| /* | 
 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  * | 
 |  * A code-rewriter that enables instruction single-stepping. | 
 |  * Derived from iLib's single-stepping code. | 
 |  */ | 
 |  | 
 | #ifndef __tilegx__   /* Hardware support for single step unavailable. */ | 
 |  | 
 | /* These functions are only used on the TILE platform */ | 
 | #include <linux/slab.h> | 
 | #include <linux/thread_info.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/types.h> | 
 | #include <linux/err.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/opcode-tile.h> | 
 | #include <asm/opcode_constants.h> | 
 | #include <arch/abi.h> | 
 |  | 
 | #define signExtend17(val) sign_extend((val), 17) | 
 | #define TILE_X1_MASK (0xffffffffULL << 31) | 
 |  | 
 | int unaligned_printk; | 
 |  | 
 | static int __init setup_unaligned_printk(char *str) | 
 | { | 
 | 	long val; | 
 | 	if (strict_strtol(str, 0, &val) != 0) | 
 | 		return 0; | 
 | 	unaligned_printk = val; | 
 | 	pr_info("Printk for each unaligned data accesses is %s\n", | 
 | 		unaligned_printk ? "enabled" : "disabled"); | 
 | 	return 1; | 
 | } | 
 | __setup("unaligned_printk=", setup_unaligned_printk); | 
 |  | 
 | unsigned int unaligned_fixup_count; | 
 |  | 
 | enum mem_op { | 
 | 	MEMOP_NONE, | 
 | 	MEMOP_LOAD, | 
 | 	MEMOP_STORE, | 
 | 	MEMOP_LOAD_POSTINCR, | 
 | 	MEMOP_STORE_POSTINCR | 
 | }; | 
 |  | 
 | static inline tile_bundle_bits set_BrOff_X1(tile_bundle_bits n, s32 offset) | 
 | { | 
 | 	tile_bundle_bits result; | 
 |  | 
 | 	/* mask out the old offset */ | 
 | 	tile_bundle_bits mask = create_BrOff_X1(-1); | 
 | 	result = n & (~mask); | 
 |  | 
 | 	/* or in the new offset */ | 
 | 	result |= create_BrOff_X1(offset); | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static inline tile_bundle_bits move_X1(tile_bundle_bits n, int dest, int src) | 
 | { | 
 | 	tile_bundle_bits result; | 
 | 	tile_bundle_bits op; | 
 |  | 
 | 	result = n & (~TILE_X1_MASK); | 
 |  | 
 | 	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) | | 
 | 		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) | | 
 | 		create_Dest_X1(dest) | | 
 | 		create_SrcB_X1(TREG_ZERO) | | 
 | 		create_SrcA_X1(src) ; | 
 |  | 
 | 	result |= op; | 
 | 	return result; | 
 | } | 
 |  | 
 | static inline tile_bundle_bits nop_X1(tile_bundle_bits n) | 
 | { | 
 | 	return move_X1(n, TREG_ZERO, TREG_ZERO); | 
 | } | 
 |  | 
 | static inline tile_bundle_bits addi_X1( | 
 | 	tile_bundle_bits n, int dest, int src, int imm) | 
 | { | 
 | 	n &= ~TILE_X1_MASK; | 
 |  | 
 | 	n |=  (create_SrcA_X1(src) | | 
 | 	       create_Dest_X1(dest) | | 
 | 	       create_Imm8_X1(imm) | | 
 | 	       create_S_X1(0) | | 
 | 	       create_Opcode_X1(IMM_0_OPCODE_X1) | | 
 | 	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1)); | 
 |  | 
 | 	return n; | 
 | } | 
 |  | 
 | static tile_bundle_bits rewrite_load_store_unaligned( | 
 | 	struct single_step_state *state, | 
 | 	tile_bundle_bits bundle, | 
 | 	struct pt_regs *regs, | 
 | 	enum mem_op mem_op, | 
 | 	int size, int sign_ext) | 
 | { | 
 | 	unsigned char __user *addr; | 
 | 	int val_reg, addr_reg, err, val; | 
 |  | 
 | 	/* Get address and value registers */ | 
 | 	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | 
 | 		addr_reg = get_SrcA_Y2(bundle); | 
 | 		val_reg = get_SrcBDest_Y2(bundle); | 
 | 	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | 
 | 		addr_reg = get_SrcA_X1(bundle); | 
 | 		val_reg  = get_Dest_X1(bundle); | 
 | 	} else { | 
 | 		addr_reg = get_SrcA_X1(bundle); | 
 | 		val_reg  = get_SrcB_X1(bundle); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If registers are not GPRs, don't try to handle it. | 
 | 	 * | 
 | 	 * FIXME: we could handle non-GPR loads by getting the real value | 
 | 	 * from memory, writing it to the single step buffer, using a | 
 | 	 * temp_reg to hold a pointer to that memory, then executing that | 
 | 	 * instruction and resetting temp_reg.  For non-GPR stores, it's a | 
 | 	 * little trickier; we could use the single step buffer for that | 
 | 	 * too, but we'd have to add some more state bits so that we could | 
 | 	 * call back in here to copy that value to the real target.  For | 
 | 	 * now, we just handle the simple case. | 
 | 	 */ | 
 | 	if ((val_reg >= PTREGS_NR_GPRS && | 
 | 	     (val_reg != TREG_ZERO || | 
 | 	      mem_op == MEMOP_LOAD || | 
 | 	      mem_op == MEMOP_LOAD_POSTINCR)) || | 
 | 	    addr_reg >= PTREGS_NR_GPRS) | 
 | 		return bundle; | 
 |  | 
 | 	/* If it's aligned, don't handle it specially */ | 
 | 	addr = (void __user *)regs->regs[addr_reg]; | 
 | 	if (((unsigned long)addr % size) == 0) | 
 | 		return bundle; | 
 |  | 
 | #ifndef __LITTLE_ENDIAN | 
 | # error We assume little-endian representation with copy_xx_user size 2 here | 
 | #endif | 
 | 	/* Handle unaligned load/store */ | 
 | 	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) { | 
 | 		unsigned short val_16; | 
 | 		switch (size) { | 
 | 		case 2: | 
 | 			err = copy_from_user(&val_16, addr, sizeof(val_16)); | 
 | 			val = sign_ext ? ((short)val_16) : val_16; | 
 | 			break; | 
 | 		case 4: | 
 | 			err = copy_from_user(&val, addr, sizeof(val)); | 
 | 			break; | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 		if (err == 0) { | 
 | 			state->update_reg = val_reg; | 
 | 			state->update_value = val; | 
 | 			state->update = 1; | 
 | 		} | 
 | 	} else { | 
 | 		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg]; | 
 | 		err = copy_to_user(addr, &val, size); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		siginfo_t info = { | 
 | 			.si_signo = SIGSEGV, | 
 | 			.si_code = SEGV_MAPERR, | 
 | 			.si_addr = addr | 
 | 		}; | 
 | 		trace_unhandled_signal("segfault", regs, | 
 | 				       (unsigned long)addr, SIGSEGV); | 
 | 		force_sig_info(info.si_signo, &info, current); | 
 | 		return (tile_bundle_bits) 0; | 
 | 	} | 
 |  | 
 | 	if (unaligned_fixup == 0) { | 
 | 		siginfo_t info = { | 
 | 			.si_signo = SIGBUS, | 
 | 			.si_code = BUS_ADRALN, | 
 | 			.si_addr = addr | 
 | 		}; | 
 | 		trace_unhandled_signal("unaligned trap", regs, | 
 | 				       (unsigned long)addr, SIGBUS); | 
 | 		force_sig_info(info.si_signo, &info, current); | 
 | 		return (tile_bundle_bits) 0; | 
 | 	} | 
 |  | 
 | 	if (unaligned_printk || unaligned_fixup_count == 0) { | 
 | 		pr_info("Process %d/%s: PC %#lx: Fixup of" | 
 | 			" unaligned %s at %#lx.\n", | 
 | 			current->pid, current->comm, regs->pc, | 
 | 			(mem_op == MEMOP_LOAD || | 
 | 			 mem_op == MEMOP_LOAD_POSTINCR) ? | 
 | 			"load" : "store", | 
 | 			(unsigned long)addr); | 
 | 		if (!unaligned_printk) { | 
 | #define P pr_info | 
 | P("\n"); | 
 | P("Unaligned fixups in the kernel will slow your application considerably.\n"); | 
 | P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n"); | 
 | P("which requests the kernel show all unaligned fixups, or write a \"0\"\n"); | 
 | P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n"); | 
 | P("access will become a SIGBUS you can debug. No further warnings will be\n"); | 
 | P("shown so as to avoid additional slowdown, but you can track the number\n"); | 
 | P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n"); | 
 | P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n"); | 
 | P("\n"); | 
 | #undef P | 
 | 		} | 
 | 	} | 
 | 	++unaligned_fixup_count; | 
 |  | 
 | 	if (bundle & TILE_BUNDLE_Y_ENCODING_MASK) { | 
 | 		/* Convert the Y2 instruction to a prefetch. */ | 
 | 		bundle &= ~(create_SrcBDest_Y2(-1) | | 
 | 			    create_Opcode_Y2(-1)); | 
 | 		bundle |= (create_SrcBDest_Y2(TREG_ZERO) | | 
 | 			   create_Opcode_Y2(LW_OPCODE_Y2)); | 
 | 	/* Replace the load postincr with an addi */ | 
 | 	} else if (mem_op == MEMOP_LOAD_POSTINCR) { | 
 | 		bundle = addi_X1(bundle, addr_reg, addr_reg, | 
 | 				 get_Imm8_X1(bundle)); | 
 | 	/* Replace the store postincr with an addi */ | 
 | 	} else if (mem_op == MEMOP_STORE_POSTINCR) { | 
 | 		bundle = addi_X1(bundle, addr_reg, addr_reg, | 
 | 				 get_Dest_Imm8_X1(bundle)); | 
 | 	} else { | 
 | 		/* Convert the X1 instruction to a nop. */ | 
 | 		bundle &= ~(create_Opcode_X1(-1) | | 
 | 			    create_UnShOpcodeExtension_X1(-1) | | 
 | 			    create_UnOpcodeExtension_X1(-1)); | 
 | 		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) | | 
 | 			   create_UnShOpcodeExtension_X1( | 
 | 				   UN_0_SHUN_0_OPCODE_X1) | | 
 | 			   create_UnOpcodeExtension_X1( | 
 | 				   NOP_UN_0_SHUN_0_OPCODE_X1)); | 
 | 	} | 
 |  | 
 | 	return bundle; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after execve() has started the new image.  This allows us | 
 |  * to reset the info state.  Note that the the mmap'ed memory, if there | 
 |  * was any, has already been unmapped by the exec. | 
 |  */ | 
 | void single_step_execve(void) | 
 | { | 
 | 	struct thread_info *ti = current_thread_info(); | 
 | 	kfree(ti->step_state); | 
 | 	ti->step_state = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * single_step_once() - entry point when single stepping has been triggered. | 
 |  * @regs: The machine register state | 
 |  * | 
 |  *  When we arrive at this routine via a trampoline, the single step | 
 |  *  engine copies the executing bundle to the single step buffer. | 
 |  *  If the instruction is a condition branch, then the target is | 
 |  *  reset to one past the next instruction. If the instruction | 
 |  *  sets the lr, then that is noted. If the instruction is a jump | 
 |  *  or call, then the new target pc is preserved and the current | 
 |  *  bundle instruction set to null. | 
 |  * | 
 |  *  The necessary post-single-step rewriting information is stored in | 
 |  *  single_step_state->  We use data segment values because the | 
 |  *  stack will be rewound when we run the rewritten single-stepped | 
 |  *  instruction. | 
 |  */ | 
 | void single_step_once(struct pt_regs *regs) | 
 | { | 
 | 	extern tile_bundle_bits __single_step_ill_insn; | 
 | 	extern tile_bundle_bits __single_step_j_insn; | 
 | 	extern tile_bundle_bits __single_step_addli_insn; | 
 | 	extern tile_bundle_bits __single_step_auli_insn; | 
 | 	struct thread_info *info = (void *)current_thread_info(); | 
 | 	struct single_step_state *state = info->step_state; | 
 | 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); | 
 | 	tile_bundle_bits __user *buffer, *pc; | 
 | 	tile_bundle_bits bundle; | 
 | 	int temp_reg; | 
 | 	int target_reg = TREG_LR; | 
 | 	int err; | 
 | 	enum mem_op mem_op = MEMOP_NONE; | 
 | 	int size = 0, sign_ext = 0;  /* happy compiler */ | 
 |  | 
 | 	asm( | 
 | "    .pushsection .rodata.single_step\n" | 
 | "    .align 8\n" | 
 | "    .globl    __single_step_ill_insn\n" | 
 | "__single_step_ill_insn:\n" | 
 | "    ill\n" | 
 | "    .globl    __single_step_addli_insn\n" | 
 | "__single_step_addli_insn:\n" | 
 | "    { nop; addli r0, zero, 0 }\n" | 
 | "    .globl    __single_step_auli_insn\n" | 
 | "__single_step_auli_insn:\n" | 
 | "    { nop; auli r0, r0, 0 }\n" | 
 | "    .globl    __single_step_j_insn\n" | 
 | "__single_step_j_insn:\n" | 
 | "    j .\n" | 
 | "    .popsection\n" | 
 | 	); | 
 |  | 
 | 	/* | 
 | 	 * Enable interrupts here to allow touching userspace and the like. | 
 | 	 * The callers expect this: do_trap() already has interrupts | 
 | 	 * enabled, and do_work_pending() handles functions that enable | 
 | 	 * interrupts internally. | 
 | 	 */ | 
 | 	local_irq_enable(); | 
 |  | 
 | 	if (state == NULL) { | 
 | 		/* allocate a page of writable, executable memory */ | 
 | 		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL); | 
 | 		if (state == NULL) { | 
 | 			pr_err("Out of kernel memory trying to single-step\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* allocate a cache line of writable, executable memory */ | 
 | 		down_write(¤t->mm->mmap_sem); | 
 | 		buffer = (void __user *) do_mmap(NULL, 0, 64, | 
 | 					  PROT_EXEC | PROT_READ | PROT_WRITE, | 
 | 					  MAP_PRIVATE | MAP_ANONYMOUS, | 
 | 					  0); | 
 | 		up_write(¤t->mm->mmap_sem); | 
 |  | 
 | 		if (IS_ERR((void __force *)buffer)) { | 
 | 			kfree(state); | 
 | 			pr_err("Out of kernel pages trying to single-step\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		state->buffer = buffer; | 
 | 		state->is_enabled = 0; | 
 |  | 
 | 		info->step_state = state; | 
 |  | 
 | 		/* Validate our stored instruction patterns */ | 
 | 		BUG_ON(get_Opcode_X1(__single_step_addli_insn) != | 
 | 		       ADDLI_OPCODE_X1); | 
 | 		BUG_ON(get_Opcode_X1(__single_step_auli_insn) != | 
 | 		       AULI_OPCODE_X1); | 
 | 		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO); | 
 | 		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0); | 
 | 		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are returning from a syscall, we still haven't hit the | 
 | 	 * "ill" for the swint1 instruction.  So back the PC up to be | 
 | 	 * pointing at the swint1, but we'll actually return directly | 
 | 	 * back to the "ill" so we come back in via SIGILL as if we | 
 | 	 * had "executed" the swint1 without ever being in kernel space. | 
 | 	 */ | 
 | 	if (regs->faultnum == INT_SWINT_1) | 
 | 		regs->pc -= 8; | 
 |  | 
 | 	pc = (tile_bundle_bits __user *)(regs->pc); | 
 | 	if (get_user(bundle, pc) != 0) { | 
 | 		pr_err("Couldn't read instruction at %p trying to step\n", pc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* We'll follow the instruction with 2 ill op bundles */ | 
 | 	state->orig_pc = (unsigned long)pc; | 
 | 	state->next_pc = (unsigned long)(pc + 1); | 
 | 	state->branch_next_pc = 0; | 
 | 	state->update = 0; | 
 |  | 
 | 	if (!(bundle & TILE_BUNDLE_Y_ENCODING_MASK)) { | 
 | 		/* two wide, check for control flow */ | 
 | 		int opcode = get_Opcode_X1(bundle); | 
 |  | 
 | 		switch (opcode) { | 
 | 		/* branches */ | 
 | 		case BRANCH_OPCODE_X1: | 
 | 		{ | 
 | 			s32 offset = signExtend17(get_BrOff_X1(bundle)); | 
 |  | 
 | 			/* | 
 | 			 * For branches, we use a rewriting trick to let the | 
 | 			 * hardware evaluate whether the branch is taken or | 
 | 			 * untaken.  We record the target offset and then | 
 | 			 * rewrite the branch instruction to target 1 insn | 
 | 			 * ahead if the branch is taken.  We then follow the | 
 | 			 * rewritten branch with two bundles, each containing | 
 | 			 * an "ill" instruction. The supervisor examines the | 
 | 			 * pc after the single step code is executed, and if | 
 | 			 * the pc is the first ill instruction, then the | 
 | 			 * branch (if any) was not taken.  If the pc is the | 
 | 			 * second ill instruction, then the branch was | 
 | 			 * taken. The new pc is computed for these cases, and | 
 | 			 * inserted into the registers for the thread.  If | 
 | 			 * the pc is the start of the single step code, then | 
 | 			 * an exception or interrupt was taken before the | 
 | 			 * code started processing, and the same "original" | 
 | 			 * pc is restored.  This change, different from the | 
 | 			 * original implementation, has the advantage of | 
 | 			 * executing a single user instruction. | 
 | 			 */ | 
 | 			state->branch_next_pc = (unsigned long)(pc + offset); | 
 |  | 
 | 			/* rewrite branch offset to go forward one bundle */ | 
 | 			bundle = set_BrOff_X1(bundle, 2); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 		/* jumps */ | 
 | 		case JALB_OPCODE_X1: | 
 | 		case JALF_OPCODE_X1: | 
 | 			state->update = 1; | 
 | 			state->next_pc = | 
 | 				(unsigned long) (pc + get_JOffLong_X1(bundle)); | 
 | 			break; | 
 |  | 
 | 		case JB_OPCODE_X1: | 
 | 		case JF_OPCODE_X1: | 
 | 			state->next_pc = | 
 | 				(unsigned long) (pc + get_JOffLong_X1(bundle)); | 
 | 			bundle = nop_X1(bundle); | 
 | 			break; | 
 |  | 
 | 		case SPECIAL_0_OPCODE_X1: | 
 | 			switch (get_RRROpcodeExtension_X1(bundle)) { | 
 | 			/* jump-register */ | 
 | 			case JALRP_SPECIAL_0_OPCODE_X1: | 
 | 			case JALR_SPECIAL_0_OPCODE_X1: | 
 | 				state->update = 1; | 
 | 				state->next_pc = | 
 | 					regs->regs[get_SrcA_X1(bundle)]; | 
 | 				break; | 
 |  | 
 | 			case JRP_SPECIAL_0_OPCODE_X1: | 
 | 			case JR_SPECIAL_0_OPCODE_X1: | 
 | 				state->next_pc = | 
 | 					regs->regs[get_SrcA_X1(bundle)]; | 
 | 				bundle = nop_X1(bundle); | 
 | 				break; | 
 |  | 
 | 			case LNK_SPECIAL_0_OPCODE_X1: | 
 | 				state->update = 1; | 
 | 				target_reg = get_Dest_X1(bundle); | 
 | 				break; | 
 |  | 
 | 			/* stores */ | 
 | 			case SH_SPECIAL_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_STORE; | 
 | 				size = 2; | 
 | 				break; | 
 |  | 
 | 			case SW_SPECIAL_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_STORE; | 
 | 				size = 4; | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 |  | 
 | 		/* loads and iret */ | 
 | 		case SHUN_0_OPCODE_X1: | 
 | 			if (get_UnShOpcodeExtension_X1(bundle) == | 
 | 			    UN_0_SHUN_0_OPCODE_X1) { | 
 | 				switch (get_UnOpcodeExtension_X1(bundle)) { | 
 | 				case LH_UN_0_SHUN_0_OPCODE_X1: | 
 | 					mem_op = MEMOP_LOAD; | 
 | 					size = 2; | 
 | 					sign_ext = 1; | 
 | 					break; | 
 |  | 
 | 				case LH_U_UN_0_SHUN_0_OPCODE_X1: | 
 | 					mem_op = MEMOP_LOAD; | 
 | 					size = 2; | 
 | 					sign_ext = 0; | 
 | 					break; | 
 |  | 
 | 				case LW_UN_0_SHUN_0_OPCODE_X1: | 
 | 					mem_op = MEMOP_LOAD; | 
 | 					size = 4; | 
 | 					break; | 
 |  | 
 | 				case IRET_UN_0_SHUN_0_OPCODE_X1: | 
 | 				{ | 
 | 					unsigned long ex0_0 = __insn_mfspr( | 
 | 						SPR_EX_CONTEXT_0_0); | 
 | 					unsigned long ex0_1 = __insn_mfspr( | 
 | 						SPR_EX_CONTEXT_0_1); | 
 | 					/* | 
 | 					 * Special-case it if we're iret'ing | 
 | 					 * to PL0 again.  Otherwise just let | 
 | 					 * it run and it will generate SIGILL. | 
 | 					 */ | 
 | 					if (EX1_PL(ex0_1) == USER_PL) { | 
 | 						state->next_pc = ex0_0; | 
 | 						regs->ex1 = ex0_1; | 
 | 						bundle = nop_X1(bundle); | 
 | 					} | 
 | 				} | 
 | 				} | 
 | 			} | 
 | 			break; | 
 |  | 
 | #if CHIP_HAS_WH64() | 
 | 		/* postincrement operations */ | 
 | 		case IMM_0_OPCODE_X1: | 
 | 			switch (get_ImmOpcodeExtension_X1(bundle)) { | 
 | 			case LWADD_IMM_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_LOAD_POSTINCR; | 
 | 				size = 4; | 
 | 				break; | 
 |  | 
 | 			case LHADD_IMM_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_LOAD_POSTINCR; | 
 | 				size = 2; | 
 | 				sign_ext = 1; | 
 | 				break; | 
 |  | 
 | 			case LHADD_U_IMM_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_LOAD_POSTINCR; | 
 | 				size = 2; | 
 | 				sign_ext = 0; | 
 | 				break; | 
 |  | 
 | 			case SWADD_IMM_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_STORE_POSTINCR; | 
 | 				size = 4; | 
 | 				break; | 
 |  | 
 | 			case SHADD_IMM_0_OPCODE_X1: | 
 | 				mem_op = MEMOP_STORE_POSTINCR; | 
 | 				size = 2; | 
 | 				break; | 
 |  | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 			break; | 
 | #endif /* CHIP_HAS_WH64() */ | 
 | 		} | 
 |  | 
 | 		if (state->update) { | 
 | 			/* | 
 | 			 * Get an available register.  We start with a | 
 | 			 * bitmask with 1's for available registers. | 
 | 			 * We truncate to the low 32 registers since | 
 | 			 * we are guaranteed to have set bits in the | 
 | 			 * low 32 bits, then use ctz to pick the first. | 
 | 			 */ | 
 | 			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) | | 
 | 					   (1ULL << get_SrcA_X0(bundle)) | | 
 | 					   (1ULL << get_SrcB_X0(bundle)) | | 
 | 					   (1ULL << target_reg)); | 
 | 			temp_reg = __builtin_ctz(mask); | 
 | 			state->update_reg = temp_reg; | 
 | 			state->update_value = regs->regs[temp_reg]; | 
 | 			regs->regs[temp_reg] = (unsigned long) (pc+1); | 
 | 			regs->flags |= PT_FLAGS_RESTORE_REGS; | 
 | 			bundle = move_X1(bundle, target_reg, temp_reg); | 
 | 		} | 
 | 	} else { | 
 | 		int opcode = get_Opcode_Y2(bundle); | 
 |  | 
 | 		switch (opcode) { | 
 | 		/* loads */ | 
 | 		case LH_OPCODE_Y2: | 
 | 			mem_op = MEMOP_LOAD; | 
 | 			size = 2; | 
 | 			sign_ext = 1; | 
 | 			break; | 
 |  | 
 | 		case LH_U_OPCODE_Y2: | 
 | 			mem_op = MEMOP_LOAD; | 
 | 			size = 2; | 
 | 			sign_ext = 0; | 
 | 			break; | 
 |  | 
 | 		case LW_OPCODE_Y2: | 
 | 			mem_op = MEMOP_LOAD; | 
 | 			size = 4; | 
 | 			break; | 
 |  | 
 | 		/* stores */ | 
 | 		case SH_OPCODE_Y2: | 
 | 			mem_op = MEMOP_STORE; | 
 | 			size = 2; | 
 | 			break; | 
 |  | 
 | 		case SW_OPCODE_Y2: | 
 | 			mem_op = MEMOP_STORE; | 
 | 			size = 4; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if we need to rewrite an unaligned load/store. | 
 | 	 * Returning zero is a special value meaning we need to SIGSEGV. | 
 | 	 */ | 
 | 	if (mem_op != MEMOP_NONE && unaligned_fixup >= 0) { | 
 | 		bundle = rewrite_load_store_unaligned(state, bundle, regs, | 
 | 						      mem_op, size, sign_ext); | 
 | 		if (bundle == 0) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* write the bundle to our execution area */ | 
 | 	buffer = state->buffer; | 
 | 	err = __put_user(bundle, buffer++); | 
 |  | 
 | 	/* | 
 | 	 * If we're really single-stepping, we take an INT_ILL after. | 
 | 	 * If we're just handling an unaligned access, we can just | 
 | 	 * jump directly back to where we were in user code. | 
 | 	 */ | 
 | 	if (is_single_step) { | 
 | 		err |= __put_user(__single_step_ill_insn, buffer++); | 
 | 		err |= __put_user(__single_step_ill_insn, buffer++); | 
 | 	} else { | 
 | 		long delta; | 
 |  | 
 | 		if (state->update) { | 
 | 			/* We have some state to update; do it inline */ | 
 | 			int ha16; | 
 | 			bundle = __single_step_addli_insn; | 
 | 			bundle |= create_Dest_X1(state->update_reg); | 
 | 			bundle |= create_Imm16_X1(state->update_value); | 
 | 			err |= __put_user(bundle, buffer++); | 
 | 			bundle = __single_step_auli_insn; | 
 | 			bundle |= create_Dest_X1(state->update_reg); | 
 | 			bundle |= create_SrcA_X1(state->update_reg); | 
 | 			ha16 = (state->update_value + 0x8000) >> 16; | 
 | 			bundle |= create_Imm16_X1(ha16); | 
 | 			err |= __put_user(bundle, buffer++); | 
 | 			state->update = 0; | 
 | 		} | 
 |  | 
 | 		/* End with a jump back to the next instruction */ | 
 | 		delta = ((regs->pc + TILE_BUNDLE_SIZE_IN_BYTES) - | 
 | 			(unsigned long)buffer) >> | 
 | 			TILE_LOG2_BUNDLE_ALIGNMENT_IN_BYTES; | 
 | 		bundle = __single_step_j_insn; | 
 | 		bundle |= create_JOffLong_X1(delta); | 
 | 		err |= __put_user(bundle, buffer++); | 
 | 	} | 
 |  | 
 | 	if (err) { | 
 | 		pr_err("Fault when writing to single-step buffer\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Flush the buffer. | 
 | 	 * We do a local flush only, since this is a thread-specific buffer. | 
 | 	 */ | 
 | 	__flush_icache_range((unsigned long)state->buffer, | 
 | 			     (unsigned long)buffer); | 
 |  | 
 | 	/* Indicate enabled */ | 
 | 	state->is_enabled = is_single_step; | 
 | 	regs->pc = (unsigned long)state->buffer; | 
 |  | 
 | 	/* Fault immediately if we are coming back from a syscall. */ | 
 | 	if (regs->faultnum == INT_SWINT_1) | 
 | 		regs->pc += 8; | 
 | } | 
 |  | 
 | #else | 
 | #include <linux/smp.h> | 
 | #include <linux/ptrace.h> | 
 | #include <arch/spr_def.h> | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, ss_saved_pc); | 
 |  | 
 |  | 
 | /* | 
 |  * Called directly on the occasion of an interrupt. | 
 |  * | 
 |  * If the process doesn't have single step set, then we use this as an | 
 |  * opportunity to turn single step off. | 
 |  * | 
 |  * It has been mentioned that we could conditionally turn off single stepping | 
 |  * on each entry into the kernel and rely on single_step_once to turn it | 
 |  * on for the processes that matter (as we already do), but this | 
 |  * implementation is somewhat more efficient in that we muck with registers | 
 |  * once on a bum interrupt rather than on every entry into the kernel. | 
 |  * | 
 |  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred, | 
 |  * so we have to run through this process again before we can say that an | 
 |  * instruction has executed. | 
 |  * | 
 |  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately | 
 |  * it changes the PC.  If it hasn't changed, then we know that the interrupt | 
 |  * wasn't generated by swint and we'll need to run this process again before | 
 |  * we can say an instruction has executed. | 
 |  * | 
 |  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get | 
 |  * on with our lives. | 
 |  */ | 
 |  | 
 | void gx_singlestep_handle(struct pt_regs *regs, int fault_num) | 
 | { | 
 | 	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); | 
 | 	struct thread_info *info = (void *)current_thread_info(); | 
 | 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP); | 
 | 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); | 
 |  | 
 | 	if (is_single_step == 0) { | 
 | 		__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0); | 
 |  | 
 | 	} else if ((*ss_pc != regs->pc) || | 
 | 		   (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) { | 
 |  | 
 | 		ptrace_notify(SIGTRAP); | 
 | 		control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; | 
 | 		control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; | 
 | 		__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called from need_singlestep.  Set up the control registers and the enable | 
 |  * register, then return back. | 
 |  */ | 
 |  | 
 | void single_step_once(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long *ss_pc = &__get_cpu_var(ss_saved_pc); | 
 | 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K); | 
 |  | 
 | 	*ss_pc = regs->pc; | 
 | 	control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK; | 
 | 	control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK; | 
 | 	__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control); | 
 | 	__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL); | 
 | } | 
 |  | 
 | void single_step_execve(void) | 
 | { | 
 | 	/* Nothing */ | 
 | } | 
 |  | 
 | #endif /* !__tilegx__ */ |