(struct kmem_cache_node *n, | 
|  | int (*get_count)(struct page *)) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long x = 0; | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | x += get_count(page); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | return atomic_long_read(&n->total_objects); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | printk(KERN_WARNING | 
|  | "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", | 
|  | nid, gfpflags); | 
|  | printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, " | 
|  | "default order: %d, min order: %d\n", s->name, s->objsize, | 
|  | s->size, oo_order(s->oo), oo_order(s->min)); | 
|  |  | 
|  | if (oo_order(s->min) > get_order(s->objsize)) | 
|  | printk(KERN_WARNING "  %s debugging increased min order, use " | 
|  | "slub_debug=O to disable.\n", s->name); | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  | unsigned long nr_slabs; | 
|  | unsigned long nr_objs; | 
|  | unsigned long nr_free; | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | nr_free  = count_partial(n, count_free); | 
|  | nr_slabs = node_nr_slabs(n); | 
|  | nr_objs  = node_nr_objs(n); | 
|  |  | 
|  | printk(KERN_WARNING | 
|  | "  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
|  | node, nr_slabs, nr_objs, nr_free); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slow path. The lockless freelist is empty or we need to perform | 
|  | * debugging duties. | 
|  | * | 
|  | * Interrupts are disabled. | 
|  | * | 
|  | * Processing is still very fast if new objects have been freed to the | 
|  | * regular freelist. In that case we simply take over the regular freelist | 
|  | * as the lockless freelist and zap the regular freelist. | 
|  | * | 
|  | * If that is not working then we fall back to the partial lists. We take the | 
|  | * first element of the freelist as the object to allocate now and move the | 
|  | * rest of the freelist to the lockless freelist. | 
|  | * | 
|  | * And if we were unable to get a new slab from the partial slab lists then | 
|  | * we need to allocate a new slab. This is the slowest path since it involves | 
|  | * a call to the page allocator and the setup of a new slab. | 
|  | */ | 
|  | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
|  | unsigned long addr, struct kmem_cache_cpu *c) | 
|  | { | 
|  | void **object; | 
|  | struct page *new; | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * We may have been preempted and rescheduled on a different | 
|  | * cpu before disabling interrupts. Need to reload cpu area | 
|  | * pointer. | 
|  | */ | 
|  | c = this_cpu_ptr(s->cpu_slab); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* We handle __GFP_ZERO in the caller */ | 
|  | gfpflags &= ~__GFP_ZERO; | 
|  |  | 
|  | if (!c->page) | 
|  | goto new_slab; | 
|  |  | 
|  | slab_lock(c->page); | 
|  | if (unlikely(!node_match(c, node))) | 
|  | goto another_slab; | 
|  |  | 
|  | stat(s, ALLOC_REFILL); | 
|  |  | 
|  | load_freelist: | 
|  | object = c->page->freelist; | 
|  | if (unlikely(!object)) | 
|  | goto another_slab; | 
|  | if (kmem_cache_debug(s)) | 
|  | goto debug; | 
|  |  | 
|  | c->freelist = get_freepointer(s, object); | 
|  | c->page->inuse = c->page->objects; | 
|  | c->page->freelist = NULL; | 
|  | c->node = page_to_nid(c->page); | 
|  | unlock_out: | 
|  | slab_unlock(c->page); | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | c->tid = next_tid(c->tid); | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | stat(s, ALLOC_SLOWPATH); | 
|  | return object; | 
|  |  | 
|  | another_slab: | 
|  | deactivate_slab(s, c); | 
|  |  | 
|  | new_slab: | 
|  | new = get_partial(s, gfpflags, node); | 
|  | if (new) { | 
|  | c->page = new; | 
|  | stat(s, ALLOC_FROM_PARTIAL); | 
|  | goto load_freelist; | 
|  | } | 
|  |  | 
|  | gfpflags &= gfp_allowed_mask; | 
|  | if (gfpflags & __GFP_WAIT) | 
|  | local_irq_enable(); | 
|  |  | 
|  | new = new_slab(s, gfpflags, node); | 
|  |  | 
|  | if (gfpflags & __GFP_WAIT) | 
|  | local_irq_disable(); | 
|  |  | 
|  | if (new) { | 
|  | c = __this_cpu_ptr(s->cpu_slab); | 
|  | stat(s, ALLOC_SLAB); | 
|  | if (c->page) | 
|  | flush_slab(s, c); | 
|  | slab_lock(new); | 
|  | __SetPageSlubFrozen(new); | 
|  | c->page = new; | 
|  | goto load_freelist; | 
|  | } | 
|  | if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) | 
|  | slab_out_of_memory(s, gfpflags, node); | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | return NULL; | 
|  | debug: | 
|  | if (!alloc_debug_processing(s, c->page, object, addr)) | 
|  | goto another_slab; | 
|  |  | 
|  | c->page->inuse++; | 
|  | c->page->freelist = get_freepointer(s, object); | 
|  | c->node = NUMA_NO_NODE; | 
|  | goto unlock_out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
|  | * have the fastpath folded into their functions. So no function call | 
|  | * overhead for requests that can be satisfied on the fastpath. | 
|  | * | 
|  | * The fastpath works by first checking if the lockless freelist can be used. | 
|  | * If not then __slab_alloc is called for slow processing. | 
|  | * | 
|  | * Otherwise we can simply pick the next object from the lockless free list. | 
|  | */ | 
|  | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
|  | gfp_t gfpflags, int node, unsigned long addr) | 
|  | { | 
|  | void **object; | 
|  | struct kmem_cache_cpu *c; | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | unsigned long tid; | 
|  | #else | 
|  | unsigned long flags; | 
|  | #endif | 
|  |  | 
|  | if (slab_pre_alloc_hook(s, gfpflags)) | 
|  | return NULL; | 
|  |  | 
|  | #ifndef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_save(flags); | 
|  | #else | 
|  | redo: | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
|  | * enabled. We may switch back and forth between cpus while | 
|  | * reading from one cpu area. That does not matter as long | 
|  | * as we end up on the original cpu again when doing the cmpxchg. | 
|  | */ | 
|  | c = __this_cpu_ptr(s->cpu_slab); | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | /* | 
|  | * The transaction ids are globally unique per cpu and per operation on | 
|  | * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
|  | * occurs on the right processor and that there was no operation on the | 
|  | * linked list in between. | 
|  | */ | 
|  | tid = c->tid; | 
|  | barrier(); | 
|  | #endif | 
|  |  | 
|  | object = c->freelist; | 
|  | if (unlikely(!object || !node_match(c, node))) | 
|  |  | 
|  | object = __slab_alloc(s, gfpflags, node, addr, c); | 
|  |  | 
|  | else { | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | /* | 
|  | * The cmpxchg will only match if there was no additional | 
|  | * operation and if we are on the right processor. | 
|  | * | 
|  | * The cmpxchg does the following atomically (without lock semantics!) | 
|  | * 1. Relocate first pointer to the current per cpu area. | 
|  | * 2. Verify that tid and freelist have not been changed | 
|  | * 3. If they were not changed replace tid and freelist | 
|  | * | 
|  | * Since this is without lock semantics the protection is only against | 
|  | * code executing on this cpu *not* from access by other cpus. | 
|  | */ | 
|  | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | object, tid, | 
|  | get_freepointer(s, object), next_tid(tid)))) { | 
|  |  | 
|  | note_cmpxchg_failure("slab_alloc", s, tid); | 
|  | goto redo; | 
|  | } | 
|  | #else | 
|  | c->freelist = get_freepointer(s, object); | 
|  | #endif | 
|  | stat(s, ALLOC_FASTPATH); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  |  | 
|  | if (unlikely(gfpflags & __GFP_ZERO) && object) | 
|  | memset(object, 0, s->objsize); | 
|  |  | 
|  | slab_post_alloc_hook(s, gfpflags, object); | 
|  |  | 
|  | return object; | 
|  | } | 
|  |  | 
|  | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); | 
|  | trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
|  |  | 
|  | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | void *ret = kmalloc_order(size, flags, order); | 
|  | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmalloc_order_trace); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
|  | s->objsize, s->size, gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
|  | gfp_t gfpflags, | 
|  | int node, size_t size) | 
|  | { | 
|  | void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, | 
|  | size, s->size, gfpflags, node); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Slow patch handling. This may still be called frequently since objects | 
|  | * have a longer lifetime than the cpu slabs in most processing loads. | 
|  | * | 
|  | * So we still attempt to reduce cache line usage. Just take the slab | 
|  | * lock and free the item. If there is no additional partial page | 
|  | * handling required then we can return immediately. | 
|  | */ | 
|  | static void __slab_free(struct kmem_cache *s, struct page *page, | 
|  | void *x, unsigned long addr) | 
|  | { | 
|  | void *prior; | 
|  | void **object = (void *)x; | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | #endif | 
|  | slab_lock(page); | 
|  | stat(s, FREE_SLOWPATH); | 
|  |  | 
|  | if (kmem_cache_debug(s)) | 
|  | goto debug; | 
|  |  | 
|  | checks_ok: | 
|  | prior = page->freelist; | 
|  | set_freepointer(s, object, prior); | 
|  | page->freelist = object; | 
|  | page->inuse--; | 
|  |  | 
|  | if (unlikely(PageSlubFrozen(page))) { | 
|  | stat(s, FREE_FROZEN); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (unlikely(!page->inuse)) | 
|  | goto slab_empty; | 
|  |  | 
|  | /* | 
|  | * Objects left in the slab. If it was not on the partial list before | 
|  | * then add it. | 
|  | */ | 
|  | if (unlikely(!prior)) { | 
|  | add_partial(get_node(s, page_to_nid(page)), page, 1); | 
|  | stat(s, FREE_ADD_PARTIAL); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | slab_unlock(page); | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | return; | 
|  |  | 
|  | slab_empty: | 
|  | if (prior) { | 
|  | /* | 
|  | * Slab still on the partial list. | 
|  | */ | 
|  | remove_partial(s, page); | 
|  | stat(s, FREE_REMOVE_PARTIAL); | 
|  | } | 
|  | slab_unlock(page); | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | stat(s, FREE_SLAB); | 
|  | discard_slab(s, page); | 
|  | return; | 
|  |  | 
|  | debug: | 
|  | if (!free_debug_processing(s, page, x, addr)) | 
|  | goto out_unlock; | 
|  | goto checks_ok; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
|  | * can perform fastpath freeing without additional function calls. | 
|  | * | 
|  | * The fastpath is only possible if we are freeing to the current cpu slab | 
|  | * of this processor. This typically the case if we have just allocated | 
|  | * the item before. | 
|  | * | 
|  | * If fastpath is not possible then fall back to __slab_free where we deal | 
|  | * with all sorts of special processing. | 
|  | */ | 
|  | static __always_inline void slab_free(struct kmem_cache *s, | 
|  | struct page *page, void *x, unsigned long addr) | 
|  | { | 
|  | void **object = (void *)x; | 
|  | struct kmem_cache_cpu *c; | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | unsigned long tid; | 
|  | #else | 
|  | unsigned long flags; | 
|  | #endif | 
|  |  | 
|  | slab_free_hook(s, x); | 
|  |  | 
|  | #ifndef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_save(flags); | 
|  |  | 
|  | #else | 
|  | redo: | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine the currently cpus per cpu slab. | 
|  | * The cpu may change afterward. However that does not matter since | 
|  | * data is retrieved via this pointer. If we are on the same cpu | 
|  | * during the cmpxchg then the free will succedd. | 
|  | */ | 
|  | c = __this_cpu_ptr(s->cpu_slab); | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | tid = c->tid; | 
|  | barrier(); | 
|  | #endif | 
|  |  | 
|  | if (likely(page == c->page && c->node != NUMA_NO_NODE)) { | 
|  | set_freepointer(s, object, c->freelist); | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | if (unlikely(!this_cpu_cmpxchg_double( | 
|  | s->cpu_slab->freelist, s->cpu_slab->tid, | 
|  | c->freelist, tid, | 
|  | object, next_tid(tid)))) { | 
|  |  | 
|  | note_cmpxchg_failure("slab_free", s, tid); | 
|  | goto redo; | 
|  | } | 
|  | #else | 
|  | c->freelist = object; | 
|  | #endif | 
|  | stat(s, FREE_FASTPATH); | 
|  | } else | 
|  | __slab_free(s, page, x, addr); | 
|  |  | 
|  | #ifndef CONFIG_CMPXCHG_LOCAL | 
|  | local_irq_restore(flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void kmem_cache_free(struct kmem_cache *s, void *x) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = virt_to_head_page(x); | 
|  |  | 
|  | slab_free(s, page, x, _RET_IP_); | 
|  |  | 
|  | trace_kmem_cache_free(_RET_IP_, x); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_free); | 
|  |  | 
|  | /* | 
|  | * Object placement in a slab is made very easy because we always start at | 
|  | * offset 0. If we tune the size of the object to the alignment then we can | 
|  | * get the required alignment by putting one properly sized object after | 
|  | * another. | 
|  | * | 
|  | * Notice that the allocation order determines the sizes of the per cpu | 
|  | * caches. Each processor has always one slab available for allocations. | 
|  | * Increasing the allocation order reduces the number of times that slabs | 
|  | * must be moved on and off the partial lists and is therefore a factor in | 
|  | * locking overhead. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Mininum / Maximum order of slab pages. This influences locking overhead | 
|  | * and slab fragmentation. A higher order reduces the number of partial slabs | 
|  | * and increases the number of allocations possible without having to | 
|  | * take the list_lock. | 
|  | */ | 
|  | static int slub_min_order; | 
|  | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
|  | static int slub_min_objects; | 
|  |  | 
|  | /* | 
|  | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | * (Could be removed. This was introduced to pacify the merge skeptics.) | 
|  | */ | 
|  | static int slub_nomerge; | 
|  |  | 
|  | /* | 
|  | * Calculate the order of allocation given an slab object size. | 
|  | * | 
|  | * The order of allocation has significant impact on performance and other | 
|  | * system components. Generally order 0 allocations should be preferred since | 
|  | * order 0 does not cause fragmentation in the page allocator. Larger objects | 
|  | * be problematic to put into order 0 slabs because there may be too much | 
|  | * unused space left. We go to a higher order if more than 1/16th of the slab | 
|  | * would be wasted. | 
|  | * | 
|  | * In order to reach satisfactory performance we must ensure that a minimum | 
|  | * number of objects is in one slab. Otherwise we may generate too much | 
|  | * activity on the partial lists which requires taking the list_lock. This is | 
|  | * less a concern for large slabs though which are rarely used. | 
|  | * | 
|  | * slub_max_order specifies the order where we begin to stop considering the | 
|  | * number of objects in a slab as critical. If we reach slub_max_order then | 
|  | * we try to keep the page order as low as possible. So we accept more waste | 
|  | * of space in favor of a small page order. | 
|  | * | 
|  | * Higher order allocations also allow the placement of more objects in a | 
|  | * slab and thereby reduce object handling overhead. If the user has | 
|  | * requested a higher mininum order then we start with that one instead of | 
|  | * the smallest order which will fit the object. | 
|  | */ | 
|  | static inline int slab_order(int size, int min_objects, | 
|  | int max_order, int fract_leftover, int reserved) | 
|  | { | 
|  | int order; | 
|  | int rem; | 
|  | int min_order = slub_min_order; | 
|  |  | 
|  | if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) | 
|  | return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
|  |  | 
|  | for (order = max(min_order, | 
|  | fls(min_objects * size - 1) - PAGE_SHIFT); | 
|  | order <= max_order; order++) { | 
|  |  | 
|  | unsigned long slab_size = PAGE_SIZE << order; | 
|  |  | 
|  | if (slab_size < min_objects * size + reserved) | 
|  | continue; | 
|  |  | 
|  | rem = (slab_size - reserved) % size; | 
|  |  | 
|  | if (rem <= slab_size / fract_leftover) | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | return order; | 
|  | } | 
|  |  | 
|  | static inline int calculate_order(int size, int reserved) | 
|  | { | 
|  | int order; | 
|  | int min_objects; | 
|  | int fraction; | 
|  | int max_objects; | 
|  |  | 
|  | /* | 
|  | * Attempt to find best configuration for a slab. This | 
|  | * works by first attempting to generate a layout with | 
|  | * the best configuration and backing off gradually. | 
|  | * | 
|  | * First we reduce the acceptable waste in a slab. Then | 
|  | * we reduce the minimum objects required in a slab. | 
|  | */ | 
|  | min_objects = slub_min_objects; | 
|  | if (!min_objects) | 
|  | min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
|  | max_objects = order_objects(slub_max_order, size, reserved); | 
|  | min_objects = min(min_objects, max_objects); | 
|  |  | 
|  | while (min_objects > 1) { | 
|  | fraction = 16; | 
|  | while (fraction >= 4) { | 
|  | order = slab_order(size, min_objects, | 
|  | slub_max_order, fraction, reserved); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  | fraction /= 2; | 
|  | } | 
|  | min_objects--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We were unable to place multiple objects in a slab. Now | 
|  | * lets see if we can place a single object there. | 
|  | */ | 
|  | order = slab_order(size, 1, slub_max_order, 1, reserved); | 
|  | if (order <= slub_max_order) | 
|  | return order; | 
|  |  | 
|  | /* | 
|  | * Doh this slab cannot be placed using slub_max_order. | 
|  | */ | 
|  | order = slab_order(size, 1, MAX_ORDER, 1, reserved); | 
|  | if (order < MAX_ORDER) | 
|  | return order; | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out what the alignment of the objects will be. | 
|  | */ | 
|  | static unsigned long calculate_alignment(unsigned long flags, | 
|  | unsigned long align, unsigned long size) | 
|  | { | 
|  | /* | 
|  | * If the user wants hardware cache aligned objects then follow that | 
|  | * suggestion if the object is sufficiently large. | 
|  | * | 
|  | * The hardware cache alignment cannot override the specified | 
|  | * alignment though. If that is greater then use it. | 
|  | */ | 
|  | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | unsigned long ralign = cache_line_size(); | 
|  | while (size <= ralign / 2) | 
|  | ralign /= 2; | 
|  | align = max(align, ralign); | 
|  | } | 
|  |  | 
|  | if (align < ARCH_SLAB_MINALIGN) | 
|  | align = ARCH_SLAB_MINALIGN; | 
|  |  | 
|  | return ALIGN(align, sizeof(void *)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 
|  | { | 
|  | n->nr_partial = 0; | 
|  | spin_lock_init(&n->list_lock); | 
|  | INIT_LIST_HEAD(&n->partial); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | atomic_long_set(&n->nr_slabs, 0); | 
|  | atomic_long_set(&n->total_objects, 0); | 
|  | INIT_LIST_HEAD(&n->full); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
|  | { | 
|  | BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
|  | SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); | 
|  |  | 
|  | #ifdef CONFIG_CMPXCHG_LOCAL | 
|  | /* | 
|  | * Must align to double word boundary for the double cmpxchg instructions | 
|  | * to work. | 
|  | */ | 
|  | s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *)); | 
|  | #else | 
|  | /* Regular alignment is sufficient */ | 
|  | s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); | 
|  | #endif | 
|  |  | 
|  | if (!s->cpu_slab) | 
|  | return 0; | 
|  |  | 
|  | init_kmem_cache_cpus(s); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *kmem_cache_node; | 
|  |  | 
|  | /* | 
|  | * No kmalloc_node yet so do it by hand. We know that this is the first | 
|  | * slab on the node for this slabcache. There are no concurrent accesses | 
|  | * possible. | 
|  | * | 
|  | * Note that this function only works on the kmalloc_node_cache | 
|  | * when allocating for the kmalloc_node_cache. This is used for bootstrapping | 
|  | * memory on a fresh node that has no slab structures yet. | 
|  | */ | 
|  | static void early_kmem_cache_node_alloc(int node) | 
|  | { | 
|  | struct page *page; | 
|  | struct kmem_cache_node *n; | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
|  |  | 
|  | page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
|  |  | 
|  | BUG_ON(!page); | 
|  | if (page_to_nid(page) != node) { | 
|  | printk(KERN_ERR "SLUB: Unable to allocate memory from " | 
|  | "node %d\n", node); | 
|  | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | 
|  | "in order to be able to continue\n"); | 
|  | } | 
|  |  | 
|  | n = page->freelist; | 
|  | BUG_ON(!n); | 
|  | page->freelist = get_freepointer(kmem_cache_node, n); | 
|  | page->inuse++; | 
|  | kmem_cache_node->node[node] = n; | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
|  | init_tracking(kmem_cache_node, n); | 
|  | #endif | 
|  | init_kmem_cache_node(n, kmem_cache_node); | 
|  | inc_slabs_node(kmem_cache_node, node, page->objects); | 
|  |  | 
|  | /* | 
|  | * lockdep requires consistent irq usage for each lock | 
|  | * so even though there cannot be a race this early in | 
|  | * the boot sequence, we still disable irqs. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | add_partial(n, page, 0); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = s->node[node]; | 
|  |  | 
|  | if (n) | 
|  | kmem_cache_free(kmem_cache_node, n); | 
|  |  | 
|  | s->node[node] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n; | 
|  |  | 
|  | if (slab_state == DOWN) { | 
|  | early_kmem_cache_node_alloc(node); | 
|  | continue; | 
|  | } | 
|  | n = kmem_cache_alloc_node(kmem_cache_node, | 
|  | GFP_KERNEL, node); | 
|  |  | 
|  | if (!n) { | 
|  | free_kmem_cache_nodes(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s->node[node] = n; | 
|  | init_kmem_cache_node(n, s); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
|  | { | 
|  | if (min < MIN_PARTIAL) | 
|  | min = MIN_PARTIAL; | 
|  | else if (min > MAX_PARTIAL) | 
|  | min = MAX_PARTIAL; | 
|  | s->min_partial = min; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate_sizes() determines the order and the distribution of data within | 
|  | * a slab object. | 
|  | */ | 
|  | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
|  | { | 
|  | unsigned long flags = s->flags; | 
|  | unsigned long size = s->objsize; | 
|  | unsigned long align = s->align; | 
|  | int order; | 
|  |  | 
|  | /* | 
|  | * Round up object size to the next word boundary. We can only | 
|  | * place the free pointer at word boundaries and this determines | 
|  | * the possible location of the free pointer. | 
|  | */ | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | /* | 
|  | * Determine if we can poison the object itself. If the user of | 
|  | * the slab may touch the object after free or before allocation | 
|  | * then we should never poison the object itself. | 
|  | */ | 
|  | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 
|  | !s->ctor) | 
|  | s->flags |= __OBJECT_POISON; | 
|  | else | 
|  | s->flags &= ~__OBJECT_POISON; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If we are Redzoning then check if there is some space between the | 
|  | * end of the object and the free pointer. If not then add an | 
|  | * additional word to have some bytes to store Redzone information. | 
|  | */ | 
|  | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 
|  | size += sizeof(void *); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * With that we have determined the number of bytes in actual use | 
|  | * by the object. This is the potential offset to the free pointer. | 
|  | */ | 
|  | s->inuse = size; | 
|  |  | 
|  | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 
|  | s->ctor)) { | 
|  | /* | 
|  | * Relocate free pointer after the object if it is not | 
|  | * permitted to overwrite the first word of the object on | 
|  | * kmem_cache_free. | 
|  | * | 
|  | * This is the case if we do RCU, have a constructor or | 
|  | * destructor or are poisoning the objects. | 
|  | */ | 
|  | s->offset = size; | 
|  | size += sizeof(void *); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SLAB_STORE_USER) | 
|  | /* | 
|  | * Need to store information about allocs and frees after | 
|  | * the object. | 
|  | */ | 
|  | size += 2 * sizeof(struct track); | 
|  |  | 
|  | if (flags & SLAB_RED_ZONE) | 
|  | /* | 
|  | * Add some empty padding so that we can catch | 
|  | * overwrites from earlier objects rather than let | 
|  | * tracking information or the free pointer be | 
|  | * corrupted if a user writes before the start | 
|  | * of the object. | 
|  | */ | 
|  | size += sizeof(void *); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Determine the alignment based on various parameters that the | 
|  | * user specified and the dynamic determination of cache line size | 
|  | * on bootup. | 
|  | */ | 
|  | align = calculate_alignment(flags, align, s->objsize); | 
|  | s->align = align; | 
|  |  | 
|  | /* | 
|  | * SLUB stores one object immediately after another beginning from | 
|  | * offset 0. In order to align the objects we have to simply size | 
|  | * each object to conform to the alignment. | 
|  | */ | 
|  | size = ALIGN(size, align); | 
|  | s->size = size; | 
|  | if (forced_order >= 0) | 
|  | order = forced_order; | 
|  | else | 
|  | order = calculate_order(size, s->reserved); | 
|  |  | 
|  | if (order < 0) | 
|  | return 0; | 
|  |  | 
|  | s->allocflags = 0; | 
|  | if (order) | 
|  | s->allocflags |= __GFP_COMP; | 
|  |  | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | s->allocflags |= SLUB_DMA; | 
|  |  | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | s->allocflags |= __GFP_RECLAIMABLE; | 
|  |  | 
|  | /* | 
|  | * Determine the number of objects per slab | 
|  | */ | 
|  | s->oo = oo_make(order, size, s->reserved); | 
|  | s->min = oo_make(get_order(size), size, s->reserved); | 
|  | if (oo_objects(s->oo) > oo_objects(s->max)) | 
|  | s->max = s->oo; | 
|  |  | 
|  | return !!oo_objects(s->oo); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int kmem_cache_open(struct kmem_cache *s, | 
|  | const char *name, size_t size, | 
|  | size_t align, unsigned long flags, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | memset(s, 0, kmem_size); | 
|  | s->name = name; | 
|  | s->ctor = ctor; | 
|  | s->objsize = size; | 
|  | s->align = align; | 
|  | s->flags = kmem_cache_flags(size, flags, name, ctor); | 
|  | s->reserved = 0; | 
|  |  | 
|  | if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) | 
|  | s->reserved = sizeof(struct rcu_head); | 
|  |  | 
|  | if (!calculate_sizes(s, -1)) | 
|  | goto error; | 
|  | if (disable_higher_order_debug) { | 
|  | /* | 
|  | * Disable debugging flags that store metadata if the min slab | 
|  | * order increased. | 
|  | */ | 
|  | if (get_order(s->size) > get_order(s->objsize)) { | 
|  | s->flags &= ~DEBUG_METADATA_FLAGS; | 
|  | s->offset = 0; | 
|  | if (!calculate_sizes(s, -1)) | 
|  | goto error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The larger the object size is, the more pages we want on the partial | 
|  | * list to avoid pounding the page allocator excessively. | 
|  | */ | 
|  | set_min_partial(s, ilog2(s->size)); | 
|  | s->refcount = 1; | 
|  | #ifdef CONFIG_NUMA | 
|  | s->remote_node_defrag_ratio = 1000; | 
|  | #endif | 
|  | if (!init_kmem_cache_nodes(s)) | 
|  | goto error; | 
|  |  | 
|  | if (alloc_kmem_cache_cpus(s)) | 
|  | return 1; | 
|  |  | 
|  | free_kmem_cache_nodes(s); | 
|  | error: | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("Cannot create slab %s size=%lu realsize=%u " | 
|  | "order=%u offset=%u flags=%lx\n", | 
|  | s->name, (unsigned long)size, s->size, oo_order(s->oo), | 
|  | s->offset, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the size of a slab object | 
|  | */ | 
|  | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | { | 
|  | return s->objsize; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_size); | 
|  |  | 
|  | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
|  | const char *text) | 
|  | { | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | void *addr = page_address(page); | 
|  | void *p; | 
|  | unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * | 
|  | sizeof(long), GFP_ATOMIC); | 
|  | if (!map) | 
|  | return; | 
|  | slab_err(s, page, "%s", text); | 
|  | slab_lock(page); | 
|  | for_each_free_object(p, s, page->freelist) | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  |  | 
|  | for_each_object(p, s, addr, page->objects) { | 
|  |  | 
|  | if (!test_bit(slab_index(p, s, addr), map)) { | 
|  | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | 
|  | p, p - addr); | 
|  | print_tracking(s, p); | 
|  | } | 
|  | } | 
|  | slab_unlock(page); | 
|  | kfree(map); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to free all partial slabs on a node. | 
|  | */ | 
|  | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct page *page, *h; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry_safe(page, h, &n->partial, lru) { | 
|  | if (!page->inuse) { | 
|  | __remove_partial(n, page); | 
|  | discard_slab(s, page); | 
|  | } else { | 
|  | list_slab_objects(s, page, | 
|  | "Objects remaining on kmem_cache_close()"); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release all resources used by a slab cache. | 
|  | */ | 
|  | static inline int kmem_cache_close(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | flush_all(s); | 
|  | free_percpu(s->cpu_slab); | 
|  | /* Attempt to free all objects */ | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | free_partial(s, n); | 
|  | if (n->nr_partial || slabs_node(s, node)) | 
|  | return 1; | 
|  | } | 
|  | free_kmem_cache_nodes(s); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close a cache and release the kmem_cache structure | 
|  | * (must be used for caches created using kmem_cache_create) | 
|  | */ | 
|  | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | { | 
|  | down_write(&slub_lock); | 
|  | s->refcount--; | 
|  | if (!s->refcount) { | 
|  | list_del(&s->list); | 
|  | if (kmem_cache_close(s)) { | 
|  | printk(KERN_ERR "SLUB %s: %s called for cache that " | 
|  | "still has objects.\n", s->name, __func__); | 
|  | dump_stack(); | 
|  | } | 
|  | if (s->flags & SLAB_DESTROY_BY_RCU) | 
|  | rcu_barrier(); | 
|  | sysfs_slab_remove(s); | 
|  | } | 
|  | up_write(&slub_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  |  | 
|  | /******************************************************************** | 
|  | *		Kmalloc subsystem | 
|  | *******************************************************************/ | 
|  |  | 
|  | struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; | 
|  | EXPORT_SYMBOL(kmalloc_caches); | 
|  |  | 
|  | static struct kmem_cache *kmem_cache; | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; | 
|  | #endif | 
|  |  | 
|  | static int __init setup_slub_min_order(char *str) | 
|  | { | 
|  | get_option(&str, &slub_min_order); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_order=", setup_slub_min_order); | 
|  |  | 
|  | static int __init setup_slub_max_order(char *str) | 
|  | { | 
|  | get_option(&str, &slub_max_order); | 
|  | slub_max_order = min(slub_max_order, MAX_ORDER - 1); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_max_order=", setup_slub_max_order); | 
|  |  | 
|  | static int __init setup_slub_min_objects(char *str) | 
|  | { | 
|  | get_option(&str, &slub_min_objects); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_min_objects=", setup_slub_min_objects); | 
|  |  | 
|  | static int __init setup_slub_nomerge(char *str) | 
|  | { | 
|  | slub_nomerge = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("slub_nomerge", setup_slub_nomerge); | 
|  |  | 
|  | static struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
|  | int size, unsigned int flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
|  |  | 
|  | /* | 
|  | * This function is called with IRQs disabled during early-boot on | 
|  | * single CPU so there's no need to take slub_lock here. | 
|  | */ | 
|  | if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, | 
|  | flags, NULL)) | 
|  | goto panic; | 
|  |  | 
|  | list_add(&s->list, &slab_caches); | 
|  | return s; | 
|  |  | 
|  | panic: | 
|  | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | * fls. | 
|  | */ | 
|  | static s8 size_index[24] = { | 
|  | 3,	/* 8 */ | 
|  | 4,	/* 16 */ | 
|  | 5,	/* 24 */ | 
|  | 5,	/* 32 */ | 
|  | 6,	/* 40 */ | 
|  | 6,	/* 48 */ | 
|  | 6,	/* 56 */ | 
|  | 6,	/* 64 */ | 
|  | 1,	/* 72 */ | 
|  | 1,	/* 80 */ | 
|  | 1,	/* 88 */ | 
|  | 1,	/* 96 */ | 
|  | 7,	/* 104 */ | 
|  | 7,	/* 112 */ | 
|  | 7,	/* 120 */ | 
|  | 7,	/* 128 */ | 
|  | 2,	/* 136 */ | 
|  | 2,	/* 144 */ | 
|  | 2,	/* 152 */ | 
|  | 2,	/* 160 */ | 
|  | 2,	/* 168 */ | 
|  | 2,	/* 176 */ | 
|  | 2,	/* 184 */ | 
|  | 2	/* 192 */ | 
|  | }; | 
|  |  | 
|  | static inline int size_index_elem(size_t bytes) | 
|  | { | 
|  | return (bytes - 1) / 8; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | if (size <= 192) { | 
|  | if (!size) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | index = size_index[size_index_elem(size)]; | 
|  | } else | 
|  | index = fls(size - 1); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (unlikely((flags & SLUB_DMA))) | 
|  | return kmalloc_dma_caches[index]; | 
|  |  | 
|  | #endif | 
|  | return kmalloc_caches[index]; | 
|  | } | 
|  |  | 
|  | void *__kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > SLUB_MAX_SIZE)) | 
|  | return kmalloc_large(size, flags); | 
|  |  | 
|  | s = get_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | struct page *page; | 
|  | void *ptr = NULL; | 
|  |  | 
|  | flags |= __GFP_COMP | __GFP_NOTRACK; | 
|  | page = alloc_pages_node(node, flags, get_order(size)); | 
|  | if (page) | 
|  | ptr = page_address(page); | 
|  |  | 
|  | kmemleak_alloc(ptr, size, 1, flags); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > SLUB_MAX_SIZE)) { | 
|  | ret = kmalloc_large_node(size, flags, node); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, | 
|  | size, PAGE_SIZE << get_order(size), | 
|  | flags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | s = get_slab(size, flags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, flags, node, _RET_IP_); | 
|  |  | 
|  | trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__kmalloc_node); | 
|  | #endif | 
|  |  | 
|  | size_t ksize(const void *object) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | if (unlikely(object == ZERO_SIZE_PTR)) | 
|  | return 0; | 
|  |  | 
|  | page = virt_to_head_page(object); | 
|  |  | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | WARN_ON(!PageCompound(page)); | 
|  | return PAGE_SIZE << compound_order(page); | 
|  | } | 
|  |  | 
|  | return slab_ksize(page->slab); | 
|  | } | 
|  | EXPORT_SYMBOL(ksize); | 
|  |  | 
|  | void kfree(const void *x) | 
|  | { | 
|  | struct page *page; | 
|  | void *object = (void *)x; | 
|  |  | 
|  | trace_kfree(_RET_IP_, x); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(x))) | 
|  | return; | 
|  |  | 
|  | page = virt_to_head_page(x); | 
|  | if (unlikely(!PageSlab(page))) { | 
|  | BUG_ON(!PageCompound(page)); | 
|  | kmemleak_free(x); | 
|  | put_page(page); | 
|  | return; | 
|  | } | 
|  | slab_free(page->slab, page, object, _RET_IP_); | 
|  | } | 
|  | EXPORT_SYMBOL(kfree); | 
|  |  | 
|  | /* | 
|  | * kmem_cache_shrink removes empty slabs from the partial lists and sorts | 
|  | * the remaining slabs by the number of items in use. The slabs with the | 
|  | * most items in use come first. New allocations will then fill those up | 
|  | * and thus they can be removed from the partial lists. | 
|  | * | 
|  | * The slabs with the least items are placed last. This results in them | 
|  | * being allocated from last increasing the chance that the last objects | 
|  | * are freed in them. | 
|  | */ | 
|  | int kmem_cache_shrink(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | int i; | 
|  | struct kmem_cache_node *n; | 
|  | struct page *page; | 
|  | struct page *t; | 
|  | int objects = oo_objects(s->max); | 
|  | struct list_head *slabs_by_inuse = | 
|  | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!slabs_by_inuse) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | n = get_node(s, node); | 
|  |  | 
|  | if (!n->nr_partial) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < objects; i++) | 
|  | INIT_LIST_HEAD(slabs_by_inuse + i); | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Build lists indexed by the items in use in each slab. | 
|  | * | 
|  | * Note that concurrent frees may occur while we hold the | 
|  | * list_lock. page->inuse here is the upper limit. | 
|  | */ | 
|  | list_for_each_entry_safe(page, t, &n->partial, lru) { | 
|  | if (!page->inuse && slab_trylock(page)) { | 
|  | /* | 
|  | * Must hold slab lock here because slab_free | 
|  | * may have freed the last object and be | 
|  | * waiting to release the slab. | 
|  | */ | 
|  | __remove_partial(n, page); | 
|  | slab_unlock(page); | 
|  | discard_slab(s, page); | 
|  | } else { | 
|  | list_move(&page->lru, | 
|  | slabs_by_inuse + page->inuse); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild the partial list with the slabs filled up most | 
|  | * first and the least used slabs at the end. | 
|  | */ | 
|  | for (i = objects - 1; i >= 0; i--) | 
|  | list_splice(slabs_by_inuse + i, n->partial.prev); | 
|  |  | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | kfree(slabs_by_inuse); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  |  | 
|  | #if defined(CONFIG_MEMORY_HOTPLUG) | 
|  | static int slab_mem_going_offline_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) | 
|  | kmem_cache_shrink(s); | 
|  | up_read(&slub_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void slab_mem_offline_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | struct kmem_cache *s; | 
|  | struct memory_notify *marg = arg; | 
|  | int offline_node; | 
|  |  | 
|  | offline_node = marg->status_change_nid; | 
|  |  | 
|  | /* | 
|  | * If the node still has available memory. we need kmem_cache_node | 
|  | * for it yet. | 
|  | */ | 
|  | if (offline_node < 0) | 
|  | return; | 
|  |  | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | n = get_node(s, offline_node); | 
|  | if (n) { | 
|  | /* | 
|  | * if n->nr_slabs > 0, slabs still exist on the node | 
|  | * that is going down. We were unable to free them, | 
|  | * and offline_pages() function shouldn't call this | 
|  | * callback. So, we must fail. | 
|  | */ | 
|  | BUG_ON(slabs_node(s, offline_node)); | 
|  |  | 
|  | s->node[offline_node] = NULL; | 
|  | kmem_cache_free(kmem_cache_node, n); | 
|  | } | 
|  | } | 
|  | up_read(&slub_lock); | 
|  | } | 
|  |  | 
|  | static int slab_mem_going_online_callback(void *arg) | 
|  | { | 
|  | struct kmem_cache_node *n; | 
|  | struct kmem_cache *s; | 
|  | struct memory_notify *marg = arg; | 
|  | int nid = marg->status_change_nid; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If the node's memory is already available, then kmem_cache_node is | 
|  | * already created. Nothing to do. | 
|  | */ | 
|  | if (nid < 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * We are bringing a node online. No memory is available yet. We must | 
|  | * allocate a kmem_cache_node structure in order to bring the node | 
|  | * online. | 
|  | */ | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | /* | 
|  | * XXX: kmem_cache_alloc_node will fallback to other nodes | 
|  | *      since memory is not yet available from the node that | 
|  | *      is brought up. | 
|  | */ | 
|  | n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
|  | if (!n) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | init_kmem_cache_node(n, s); | 
|  | s->node[nid] = n; | 
|  | } | 
|  | out: | 
|  | up_read(&slub_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int slab_memory_callback(struct notifier_block *self, | 
|  | unsigned long action, void *arg) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case MEM_GOING_ONLINE: | 
|  | ret = slab_mem_going_online_callback(arg); | 
|  | break; | 
|  | case MEM_GOING_OFFLINE: | 
|  | ret = slab_mem_going_offline_callback(arg); | 
|  | break; | 
|  | case MEM_OFFLINE: | 
|  | case MEM_CANCEL_ONLINE: | 
|  | slab_mem_offline_callback(arg); | 
|  | break; | 
|  | case MEM_ONLINE: | 
|  | case MEM_CANCEL_OFFLINE: | 
|  | break; | 
|  | } | 
|  | if (ret) | 
|  | ret = notifier_from_errno(ret); | 
|  | else | 
|  | ret = NOTIFY_OK; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | /******************************************************************** | 
|  | *			Basic setup of slabs | 
|  | *******************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Used for early kmem_cache structures that were allocated using | 
|  | * the page allocator | 
|  | */ | 
|  |  | 
|  | static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | list_add(&s->list, &slab_caches); | 
|  | s->refcount = -1; | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  | struct page *p; | 
|  |  | 
|  | if (n) { | 
|  | list_for_each_entry(p, &n->partial, lru) | 
|  | p->slab = s; | 
|  |  | 
|  | #ifdef CONFIG_SLAB_DEBUG | 
|  | list_for_each_entry(p, &n->full, lru) | 
|  | p->slab = s; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init(void) | 
|  | { | 
|  | int i; | 
|  | int caches = 0; | 
|  | struct kmem_cache *temp_kmem_cache; | 
|  | int order; | 
|  | struct kmem_cache *temp_kmem_cache_node; | 
|  | unsigned long kmalloc_size; | 
|  |  | 
|  | kmem_size = offsetof(struct kmem_cache, node) + | 
|  | nr_node_ids * sizeof(struct kmem_cache_node *); | 
|  |  | 
|  | /* Allocate two kmem_caches from the page allocator */ | 
|  | kmalloc_size = ALIGN(kmem_size, cache_line_size()); | 
|  | order = get_order(2 * kmalloc_size); | 
|  | kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); | 
|  |  | 
|  | /* | 
|  | * Must first have the slab cache available for the allocations of the | 
|  | * struct kmem_cache_node's. There is special bootstrap code in | 
|  | * kmem_cache_open for slab_state == DOWN. | 
|  | */ | 
|  | kmem_cache_node = (void *)kmem_cache + kmalloc_size; | 
|  |  | 
|  | kmem_cache_open(kmem_cache_node, "kmem_cache_node", | 
|  | sizeof(struct kmem_cache_node), | 
|  | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
|  |  | 
|  | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 
|  |  | 
|  | /* Able to allocate the per node structures */ | 
|  | slab_state = PARTIAL; | 
|  |  | 
|  | temp_kmem_cache = kmem_cache; | 
|  | kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, | 
|  | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
|  | kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
|  | memcpy(kmem_cache, temp_kmem_cache, kmem_size); | 
|  |  | 
|  | /* | 
|  | * Allocate kmem_cache_node properly from the kmem_cache slab. | 
|  | * kmem_cache_node is separately allocated so no need to | 
|  | * update any list pointers. | 
|  | */ | 
|  | temp_kmem_cache_node = kmem_cache_node; | 
|  |  | 
|  | kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); | 
|  | memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); | 
|  |  | 
|  | kmem_cache_bootstrap_fixup(kmem_cache_node); | 
|  |  | 
|  | caches++; | 
|  | kmem_cache_bootstrap_fixup(kmem_cache); | 
|  | caches++; | 
|  | /* Free temporary boot structure */ | 
|  | free_pages((unsigned long)temp_kmem_cache, order); | 
|  |  | 
|  | /* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
|  |  | 
|  | /* | 
|  | * Patch up the size_index table if we have strange large alignment | 
|  | * requirements for the kmalloc array. This is only the case for | 
|  | * MIPS it seems. The standard arches will not generate any code here. | 
|  | * | 
|  | * Largest permitted alignment is 256 bytes due to the way we | 
|  | * handle the index determination for the smaller caches. | 
|  | * | 
|  | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | * around with ARCH_KMALLOC_MINALIGN | 
|  | */ | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
|  |  | 
|  | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
|  | int elem = size_index_elem(i); | 
|  | if (elem >= ARRAY_SIZE(size_index)) | 
|  | break; | 
|  | size_index[elem] = KMALLOC_SHIFT_LOW; | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE == 64) { | 
|  | /* | 
|  | * The 96 byte size cache is not used if the alignment | 
|  | * is 64 byte. | 
|  | */ | 
|  | for (i = 64 + 8; i <= 96; i += 8) | 
|  | size_index[size_index_elem(i)] = 7; | 
|  | } else if (KMALLOC_MIN_SIZE == 128) { | 
|  | /* | 
|  | * The 192 byte sized cache is not used if the alignment | 
|  | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
|  | * instead. | 
|  | */ | 
|  | for (i = 128 + 8; i <= 192; i += 8) | 
|  | size_index[size_index_elem(i)] = 8; | 
|  | } | 
|  |  | 
|  | /* Caches that are not of the two-to-the-power-of size */ | 
|  | if (KMALLOC_MIN_SIZE <= 32) { | 
|  | kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); | 
|  | caches++; | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE <= 64) { | 
|  | kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); | 
|  | caches++; | 
|  | } | 
|  |  | 
|  | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | 
|  | kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); | 
|  | caches++; | 
|  | } | 
|  |  | 
|  | slab_state = UP; | 
|  |  | 
|  | /* Provide the correct kmalloc names now that the caches are up */ | 
|  | if (KMALLOC_MIN_SIZE <= 32) { | 
|  | kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); | 
|  | BUG_ON(!kmalloc_caches[1]->name); | 
|  | } | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE <= 64) { | 
|  | kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); | 
|  | BUG_ON(!kmalloc_caches[2]->name); | 
|  | } | 
|  |  | 
|  | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { | 
|  | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | 
|  |  | 
|  | BUG_ON(!s); | 
|  | kmalloc_caches[i]->name = s; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | register_cpu_notifier(&slab_notifier); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | for (i = 0; i < SLUB_PAGE_SHIFT; i++) { | 
|  | struct kmem_cache *s = kmalloc_caches[i]; | 
|  |  | 
|  | if (s && s->size) { | 
|  | char *name = kasprintf(GFP_NOWAIT, | 
|  | "dma-kmalloc-%d", s->objsize); | 
|  |  | 
|  | BUG_ON(!name); | 
|  | kmalloc_dma_caches[i] = create_kmalloc_cache(name, | 
|  | s->objsize, SLAB_CACHE_DMA); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | printk(KERN_INFO | 
|  | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 
|  | " CPUs=%d, Nodes=%d\n", | 
|  | caches, cache_line_size(), | 
|  | slub_min_order, slub_max_order, slub_min_objects, | 
|  | nr_cpu_ids, nr_node_ids); | 
|  | } | 
|  |  | 
|  | void __init kmem_cache_init_late(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a mergeable slab cache | 
|  | */ | 
|  | static int slab_unmergeable(struct kmem_cache *s) | 
|  | { | 
|  | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 
|  | return 1; | 
|  |  | 
|  | if (s->ctor) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We may have set a slab to be unmergeable during bootstrap. | 
|  | */ | 
|  | if (s->refcount < 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct kmem_cache *find_mergeable(size_t size, | 
|  | size_t align, unsigned long flags, const char *name, | 
|  | void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  |  | 
|  | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 
|  | return NULL; | 
|  |  | 
|  | if (ctor) | 
|  | return NULL; | 
|  |  | 
|  | size = ALIGN(size, sizeof(void *)); | 
|  | align = calculate_alignment(flags, align, size); | 
|  | size = ALIGN(size, align); | 
|  | flags = kmem_cache_flags(size, flags, name, NULL); | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | if (slab_unmergeable(s)) | 
|  | continue; | 
|  |  | 
|  | if (size > s->size) | 
|  | continue; | 
|  |  | 
|  | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) | 
|  | continue; | 
|  | /* | 
|  | * Check if alignment is compatible. | 
|  | * Courtesy of Adrian Drzewiecki | 
|  | */ | 
|  | if ((s->size & ~(align - 1)) != s->size) | 
|  | continue; | 
|  |  | 
|  | if (s->size - size >= sizeof(void *)) | 
|  | continue; | 
|  |  | 
|  | return s; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
|  | size_t align, unsigned long flags, void (*ctor)(void *)) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | char *n; | 
|  |  | 
|  | if (WARN_ON(!name)) | 
|  | return NULL; | 
|  |  | 
|  | down_write(&slub_lock); | 
|  | s = find_mergeable(size, align, flags, name, ctor); | 
|  | if (s) { | 
|  | s->refcount++; | 
|  | /* | 
|  | * Adjust the object sizes so that we clear | 
|  | * the complete object on kzalloc. | 
|  | */ | 
|  | s->objsize = max(s->objsize, (int)size); | 
|  | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 
|  |  | 
|  | if (sysfs_slab_alias(s, name)) { | 
|  | s->refcount--; | 
|  | goto err; | 
|  | } | 
|  | up_write(&slub_lock); | 
|  | return s; | 
|  | } | 
|  |  | 
|  | n = kstrdup(name, GFP_KERNEL); | 
|  | if (!n) | 
|  | goto err; | 
|  |  | 
|  | s = kmalloc(kmem_size, GFP_KERNEL); | 
|  | if (s) { | 
|  | if (kmem_cache_open(s, n, | 
|  | size, align, flags, ctor)) { | 
|  | list_add(&s->list, &slab_caches); | 
|  | if (sysfs_slab_add(s)) { | 
|  | list_del(&s->list); | 
|  | kfree(n); | 
|  | kfree(s); | 
|  | goto err; | 
|  | } | 
|  | up_write(&slub_lock); | 
|  | return s; | 
|  | } | 
|  | kfree(n); | 
|  | kfree(s); | 
|  | } | 
|  | err: | 
|  | up_write(&slub_lock); | 
|  |  | 
|  | if (flags & SLAB_PANIC) | 
|  | panic("Cannot create slabcache %s\n", name); | 
|  | else | 
|  | s = NULL; | 
|  | return s; | 
|  | } | 
|  | EXPORT_SYMBOL(kmem_cache_create); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Use the cpu notifier to insure that the cpu slabs are flushed when | 
|  | * necessary. | 
|  | */ | 
|  | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | long cpu = (long)hcpu; | 
|  | struct kmem_cache *s; | 
|  | unsigned long flags; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | down_read(&slub_lock); | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | local_irq_save(flags); | 
|  | __flush_cpu_slab(s, cpu); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | up_read(&slub_lock); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata slab_notifier = { | 
|  | .notifier_call = slab_cpuup_callback | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > SLUB_MAX_SIZE)) | 
|  | return kmalloc_large(size, gfpflags); | 
|  |  | 
|  | s = get_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); | 
|  |  | 
|  | /* Honor the call site pointer we received. */ | 
|  | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
|  | int node, unsigned long caller) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | void *ret; | 
|  |  | 
|  | if (unlikely(size > SLUB_MAX_SIZE)) { | 
|  | ret = kmalloc_large_node(size, gfpflags, node); | 
|  |  | 
|  | trace_kmalloc_node(caller, ret, | 
|  | size, PAGE_SIZE << get_order(size), | 
|  | gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | s = get_slab(size, gfpflags); | 
|  |  | 
|  | if (unlikely(ZERO_OR_NULL_PTR(s))) | 
|  | return s; | 
|  |  | 
|  | ret = slab_alloc(s, gfpflags, node, caller); | 
|  |  | 
|  | /* Honor the call site pointer we received. */ | 
|  | trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | static int count_inuse(struct page *page) | 
|  | { | 
|  | return page->inuse; | 
|  | } | 
|  |  | 
|  | static int count_total(struct page *page) | 
|  | { | 
|  | return page->objects; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static int validate_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | void *p; | 
|  | void *addr = page_address(page); | 
|  |  | 
|  | if (!check_slab(s, page) || | 
|  | !on_freelist(s, page, NULL)) | 
|  | return 0; | 
|  |  | 
|  | /* Now we know that a valid freelist exists */ | 
|  | bitmap_zero(map, page->objects); | 
|  |  | 
|  | for_each_free_object(p, s, page->freelist) { | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  | if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for_each_object(p, s, addr, page->objects) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | if (!check_object(s, page, p, SLUB_RED_ACTIVE)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
|  | unsigned long *map) | 
|  | { | 
|  | if (slab_trylock(page)) { | 
|  | validate_slab(s, page, map); | 
|  | slab_unlock(page); | 
|  | } else | 
|  | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 
|  | s->name, page); | 
|  | } | 
|  |  | 
|  | static int validate_slab_node(struct kmem_cache *s, | 
|  | struct kmem_cache_node *n, unsigned long *map) | 
|  | { | 
|  | unsigned long count = 0; | 
|  | struct page *page; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(page, &n->partial, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != n->nr_partial) | 
|  | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 
|  | "counter=%ld\n", s->name, count, n->nr_partial); | 
|  |  | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(page, &n->full, lru) { | 
|  | validate_slab_slab(s, page, map); | 
|  | count++; | 
|  | } | 
|  | if (count != atomic_long_read(&n->nr_slabs)) | 
|  | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 
|  | "counter=%ld\n", s->name, count, | 
|  | atomic_long_read(&n->nr_slabs)); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static long validate_slab_cache(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  | unsigned long count = 0; | 
|  | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 
|  | sizeof(unsigned long), GFP_KERNEL); | 
|  |  | 
|  | if (!map) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flush_all(s); | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | count += validate_slab_node(s, n, map); | 
|  | } | 
|  | kfree(map); | 
|  | return count; | 
|  | } | 
|  | /* | 
|  | * Generate lists of code addresses where slabcache objects are allocated | 
|  | * and freed. | 
|  | */ | 
|  |  | 
|  | struct location { | 
|  | unsigned long count; | 
|  | unsigned long addr; | 
|  | long long sum_time; | 
|  | long min_time; | 
|  | long max_time; | 
|  | long min_pid; | 
|  | long max_pid; | 
|  | DECLARE_BITMAP(cpus, NR_CPUS); | 
|  | nodemask_t nodes; | 
|  | }; | 
|  |  | 
|  | struct loc_track { | 
|  | unsigned long max; | 
|  | unsigned long count; | 
|  | struct location *loc; | 
|  | }; | 
|  |  | 
|  | static void free_loc_track(struct loc_track *t) | 
|  | { | 
|  | if (t->max) | 
|  | free_pages((unsigned long)t->loc, | 
|  | get_order(sizeof(struct location) * t->max)); | 
|  | } | 
|  |  | 
|  | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
|  | { | 
|  | struct location *l; | 
|  | int order; | 
|  |  | 
|  | order = get_order(sizeof(struct location) * max); | 
|  |  | 
|  | l = (void *)__get_free_pages(flags, order); | 
|  | if (!l) | 
|  | return 0; | 
|  |  | 
|  | if (t->count) { | 
|  | memcpy(l, t->loc, sizeof(struct location) * t->count); | 
|  | free_loc_track(t); | 
|  | } | 
|  | t->max = max; | 
|  | t->loc = l; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
|  | const struct track *track) | 
|  | { | 
|  | long start, end, pos; | 
|  | struct location *l; | 
|  | unsigned long caddr; | 
|  | unsigned long age = jiffies - track->when; | 
|  |  | 
|  | start = -1; | 
|  | end = t->count; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | pos = start + (end - start + 1) / 2; | 
|  |  | 
|  | /* | 
|  | * There is nothing at "end". If we end up there | 
|  | * we need to add something to before end. | 
|  | */ | 
|  | if (pos == end) | 
|  | break; | 
|  |  | 
|  | caddr = t->loc[pos].addr; | 
|  | if (track->addr == caddr) { | 
|  |  | 
|  | l = &t->loc[pos]; | 
|  | l->count++; | 
|  | if (track->when) { | 
|  | l->sum_time += age; | 
|  | if (age < l->min_time) | 
|  | l->min_time = age; | 
|  | if (age > l->max_time) | 
|  | l->max_time = age; | 
|  |  | 
|  | if (track->pid < l->min_pid) | 
|  | l->min_pid = track->pid; | 
|  | if (track->pid > l->max_pid) | 
|  | l->max_pid = track->pid; | 
|  |  | 
|  | cpumask_set_cpu(track->cpu, | 
|  | to_cpumask(l->cpus)); | 
|  | } | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (track->addr < caddr) | 
|  | end = pos; | 
|  | else | 
|  | start = pos; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Not found. Insert new tracking element. | 
|  | */ | 
|  | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
|  | return 0; | 
|  |  | 
|  | l = t->loc + pos; | 
|  | if (pos < t->count) | 
|  | memmove(l + 1, l, | 
|  | (t->count - pos) * sizeof(struct location)); | 
|  | t->count++; | 
|  | l->count = 1; | 
|  | l->addr = track->addr; | 
|  | l->sum_time = age; | 
|  | l->min_time = age; | 
|  | l->max_time = age; | 
|  | l->min_pid = track->pid; | 
|  | l->max_pid = track->pid; | 
|  | cpumask_clear(to_cpumask(l->cpus)); | 
|  | cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
|  | nodes_clear(l->nodes); | 
|  | node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
|  | struct page *page, enum track_item alloc, | 
|  | unsigned long *map) | 
|  | { | 
|  | void *addr = page_address(page); | 
|  | void *p; | 
|  |  | 
|  | bitmap_zero(map, page->objects); | 
|  | for_each_free_object(p, s, page->freelist) | 
|  | set_bit(slab_index(p, s, addr), map); | 
|  |  | 
|  | for_each_object(p, s, addr, page->objects) | 
|  | if (!test_bit(slab_index(p, s, addr), map)) | 
|  | add_location(t, s, get_track(s, p, alloc)); | 
|  | } | 
|  |  | 
|  | static int list_locations(struct kmem_cache *s, char *buf, | 
|  | enum track_item alloc) | 
|  | { | 
|  | int len = 0; | 
|  | unsigned long i; | 
|  | struct loc_track t = { 0, 0, NULL }; | 
|  | int node; | 
|  | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 
|  | sizeof(unsigned long), GFP_KERNEL); | 
|  |  | 
|  | if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
|  | GFP_TEMPORARY)) { | 
|  | kfree(map); | 
|  | return sprintf(buf, "Out of memory\n"); | 
|  | } | 
|  | /* Push back cpu slabs */ | 
|  | flush_all(s); | 
|  |  | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  |  | 
|  | if (!atomic_long_read(&n->nr_slabs)) | 
|  | continue; | 
|  |  | 
|  | spin_lock_irqsave(&n->list_lock, flags); | 
|  | list_for_each_entry(page, &n->partial, lru) | 
|  | process_slab(&t, s, page, alloc, map); | 
|  | list_for_each_entry(page, &n->full, lru) | 
|  | process_slab(&t, s, page, alloc, map); | 
|  | spin_unlock_irqrestore(&n->list_lock, flags); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < t.count; i++) { | 
|  | struct location *l = &t.loc[i]; | 
|  |  | 
|  | if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 
|  | break; | 
|  | len += sprintf(buf + len, "%7ld ", l->count); | 
|  |  | 
|  | if (l->addr) | 
|  | len += sprintf(buf + len, "%pS", (void *)l->addr); | 
|  | else | 
|  | len += sprintf(buf + len, "<not-available>"); | 
|  |  | 
|  | if (l->sum_time != l->min_time) { | 
|  | len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
|  | l->min_time, | 
|  | (long)div_u64(l->sum_time, l->count), | 
|  | l->max_time); | 
|  | } else | 
|  | len += sprintf(buf + len, " age=%ld", | 
|  | l->min_time); | 
|  |  | 
|  | if (l->min_pid != l->max_pid) | 
|  | len += sprintf(buf + len, " pid=%ld-%ld", | 
|  | l->min_pid, l->max_pid); | 
|  | else | 
|  | len += sprintf(buf + len, " pid=%ld", | 
|  | l->min_pid); | 
|  |  | 
|  | if (num_online_cpus() > 1 && | 
|  | !cpumask_empty(to_cpumask(l->cpus)) && | 
|  | len < PAGE_SIZE - 60) { | 
|  | len += sprintf(buf + len, " cpus="); | 
|  | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | to_cpumask(l->cpus)); | 
|  | } | 
|  |  | 
|  | if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && | 
|  | len < PAGE_SIZE - 60) { | 
|  | len += sprintf(buf + len, " nodes="); | 
|  | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
|  | l->nodes); | 
|  | } | 
|  |  | 
|  | len += sprintf(buf + len, "\n"); | 
|  | } | 
|  |  | 
|  | free_loc_track(&t); | 
|  | kfree(map); | 
|  | if (!t.count) | 
|  | len += sprintf(buf, "No data\n"); | 
|  | return len; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef SLUB_RESILIENCY_TEST | 
|  | static void resiliency_test(void) | 
|  | { | 
|  | u8 *p; | 
|  |  | 
|  | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); | 
|  |  | 
|  | printk(KERN_ERR "SLUB resiliency testing\n"); | 
|  | printk(KERN_ERR "-----------------------\n"); | 
|  | printk(KERN_ERR "A. Corruption after allocation\n"); | 
|  |  | 
|  | p = kzalloc(16, GFP_KERNEL); | 
|  | p[16] = 0x12; | 
|  | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 
|  | " 0x12->0x%p\n\n", p + 16); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches[4]); | 
|  |  | 
|  | /* Hmmm... The next two are dangerous */ | 
|  | p = kzalloc(32, GFP_KERNEL); | 
|  | p[32 + sizeof(void *)] = 0x34; | 
|  | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 
|  | " 0x34 -> -0x%p\n", p); | 
|  | printk(KERN_ERR | 
|  | "If allocated object is overwritten then not detectable\n\n"); | 
|  |  | 
|  | validate_slab_cache(kmalloc_caches[5]); | 
|  | p = kzalloc(64, GFP_KERNEL); | 
|  | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
|  | *p = 0x56; | 
|  | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
|  | p); | 
|  | printk(KERN_ERR | 
|  | "If allocated object is overwritten then not detectable\n\n"); | 
|  | validate_slab_cache(kmalloc_caches[6]); | 
|  |  | 
|  | printk(KERN_ERR "\nB. Corruption after free\n"); | 
|  | p = kzalloc(128, GFP_KERNEL); | 
|  | kfree(p); | 
|  | *p = 0x78; | 
|  | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches[7]); | 
|  |  | 
|  | p = kzalloc(256, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[50] = 0x9a; | 
|  | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | 
|  | p); | 
|  | validate_slab_cache(kmalloc_caches[8]); | 
|  |  | 
|  | p = kzalloc(512, GFP_KERNEL); | 
|  | kfree(p); | 
|  | p[512] = 0xab; | 
|  | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
|  | validate_slab_cache(kmalloc_caches[9]); | 
|  | } | 
|  | #else | 
|  | #ifdef CONFIG_SYSFS | 
|  | static void resiliency_test(void) {}; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | enum slab_stat_type { | 
|  | SL_ALL,			/* All slabs */ | 
|  | SL_PARTIAL,		/* Only partially allocated slabs */ | 
|  | SL_CPU,			/* Only slabs used for cpu caches */ | 
|  | SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
|  | SL_TOTAL		/* Determine object capacity not slabs */ | 
|  | }; | 
|  |  | 
|  | #define SO_ALL		(1 << SL_ALL) | 
|  | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
|  | #define SO_CPU		(1 << SL_CPU) | 
|  | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
|  | #define SO_TOTAL	(1 << SL_TOTAL) | 
|  |  | 
|  | static ssize_t show_slab_objects(struct kmem_cache *s, | 
|  | char *buf, unsigned long flags) | 
|  | { | 
|  | unsigned long total = 0; | 
|  | int node; | 
|  | int x; | 
|  | unsigned long *nodes; | 
|  | unsigned long *per_cpu; | 
|  |  | 
|  | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 
|  | if (!nodes) | 
|  | return -ENOMEM; | 
|  | per_cpu = nodes + nr_node_ids; | 
|  |  | 
|  | if (flags & SO_CPU) { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
|  |  | 
|  | if (!c || c->node < 0) | 
|  | continue; | 
|  |  | 
|  | if (c->page) { | 
|  | if (flags & SO_TOTAL) | 
|  | x = c->page->objects; | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = c->page->inuse; | 
|  | else | 
|  | x = 1; | 
|  |  | 
|  | total += x; | 
|  | nodes[c->node] += x; | 
|  | } | 
|  | per_cpu[c->node]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | lock_memory_hotplug(); | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | if (flags & SO_ALL) { | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (flags & SO_TOTAL) | 
|  | x = atomic_long_read(&n->total_objects); | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = atomic_long_read(&n->total_objects) - | 
|  | count_partial(n, count_free); | 
|  |  | 
|  | else | 
|  | x = atomic_long_read(&n->nr_slabs); | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  |  | 
|  | } else | 
|  | #endif | 
|  | if (flags & SO_PARTIAL) { | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (flags & SO_TOTAL) | 
|  | x = count_partial(n, count_total); | 
|  | else if (flags & SO_OBJECTS) | 
|  | x = count_partial(n, count_inuse); | 
|  | else | 
|  | x = n->nr_partial; | 
|  | total += x; | 
|  | nodes[node] += x; | 
|  | } | 
|  | } | 
|  | x = sprintf(buf, "%lu", total); | 
|  | #ifdef CONFIG_NUMA | 
|  | for_each_node_state(node, N_NORMAL_MEMORY) | 
|  | if (nodes[node]) | 
|  | x += sprintf(buf + x, " N%d=%lu", | 
|  | node, nodes[node]); | 
|  | #endif | 
|  | unlock_memory_hotplug(); | 
|  | kfree(nodes); | 
|  | return x + sprintf(buf + x, "\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static int any_slab_objects(struct kmem_cache *s) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | if (atomic_long_read(&n->total_objects)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
|  | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | 
|  |  | 
|  | struct slab_attribute { | 
|  | struct attribute attr; | 
|  | ssize_t (*show)(struct kmem_cache *s, char *buf); | 
|  | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
|  | }; | 
|  |  | 
|  | #define SLAB_ATTR_RO(_name) \ | 
|  | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | 
|  |  | 
|  | #define SLAB_ATTR(_name) \ | 
|  | static struct slab_attribute _name##_attr =  \ | 
|  | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  |  | 
|  | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->size); | 
|  | } | 
|  | SLAB_ATTR_RO(slab_size); | 
|  |  | 
|  | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->align); | 
|  | } | 
|  | SLAB_ATTR_RO(align); | 
|  |  | 
|  | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->objsize); | 
|  | } | 
|  | SLAB_ATTR_RO(object_size); | 
|  |  | 
|  | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", oo_objects(s->oo)); | 
|  | } | 
|  | SLAB_ATTR_RO(objs_per_slab); | 
|  |  | 
|  | static ssize_t order_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | unsigned long order; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &order); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (order > slub_max_order || order < slub_min_order) | 
|  | return -EINVAL; | 
|  |  | 
|  | calculate_sizes(s, order); | 
|  | return length; | 
|  | } | 
|  |  | 
|  | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", oo_order(s->oo)); | 
|  | } | 
|  | SLAB_ATTR(order); | 
|  |  | 
|  | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%lu\n", s->min_partial); | 
|  | } | 
|  |  | 
|  | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | unsigned long min; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &min); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | set_min_partial(s, min); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(min_partial); | 
|  |  | 
|  | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!s->ctor) | 
|  | return 0; | 
|  | return sprintf(buf, "%pS\n", s->ctor); | 
|  | } | 
|  | SLAB_ATTR_RO(ctor); | 
|  |  | 
|  | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->refcount - 1); | 
|  | } | 
|  | SLAB_ATTR_RO(aliases); | 
|  |  | 
|  | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_PARTIAL); | 
|  | } | 
|  | SLAB_ATTR_RO(partial); | 
|  |  | 
|  | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_CPU); | 
|  | } | 
|  | SLAB_ATTR_RO(cpu_slabs); | 
|  |  | 
|  | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
|  | } | 
|  | SLAB_ATTR_RO(objects); | 
|  |  | 
|  | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
|  | } | 
|  | SLAB_ATTR_RO(objects_partial); | 
|  |  | 
|  | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
|  | } | 
|  |  | 
|  | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(reclaim_account); | 
|  |  | 
|  | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
|  | } | 
|  | SLAB_ATTR_RO(hwcache_align); | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
|  | } | 
|  | SLAB_ATTR_RO(cache_dma); | 
|  | #endif | 
|  |  | 
|  | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 
|  | } | 
|  | SLAB_ATTR_RO(destroy_by_rcu); | 
|  |  | 
|  | static ssize_t reserved_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->reserved); | 
|  | } | 
|  | SLAB_ATTR_RO(reserved); | 
|  |  | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL); | 
|  | } | 
|  | SLAB_ATTR_RO(slabs); | 
|  |  | 
|  | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
|  | } | 
|  | SLAB_ATTR_RO(total_objects); | 
|  |  | 
|  | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 
|  | } | 
|  |  | 
|  | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_DEBUG_FREE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_DEBUG_FREE; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(sanity_checks); | 
|  |  | 
|  | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
|  | } | 
|  |  | 
|  | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_TRACE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_TRACE; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(trace); | 
|  |  | 
|  | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
|  | } | 
|  |  | 
|  | static ssize_t red_zone_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_RED_ZONE; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_RED_ZONE; | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(red_zone); | 
|  |  | 
|  | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
|  | } | 
|  |  | 
|  | static ssize_t poison_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_POISON; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_POISON; | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(poison); | 
|  |  | 
|  | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
|  | } | 
|  |  | 
|  | static ssize_t store_user_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (any_slab_objects(s)) | 
|  | return -EBUSY; | 
|  |  | 
|  | s->flags &= ~SLAB_STORE_USER; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_STORE_USER; | 
|  | calculate_sizes(s, -1); | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(store_user); | 
|  |  | 
|  | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t validate_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | if (buf[0] == '1') { | 
|  | ret = validate_slab_cache(s); | 
|  | if (ret >= 0) | 
|  | ret = length; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | SLAB_ATTR(validate); | 
|  |  | 
|  | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_ALLOC); | 
|  | } | 
|  | SLAB_ATTR_RO(alloc_calls); | 
|  |  | 
|  | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | if (!(s->flags & SLAB_STORE_USER)) | 
|  | return -ENOSYS; | 
|  | return list_locations(s, buf, TRACK_FREE); | 
|  | } | 
|  | SLAB_ATTR_RO(free_calls); | 
|  | #endif /* CONFIG_SLUB_DEBUG */ | 
|  |  | 
|  | #ifdef CONFIG_FAILSLAB | 
|  | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
|  | } | 
|  |  | 
|  | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | 
|  | size_t length) | 
|  | { | 
|  | s->flags &= ~SLAB_FAILSLAB; | 
|  | if (buf[0] == '1') | 
|  | s->flags |= SLAB_FAILSLAB; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(failslab); | 
|  | #endif | 
|  |  | 
|  | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t shrink_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | if (buf[0] == '1') { | 
|  | int rc = kmem_cache_shrink(s); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  | } else | 
|  | return -EINVAL; | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(shrink); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); | 
|  | } | 
|  |  | 
|  | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
|  | const char *buf, size_t length) | 
|  | { | 
|  | unsigned long ratio; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &ratio); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ratio <= 100) | 
|  | s->remote_node_defrag_ratio = ratio * 10; | 
|  |  | 
|  | return length; | 
|  | } | 
|  | SLAB_ATTR(remote_node_defrag_ratio); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
|  | { | 
|  | unsigned long sum  = 0; | 
|  | int cpu; | 
|  | int len; | 
|  | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | 
|  |  | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
|  |  | 
|  | data[cpu] = x; | 
|  | sum += x; | 
|  | } | 
|  |  | 
|  | len = sprintf(buf, "%lu", sum); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | for_each_online_cpu(cpu) { | 
|  | if (data[cpu] && len < PAGE_SIZE - 20) | 
|  | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
|  | } | 
|  | #endif | 
|  | kfree(data); | 
|  | return len + sprintf(buf + len, "\n"); | 
|  | } | 
|  |  | 
|  | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
|  | } | 
|  |  | 
|  | #define STAT_ATTR(si, text) 					\ | 
|  | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
|  | {								\ | 
|  | return show_stat(s, buf, si);				\ | 
|  | }								\ | 
|  | static ssize_t text##_store(struct kmem_cache *s,		\ | 
|  | const char *buf, size_t length)	\ | 
|  | {								\ | 
|  | if (buf[0] != '0')					\ | 
|  | return -EINVAL;					\ | 
|  | clear_stat(s, si);					\ | 
|  | return length;						\ | 
|  | }								\ | 
|  | SLAB_ATTR(text);						\ | 
|  |  | 
|  | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
|  | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
|  | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
|  | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
|  | STAT_ATTR(FREE_FROZEN, free_frozen); | 
|  | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
|  | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
|  | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
|  | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
|  | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
|  | STAT_ATTR(FREE_SLAB, free_slab); | 
|  | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
|  | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
|  | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
|  | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
|  | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
|  | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
|  | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
|  | #endif | 
|  |  | 
|  | static struct attribute *slab_attrs[] = { | 
|  | &slab_size_attr.attr, | 
|  | &object_size_attr.attr, | 
|  | &objs_per_slab_attr.attr, | 
|  | &order_attr.attr, | 
|  | &min_partial_attr.attr, | 
|  | &objects_attr.attr, | 
|  | &objects_partial_attr.attr, | 
|  | &partial_attr.attr, | 
|  | &cpu_slabs_attr.attr, | 
|  | &ctor_attr.attr, | 
|  | &aliases_attr.attr, | 
|  | &align_attr.attr, | 
|  | &hwcache_align_attr.attr, | 
|  | &reclaim_account_attr.attr, | 
|  | &destroy_by_rcu_attr.attr, | 
|  | &shrink_attr.attr, | 
|  | &reserved_attr.attr, | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | &total_objects_attr.attr, | 
|  | &slabs_attr.attr, | 
|  | &sanity_checks_attr.attr, | 
|  | &trace_attr.attr, | 
|  | &red_zone_attr.attr, | 
|  | &poison_attr.attr, | 
|  | &store_user_attr.attr, | 
|  | &validate_attr.attr, | 
|  | &alloc_calls_attr.attr, | 
|  | &free_calls_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | &cache_dma_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_NUMA | 
|  | &remote_node_defrag_ratio_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | &alloc_fastpath_attr.attr, | 
|  | &alloc_slowpath_attr.attr, | 
|  | &free_fastpath_attr.attr, | 
|  | &free_slowpath_attr.attr, | 
|  | &free_frozen_attr.attr, | 
|  | &free_add_partial_attr.attr, | 
|  | &free_remove_partial_attr.attr, | 
|  | &alloc_from_partial_attr.attr, | 
|  | &alloc_slab_attr.attr, | 
|  | &alloc_refill_attr.attr, | 
|  | &free_slab_attr.attr, | 
|  | &cpuslab_flush_attr.attr, | 
|  | &deactivate_full_attr.attr, | 
|  | &deactivate_empty_attr.attr, | 
|  | &deactivate_to_head_attr.attr, | 
|  | &deactivate_to_tail_attr.attr, | 
|  | &deactivate_remote_frees_attr.attr, | 
|  | &order_fallback_attr.attr, | 
|  | #endif | 
|  | #ifdef CONFIG_FAILSLAB | 
|  | &failslab_attr.attr, | 
|  | #endif | 
|  |  | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group slab_attr_group = { | 
|  | .attrs = slab_attrs, | 
|  | }; | 
|  |  | 
|  | static ssize_t slab_attr_show(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->show) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->show(s, buf); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t slab_attr_store(struct kobject *kobj, | 
|  | struct attribute *attr, | 
|  | const char *buf, size_t len) | 
|  | { | 
|  | struct slab_attribute *attribute; | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | attribute = to_slab_attr(attr); | 
|  | s = to_slab(kobj); | 
|  |  | 
|  | if (!attribute->store) | 
|  | return -EIO; | 
|  |  | 
|  | err = attribute->store(s, buf, len); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void kmem_cache_release(struct kobject *kobj) | 
|  | { | 
|  | struct kmem_cache *s = to_slab(kobj); | 
|  |  | 
|  | kfree(s->name); | 
|  | kfree(s); | 
|  | } | 
|  |  | 
|  | static const struct sysfs_ops slab_sysfs_ops = { | 
|  | .show = slab_attr_show, | 
|  | .store = slab_attr_store, | 
|  | }; | 
|  |  | 
|  | static struct kobj_type slab_ktype = { | 
|  | .sysfs_ops = &slab_sysfs_ops, | 
|  | .release = kmem_cache_release | 
|  | }; | 
|  |  | 
|  | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
|  | { | 
|  | struct kobj_type *ktype = get_ktype(kobj); | 
|  |  | 
|  | if (ktype == &slab_ktype) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct kset_uevent_ops slab_uevent_ops = { | 
|  | .filter = uevent_filter, | 
|  | }; | 
|  |  | 
|  | static struct kset *slab_kset; | 
|  |  | 
|  | #define ID_STR_LENGTH 64 | 
|  |  | 
|  | /* Create a unique string id for a slab cache: | 
|  | * | 
|  | * Format	:[flags-]size | 
|  | */ | 
|  | static char *create_unique_id(struct kmem_cache *s) | 
|  | { | 
|  | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
|  | char *p = name; | 
|  |  | 
|  | BUG_ON(!name); | 
|  |  | 
|  | *p++ = ':'; | 
|  | /* | 
|  | * First flags affecting slabcache operations. We will only | 
|  | * get here for aliasable slabs so we do not need to support | 
|  | * too many flags. The flags here must cover all flags that | 
|  | * are matched during merging to guarantee that the id is | 
|  | * unique. | 
|  | */ | 
|  | if (s->flags & SLAB_CACHE_DMA) | 
|  | *p++ = 'd'; | 
|  | if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
|  | *p++ = 'a'; | 
|  | if (s->flags & SLAB_DEBUG_FREE) | 
|  | *p++ = 'F'; | 
|  | if (!(s->flags & SLAB_NOTRACK)) | 
|  | *p++ = 't'; | 
|  | if (p != name + 1) | 
|  | *p++ = '-'; | 
|  | p += sprintf(p, "%07d", s->size); | 
|  | BUG_ON(p > name + ID_STR_LENGTH - 1); | 
|  | return name; | 
|  | } | 
|  |  | 
|  | static int sysfs_slab_add(struct kmem_cache *s) | 
|  | { | 
|  | int err; | 
|  | const char *name; | 
|  | int unmergeable; | 
|  |  | 
|  | if (slab_state < SYSFS) | 
|  | /* Defer until later */ | 
|  | return 0; | 
|  |  | 
|  | unmergeable = slab_unmergeable(s); | 
|  | if (unmergeable) { | 
|  | /* | 
|  | * Slabcache can never be merged so we can use the name proper. | 
|  | * This is typically the case for debug situations. In that | 
|  | * case we can catch duplicate names easily. | 
|  | */ | 
|  | sysfs_remove_link(&slab_kset->kobj, s->name); | 
|  | name = s->name; | 
|  | } else { | 
|  | /* | 
|  | * Create a unique name for the slab as a target | 
|  | * for the symlinks. | 
|  | */ | 
|  | name = create_unique_id(s); | 
|  | } | 
|  |  | 
|  | s->kobj.kset = slab_kset; | 
|  | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); | 
|  | if (err) { | 
|  | kobject_put(&s->kobj); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
|  | if (err) { | 
|  | kobject_del(&s->kobj); | 
|  | kobject_put(&s->kobj); | 
|  | return err; | 
|  | } | 
|  | kobject_uevent(&s->kobj, KOBJ_ADD); | 
|  | if (!unmergeable) { | 
|  | /* Setup first alias */ | 
|  | sysfs_slab_alias(s, s->name); | 
|  | kfree(name); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sysfs_slab_remove(struct kmem_cache *s) | 
|  | { | 
|  | if (slab_state < SYSFS) | 
|  | /* | 
|  | * Sysfs has not been setup yet so no need to remove the | 
|  | * cache from sysfs. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
|  | kobject_del(&s->kobj); | 
|  | kobject_put(&s->kobj); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to buffer aliases during bootup until sysfs becomes | 
|  | * available lest we lose that information. | 
|  | */ | 
|  | struct saved_alias { | 
|  | struct kmem_cache *s; | 
|  | const char *name; | 
|  | struct saved_alias *next; | 
|  | }; | 
|  |  | 
|  | static struct saved_alias *alias_list; | 
|  |  | 
|  | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
|  | { | 
|  | struct saved_alias *al; | 
|  |  | 
|  | if (slab_state == SYSFS) { | 
|  | /* | 
|  | * If we have a leftover link then remove it. | 
|  | */ | 
|  | sysfs_remove_link(&slab_kset->kobj, name); | 
|  | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
|  | } | 
|  |  | 
|  | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
|  | if (!al) | 
|  | return -ENOMEM; | 
|  |  | 
|  | al->s = s; | 
|  | al->name = name; | 
|  | al->next = alias_list; | 
|  | alias_list = al; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init slab_sysfs_init(void) | 
|  | { | 
|  | struct kmem_cache *s; | 
|  | int err; | 
|  |  | 
|  | down_write(&slub_lock); | 
|  |  | 
|  | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
|  | if (!slab_kset) { | 
|  | up_write(&slub_lock); | 
|  | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | slab_state = SYSFS; | 
|  |  | 
|  | list_for_each_entry(s, &slab_caches, list) { | 
|  | err = sysfs_slab_add(s); | 
|  | if (err) | 
|  | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | 
|  | " to sysfs\n", s->name); | 
|  | } | 
|  |  | 
|  | while (alias_list) { | 
|  | struct saved_alias *al = alias_list; | 
|  |  | 
|  | alias_list = alias_list->next; | 
|  | err = sysfs_slab_alias(al->s, al->name); | 
|  | if (err) | 
|  | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | 
|  | " %s to sysfs\n", s->name); | 
|  | kfree(al); | 
|  | } | 
|  |  | 
|  | up_write(&slub_lock); | 
|  | resiliency_test(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(slab_sysfs_init); | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | /* | 
|  | * The /proc/slabinfo ABI | 
|  | */ | 
|  | #ifdef CONFIG_SLABINFO | 
|  | static void print_slabinfo_header(struct seq_file *m) | 
|  | { | 
|  | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
|  | "<objperslab> <pagesperslab>"); | 
|  | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | static void *s_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | loff_t n = *pos; | 
|  |  | 
|  | down_read(&slub_lock); | 
|  | if (!n) | 
|  | print_slabinfo_header(m); | 
|  |  | 
|  | return seq_list_start(&slab_caches, *pos); | 
|  | } | 
|  |  | 
|  | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | { | 
|  | return seq_list_next(p, &slab_caches, pos); | 
|  | } | 
|  |  | 
|  | static void s_stop(struct seq_file *m, void *p) | 
|  | { | 
|  | up_read(&slub_lock); | 
|  | } | 
|  |  | 
|  | static int s_show(struct seq_file *m, void *p) | 
|  | { | 
|  | unsigned long nr_partials = 0; | 
|  | unsigned long nr_slabs = 0; | 
|  | unsigned long nr_inuse = 0; | 
|  | unsigned long nr_objs = 0; | 
|  | unsigned long nr_free = 0; | 
|  | struct kmem_cache *s; | 
|  | int node; | 
|  |  | 
|  | s = list_entry(p, struct kmem_cache, list); | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | struct kmem_cache_node *n = get_node(s, node); | 
|  |  | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | nr_partials += n->nr_partial; | 
|  | nr_slabs += atomic_long_read(&n->nr_slabs); | 
|  | nr_objs += atomic_long_read(&n->total_objects); | 
|  | nr_free += count_partial(n, count_free); | 
|  | } | 
|  |  | 
|  | nr_inuse = nr_objs - nr_free; | 
|  |  | 
|  | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | 
|  | nr_objs, s->size, oo_objects(s->oo), | 
|  | (1 << oo_order(s->oo))); | 
|  | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); | 
|  | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | 
|  | 0UL); | 
|  | seq_putc(m, '\n'); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations slabinfo_op = { | 
|  | .start = s_start, | 
|  | .next = s_next, | 
|  | .stop = s_stop, | 
|  | .show = s_show, | 
|  | }; | 
|  |  | 
|  | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &slabinfo_op); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_slabinfo_operations = { | 
|  | .open		= slabinfo_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | static int __init slab_proc_init(void) | 
|  | { | 
|  | proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations); | 
|  | return 0; | 
|  | } | 
|  | module_init(slab_proc_init); | 
|  | #endif /* CONFIG_SLABINFO */ |