| /*  | 
 |  * Cryptographic API. | 
 |  * | 
 |  * Support for VIA PadLock hardware crypto engine. | 
 |  * | 
 |  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz> | 
 |  * | 
 |  * Key expansion routine taken from crypto/aes.c | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * --------------------------------------------------------------------------- | 
 |  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. | 
 |  * All rights reserved. | 
 |  * | 
 |  * LICENSE TERMS | 
 |  * | 
 |  * The free distribution and use of this software in both source and binary | 
 |  * form is allowed (with or without changes) provided that: | 
 |  * | 
 |  *   1. distributions of this source code include the above copyright | 
 |  *      notice, this list of conditions and the following disclaimer; | 
 |  * | 
 |  *   2. distributions in binary form include the above copyright | 
 |  *      notice, this list of conditions and the following disclaimer | 
 |  *      in the documentation and/or other associated materials; | 
 |  * | 
 |  *   3. the copyright holder's name is not used to endorse products | 
 |  *      built using this software without specific written permission. | 
 |  * | 
 |  * ALTERNATIVELY, provided that this notice is retained in full, this product | 
 |  * may be distributed under the terms of the GNU General Public License (GPL), | 
 |  * in which case the provisions of the GPL apply INSTEAD OF those given above. | 
 |  * | 
 |  * DISCLAIMER | 
 |  * | 
 |  * This software is provided 'as is' with no explicit or implied warranties | 
 |  * in respect of its properties, including, but not limited to, correctness | 
 |  * and/or fitness for purpose. | 
 |  * --------------------------------------------------------------------------- | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/types.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <asm/byteorder.h> | 
 | #include "padlock.h" | 
 |  | 
 | #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */ | 
 | #define AES_MAX_KEY_SIZE	32	/* ditto */ | 
 | #define AES_BLOCK_SIZE		16	/* ditto */ | 
 | #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */ | 
 | #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t)) | 
 |  | 
 | struct aes_ctx { | 
 | 	uint32_t e_data[AES_EXTENDED_KEY_SIZE]; | 
 | 	uint32_t d_data[AES_EXTENDED_KEY_SIZE]; | 
 | 	struct { | 
 | 		struct cword encrypt; | 
 | 		struct cword decrypt; | 
 | 	} cword; | 
 | 	uint32_t *E; | 
 | 	uint32_t *D; | 
 | 	int key_length; | 
 | }; | 
 |  | 
 | /* ====== Key management routines ====== */ | 
 |  | 
 | static inline uint32_t | 
 | generic_rotr32 (const uint32_t x, const unsigned bits) | 
 | { | 
 | 	const unsigned n = bits % 32; | 
 | 	return (x >> n) | (x << (32 - n)); | 
 | } | 
 |  | 
 | static inline uint32_t | 
 | generic_rotl32 (const uint32_t x, const unsigned bits) | 
 | { | 
 | 	const unsigned n = bits % 32; | 
 | 	return (x << n) | (x >> (32 - n)); | 
 | } | 
 |  | 
 | #define rotl generic_rotl32 | 
 | #define rotr generic_rotr32 | 
 |  | 
 | /* | 
 |  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))  | 
 |  */ | 
 | static inline uint8_t | 
 | byte(const uint32_t x, const unsigned n) | 
 | { | 
 | 	return x >> (n << 3); | 
 | } | 
 |  | 
 | #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x)) | 
 | #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from)) | 
 |  | 
 | #define E_KEY ctx->E | 
 | #define D_KEY ctx->D | 
 |  | 
 | static uint8_t pow_tab[256]; | 
 | static uint8_t log_tab[256]; | 
 | static uint8_t sbx_tab[256]; | 
 | static uint8_t isb_tab[256]; | 
 | static uint32_t rco_tab[10]; | 
 | static uint32_t ft_tab[4][256]; | 
 | static uint32_t it_tab[4][256]; | 
 |  | 
 | static uint32_t fl_tab[4][256]; | 
 | static uint32_t il_tab[4][256]; | 
 |  | 
 | static inline uint8_t | 
 | f_mult (uint8_t a, uint8_t b) | 
 | { | 
 | 	uint8_t aa = log_tab[a], cc = aa + log_tab[b]; | 
 |  | 
 | 	return pow_tab[cc + (cc < aa ? 1 : 0)]; | 
 | } | 
 |  | 
 | #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0) | 
 |  | 
 | #define f_rn(bo, bi, n, k)					\ | 
 |     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\ | 
 |              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
 |              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
 |              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
 |  | 
 | #define i_rn(bo, bi, n, k)					\ | 
 |     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\ | 
 |              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
 |              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
 |              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
 |  | 
 | #define ls_box(x)				\ | 
 |     ( fl_tab[0][byte(x, 0)] ^			\ | 
 |       fl_tab[1][byte(x, 1)] ^			\ | 
 |       fl_tab[2][byte(x, 2)] ^			\ | 
 |       fl_tab[3][byte(x, 3)] ) | 
 |  | 
 | #define f_rl(bo, bi, n, k)					\ | 
 |     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\ | 
 |              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\ | 
 |              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
 |              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) | 
 |  | 
 | #define i_rl(bo, bi, n, k)					\ | 
 |     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\ | 
 |              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\ | 
 |              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\ | 
 |              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) | 
 |  | 
 | static void | 
 | gen_tabs (void) | 
 | { | 
 | 	uint32_t i, t; | 
 | 	uint8_t p, q; | 
 |  | 
 | 	/* log and power tables for GF(2**8) finite field with | 
 | 	   0x011b as modular polynomial - the simplest prmitive | 
 | 	   root is 0x03, used here to generate the tables */ | 
 |  | 
 | 	for (i = 0, p = 1; i < 256; ++i) { | 
 | 		pow_tab[i] = (uint8_t) p; | 
 | 		log_tab[p] = (uint8_t) i; | 
 |  | 
 | 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
 | 	} | 
 |  | 
 | 	log_tab[1] = 0; | 
 |  | 
 | 	for (i = 0, p = 1; i < 10; ++i) { | 
 | 		rco_tab[i] = p; | 
 |  | 
 | 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 256; ++i) { | 
 | 		p = (i ? pow_tab[255 - log_tab[i]] : 0); | 
 | 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); | 
 | 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); | 
 | 		sbx_tab[i] = p; | 
 | 		isb_tab[p] = (uint8_t) i; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < 256; ++i) { | 
 | 		p = sbx_tab[i]; | 
 |  | 
 | 		t = p; | 
 | 		fl_tab[0][i] = t; | 
 | 		fl_tab[1][i] = rotl (t, 8); | 
 | 		fl_tab[2][i] = rotl (t, 16); | 
 | 		fl_tab[3][i] = rotl (t, 24); | 
 |  | 
 | 		t = ((uint32_t) ff_mult (2, p)) | | 
 | 		    ((uint32_t) p << 8) | | 
 | 		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24); | 
 |  | 
 | 		ft_tab[0][i] = t; | 
 | 		ft_tab[1][i] = rotl (t, 8); | 
 | 		ft_tab[2][i] = rotl (t, 16); | 
 | 		ft_tab[3][i] = rotl (t, 24); | 
 |  | 
 | 		p = isb_tab[i]; | 
 |  | 
 | 		t = p; | 
 | 		il_tab[0][i] = t; | 
 | 		il_tab[1][i] = rotl (t, 8); | 
 | 		il_tab[2][i] = rotl (t, 16); | 
 | 		il_tab[3][i] = rotl (t, 24); | 
 |  | 
 | 		t = ((uint32_t) ff_mult (14, p)) | | 
 | 		    ((uint32_t) ff_mult (9, p) << 8) | | 
 | 		    ((uint32_t) ff_mult (13, p) << 16) | | 
 | 		    ((uint32_t) ff_mult (11, p) << 24); | 
 |  | 
 | 		it_tab[0][i] = t; | 
 | 		it_tab[1][i] = rotl (t, 8); | 
 | 		it_tab[2][i] = rotl (t, 16); | 
 | 		it_tab[3][i] = rotl (t, 24); | 
 | 	} | 
 | } | 
 |  | 
 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) | 
 |  | 
 | #define imix_col(y,x)       \ | 
 |     u   = star_x(x);        \ | 
 |     v   = star_x(u);        \ | 
 |     w   = star_x(v);        \ | 
 |     t   = w ^ (x);          \ | 
 |    (y)  = u ^ v ^ w;        \ | 
 |    (y) ^= rotr(u ^ t,  8) ^ \ | 
 |           rotr(v ^ t, 16) ^ \ | 
 |           rotr(t,24) | 
 |  | 
 | /* initialise the key schedule from the user supplied key */ | 
 |  | 
 | #define loop4(i)                                    \ | 
 | {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
 |     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \ | 
 |     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \ | 
 |     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \ | 
 |     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \ | 
 | } | 
 |  | 
 | #define loop6(i)                                    \ | 
 | {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \ | 
 |     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \ | 
 |     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \ | 
 |     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \ | 
 |     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \ | 
 |     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \ | 
 |     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \ | 
 | } | 
 |  | 
 | #define loop8(i)                                    \ | 
 | {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \ | 
 |     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \ | 
 |     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \ | 
 |     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \ | 
 |     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \ | 
 |     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \ | 
 |     E_KEY[8 * i + 12] = t;                \ | 
 |     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \ | 
 |     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \ | 
 |     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \ | 
 | } | 
 |  | 
 | /* Tells whether the ACE is capable to generate | 
 |    the extended key for a given key_len. */ | 
 | static inline int | 
 | aes_hw_extkey_available(uint8_t key_len) | 
 | { | 
 | 	/* TODO: We should check the actual CPU model/stepping | 
 | 	         as it's possible that the capability will be | 
 | 	         added in the next CPU revisions. */ | 
 | 	if (key_len == 16) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct aes_ctx *aes_ctx(void *ctx) | 
 | { | 
 | 	return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT); | 
 | } | 
 |  | 
 | static int | 
 | aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(ctx_arg); | 
 | 	uint32_t i, t, u, v, w; | 
 | 	uint32_t P[AES_EXTENDED_KEY_SIZE]; | 
 | 	uint32_t rounds; | 
 |  | 
 | 	if (key_len != 16 && key_len != 24 && key_len != 32) { | 
 | 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->key_length = key_len; | 
 |  | 
 | 	/* | 
 | 	 * If the hardware is capable of generating the extended key | 
 | 	 * itself we must supply the plain key for both encryption | 
 | 	 * and decryption. | 
 | 	 */ | 
 | 	ctx->E = ctx->e_data; | 
 | 	ctx->D = ctx->e_data; | 
 |  | 
 | 	E_KEY[0] = uint32_t_in (in_key); | 
 | 	E_KEY[1] = uint32_t_in (in_key + 4); | 
 | 	E_KEY[2] = uint32_t_in (in_key + 8); | 
 | 	E_KEY[3] = uint32_t_in (in_key + 12); | 
 |  | 
 | 	/* Prepare control words. */ | 
 | 	memset(&ctx->cword, 0, sizeof(ctx->cword)); | 
 |  | 
 | 	ctx->cword.decrypt.encdec = 1; | 
 | 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4; | 
 | 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds; | 
 | 	ctx->cword.encrypt.ksize = (key_len - 16) / 8; | 
 | 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize; | 
 |  | 
 | 	/* Don't generate extended keys if the hardware can do it. */ | 
 | 	if (aes_hw_extkey_available(key_len)) | 
 | 		return 0; | 
 |  | 
 | 	ctx->D = ctx->d_data; | 
 | 	ctx->cword.encrypt.keygen = 1; | 
 | 	ctx->cword.decrypt.keygen = 1; | 
 |  | 
 | 	switch (key_len) { | 
 | 	case 16: | 
 | 		t = E_KEY[3]; | 
 | 		for (i = 0; i < 10; ++i) | 
 | 			loop4 (i); | 
 | 		break; | 
 |  | 
 | 	case 24: | 
 | 		E_KEY[4] = uint32_t_in (in_key + 16); | 
 | 		t = E_KEY[5] = uint32_t_in (in_key + 20); | 
 | 		for (i = 0; i < 8; ++i) | 
 | 			loop6 (i); | 
 | 		break; | 
 |  | 
 | 	case 32: | 
 | 		E_KEY[4] = uint32_t_in (in_key + 16); | 
 | 		E_KEY[5] = uint32_t_in (in_key + 20); | 
 | 		E_KEY[6] = uint32_t_in (in_key + 24); | 
 | 		t = E_KEY[7] = uint32_t_in (in_key + 28); | 
 | 		for (i = 0; i < 7; ++i) | 
 | 			loop8 (i); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	D_KEY[0] = E_KEY[0]; | 
 | 	D_KEY[1] = E_KEY[1]; | 
 | 	D_KEY[2] = E_KEY[2]; | 
 | 	D_KEY[3] = E_KEY[3]; | 
 |  | 
 | 	for (i = 4; i < key_len + 24; ++i) { | 
 | 		imix_col (D_KEY[i], E_KEY[i]); | 
 | 	} | 
 |  | 
 | 	/* PadLock needs a different format of the decryption key. */ | 
 | 	rounds = 10 + (key_len - 16) / 4; | 
 |  | 
 | 	for (i = 0; i < rounds; i++) { | 
 | 		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0]; | 
 | 		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1]; | 
 | 		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2]; | 
 | 		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3]; | 
 | 	} | 
 |  | 
 | 	P[0] = E_KEY[(rounds * 4) + 0]; | 
 | 	P[1] = E_KEY[(rounds * 4) + 1]; | 
 | 	P[2] = E_KEY[(rounds * 4) + 2]; | 
 | 	P[3] = E_KEY[(rounds * 4) + 3]; | 
 |  | 
 | 	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* ====== Encryption/decryption routines ====== */ | 
 |  | 
 | /* These are the real call to PadLock. */ | 
 | static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key, | 
 | 				      void *control_word, u32 count) | 
 | { | 
 | 	asm volatile ("pushfl; popfl");		/* enforce key reload. */ | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */ | 
 | 		      : "+S"(input), "+D"(output) | 
 | 		      : "d"(control_word), "b"(key), "c"(count)); | 
 | } | 
 |  | 
 | static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key, | 
 | 				     u8 *iv, void *control_word, u32 count) | 
 | { | 
 | 	/* Enforce key reload. */ | 
 | 	asm volatile ("pushfl; popfl"); | 
 | 	/* rep xcryptcbc */ | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" | 
 | 		      : "+S" (input), "+D" (output), "+a" (iv) | 
 | 		      : "d" (control_word), "b" (key), "c" (count)); | 
 | 	return iv; | 
 | } | 
 |  | 
 | static void | 
 | aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(ctx_arg); | 
 | 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1); | 
 | } | 
 |  | 
 | static void | 
 | aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(ctx_arg); | 
 | 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1); | 
 | } | 
 |  | 
 | static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out, | 
 | 				    const u8 *in, unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm)); | 
 | 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, | 
 | 			   nbytes / AES_BLOCK_SIZE); | 
 | 	return nbytes & ~(AES_BLOCK_SIZE - 1); | 
 | } | 
 |  | 
 | static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out, | 
 | 				    const u8 *in, unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm)); | 
 | 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, | 
 | 			   nbytes / AES_BLOCK_SIZE); | 
 | 	return nbytes & ~(AES_BLOCK_SIZE - 1); | 
 | } | 
 |  | 
 | static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out, | 
 | 				    const u8 *in, unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm)); | 
 | 	u8 *iv; | 
 |  | 
 | 	iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info, | 
 | 				&ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE); | 
 | 	memcpy(desc->info, iv, AES_BLOCK_SIZE); | 
 |  | 
 | 	return nbytes & ~(AES_BLOCK_SIZE - 1); | 
 | } | 
 |  | 
 | static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out, | 
 | 				    const u8 *in, unsigned int nbytes) | 
 | { | 
 | 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm)); | 
 | 	padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt, | 
 | 			   nbytes / AES_BLOCK_SIZE); | 
 | 	return nbytes & ~(AES_BLOCK_SIZE - 1); | 
 | } | 
 |  | 
 | static struct crypto_alg aes_alg = { | 
 | 	.cra_name		=	"aes", | 
 | 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER, | 
 | 	.cra_blocksize		=	AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		=	sizeof(struct aes_ctx), | 
 | 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1, | 
 | 	.cra_module		=	THIS_MODULE, | 
 | 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list), | 
 | 	.cra_u			=	{ | 
 | 		.cipher = { | 
 | 			.cia_min_keysize	=	AES_MIN_KEY_SIZE, | 
 | 			.cia_max_keysize	=	AES_MAX_KEY_SIZE, | 
 | 			.cia_setkey	   	= 	aes_set_key, | 
 | 			.cia_encrypt	 	=	aes_encrypt, | 
 | 			.cia_decrypt	  	=	aes_decrypt, | 
 | 			.cia_encrypt_ecb 	=	aes_encrypt_ecb, | 
 | 			.cia_decrypt_ecb  	=	aes_decrypt_ecb, | 
 | 			.cia_encrypt_cbc 	=	aes_encrypt_cbc, | 
 | 			.cia_decrypt_cbc  	=	aes_decrypt_cbc, | 
 | 		} | 
 | 	} | 
 | }; | 
 |  | 
 | int __init padlock_init_aes(void) | 
 | { | 
 | 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n"); | 
 |  | 
 | 	gen_tabs(); | 
 | 	return crypto_register_alg(&aes_alg); | 
 | } | 
 |  | 
 | void __exit padlock_fini_aes(void) | 
 | { | 
 | 	crypto_unregister_alg(&aes_alg); | 
 | } |