|  | /* | 
|  | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> | 
|  | * Copyright © 2004 Micron Technology Inc. | 
|  | * Copyright © 2004 David Brownell | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dmaengine.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/omap-dma.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_OMAP_BCH | 
|  | #include <linux/bch.h> | 
|  | #endif | 
|  |  | 
|  | #include <linux/platform_data/mtd-nand-omap2.h> | 
|  |  | 
|  | #define	DRIVER_NAME	"omap2-nand" | 
|  | #define	OMAP_NAND_TIMEOUT_MS	5000 | 
|  |  | 
|  | #define NAND_Ecc_P1e		(1 << 0) | 
|  | #define NAND_Ecc_P2e		(1 << 1) | 
|  | #define NAND_Ecc_P4e		(1 << 2) | 
|  | #define NAND_Ecc_P8e		(1 << 3) | 
|  | #define NAND_Ecc_P16e		(1 << 4) | 
|  | #define NAND_Ecc_P32e		(1 << 5) | 
|  | #define NAND_Ecc_P64e		(1 << 6) | 
|  | #define NAND_Ecc_P128e		(1 << 7) | 
|  | #define NAND_Ecc_P256e		(1 << 8) | 
|  | #define NAND_Ecc_P512e		(1 << 9) | 
|  | #define NAND_Ecc_P1024e		(1 << 10) | 
|  | #define NAND_Ecc_P2048e		(1 << 11) | 
|  |  | 
|  | #define NAND_Ecc_P1o		(1 << 16) | 
|  | #define NAND_Ecc_P2o		(1 << 17) | 
|  | #define NAND_Ecc_P4o		(1 << 18) | 
|  | #define NAND_Ecc_P8o		(1 << 19) | 
|  | #define NAND_Ecc_P16o		(1 << 20) | 
|  | #define NAND_Ecc_P32o		(1 << 21) | 
|  | #define NAND_Ecc_P64o		(1 << 22) | 
|  | #define NAND_Ecc_P128o		(1 << 23) | 
|  | #define NAND_Ecc_P256o		(1 << 24) | 
|  | #define NAND_Ecc_P512o		(1 << 25) | 
|  | #define NAND_Ecc_P1024o		(1 << 26) | 
|  | #define NAND_Ecc_P2048o		(1 << 27) | 
|  |  | 
|  | #define TF(value)	(value ? 1 : 0) | 
|  |  | 
|  | #define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0) | 
|  | #define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1) | 
|  | #define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2) | 
|  | #define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3) | 
|  | #define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4) | 
|  | #define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5) | 
|  | #define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6) | 
|  | #define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7) | 
|  |  | 
|  | #define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4) | 
|  | #define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5) | 
|  | #define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6) | 
|  | #define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7) | 
|  |  | 
|  | #define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0) | 
|  | #define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1) | 
|  | #define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2) | 
|  | #define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3) | 
|  | #define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4) | 
|  | #define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5) | 
|  | #define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6) | 
|  | #define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7) | 
|  |  | 
|  | #define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0) | 
|  | #define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1) | 
|  | #define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2) | 
|  | #define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3) | 
|  | #define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4) | 
|  | #define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5) | 
|  | #define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6) | 
|  | #define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7) | 
|  |  | 
|  | #define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0) | 
|  | #define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1) | 
|  |  | 
|  | #define	PREFETCH_CONFIG1_CS_SHIFT	24 | 
|  | #define	ECC_CONFIG_CS_SHIFT		1 | 
|  | #define	CS_MASK				0x7 | 
|  | #define	ENABLE_PREFETCH			(0x1 << 7) | 
|  | #define	DMA_MPU_MODE_SHIFT		2 | 
|  | #define	ECCSIZE0_SHIFT			12 | 
|  | #define	ECCSIZE1_SHIFT			22 | 
|  | #define	ECC1RESULTSIZE			0x1 | 
|  | #define	ECCCLEAR			0x100 | 
|  | #define	ECC1				0x1 | 
|  | #define	PREFETCH_FIFOTHRESHOLD_MAX	0x40 | 
|  | #define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8) | 
|  | #define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff) | 
|  | #define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F) | 
|  | #define	STATUS_BUFF_EMPTY		0x00000001 | 
|  |  | 
|  | #define OMAP24XX_DMA_GPMC		4 | 
|  |  | 
|  | /* oob info generated runtime depending on ecc algorithm and layout selected */ | 
|  | static struct nand_ecclayout omap_oobinfo; | 
|  | /* Define some generic bad / good block scan pattern which are used | 
|  | * while scanning a device for factory marked good / bad blocks | 
|  | */ | 
|  | static uint8_t scan_ff_pattern[] = { 0xff }; | 
|  | static struct nand_bbt_descr bb_descrip_flashbased = { | 
|  | .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, | 
|  | .offs = 0, | 
|  | .len = 1, | 
|  | .pattern = scan_ff_pattern, | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct omap_nand_info { | 
|  | struct nand_hw_control		controller; | 
|  | struct omap_nand_platform_data	*pdata; | 
|  | struct mtd_info			mtd; | 
|  | struct nand_chip		nand; | 
|  | struct platform_device		*pdev; | 
|  |  | 
|  | int				gpmc_cs; | 
|  | unsigned long			phys_base; | 
|  | unsigned long			mem_size; | 
|  | struct completion		comp; | 
|  | struct dma_chan			*dma; | 
|  | int				gpmc_irq_fifo; | 
|  | int				gpmc_irq_count; | 
|  | enum { | 
|  | OMAP_NAND_IO_READ = 0,	/* read */ | 
|  | OMAP_NAND_IO_WRITE,	/* write */ | 
|  | } iomode; | 
|  | u_char				*buf; | 
|  | int					buf_len; | 
|  | struct gpmc_nand_regs		reg; | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_OMAP_BCH | 
|  | struct bch_control             *bch; | 
|  | struct nand_ecclayout           ecclayout; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * omap_prefetch_enable - configures and starts prefetch transfer | 
|  | * @cs: cs (chip select) number | 
|  | * @fifo_th: fifo threshold to be used for read/ write | 
|  | * @dma_mode: dma mode enable (1) or disable (0) | 
|  | * @u32_count: number of bytes to be transferred | 
|  | * @is_write: prefetch read(0) or write post(1) mode | 
|  | */ | 
|  | static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, | 
|  | unsigned int u32_count, int is_write, struct omap_nand_info *info) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) | 
|  | return -1; | 
|  |  | 
|  | if (readl(info->reg.gpmc_prefetch_control)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Set the amount of bytes to be prefetched */ | 
|  | writel(u32_count, info->reg.gpmc_prefetch_config2); | 
|  |  | 
|  | /* Set dma/mpu mode, the prefetch read / post write and | 
|  | * enable the engine. Set which cs is has requested for. | 
|  | */ | 
|  | val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | | 
|  | PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | | 
|  | (dma_mode << DMA_MPU_MODE_SHIFT) | (0x1 & is_write)); | 
|  | writel(val, info->reg.gpmc_prefetch_config1); | 
|  |  | 
|  | /*  Start the prefetch engine */ | 
|  | writel(0x1, info->reg.gpmc_prefetch_control); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_prefetch_reset - disables and stops the prefetch engine | 
|  | */ | 
|  | static int omap_prefetch_reset(int cs, struct omap_nand_info *info) | 
|  | { | 
|  | u32 config1; | 
|  |  | 
|  | /* check if the same module/cs is trying to reset */ | 
|  | config1 = readl(info->reg.gpmc_prefetch_config1); | 
|  | if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Stop the PFPW engine */ | 
|  | writel(0x0, info->reg.gpmc_prefetch_control); | 
|  |  | 
|  | /* Reset/disable the PFPW engine */ | 
|  | writel(0x0, info->reg.gpmc_prefetch_config1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_hwcontrol - hardware specific access to control-lines | 
|  | * @mtd: MTD device structure | 
|  | * @cmd: command to device | 
|  | * @ctrl: | 
|  | * NAND_NCE: bit 0 -> don't care | 
|  | * NAND_CLE: bit 1 -> Command Latch | 
|  | * NAND_ALE: bit 2 -> Address Latch | 
|  | * | 
|  | * NOTE: boards may use different bits for these!! | 
|  | */ | 
|  | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  |  | 
|  | if (cmd != NAND_CMD_NONE) { | 
|  | if (ctrl & NAND_CLE) | 
|  | writeb(cmd, info->reg.gpmc_nand_command); | 
|  |  | 
|  | else if (ctrl & NAND_ALE) | 
|  | writeb(cmd, info->reg.gpmc_nand_address); | 
|  |  | 
|  | else /* NAND_NCE */ | 
|  | writeb(cmd, info->reg.gpmc_nand_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf8 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  |  | 
|  | ioread8_rep(nand->IO_ADDR_R, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf8 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | u_char *p = (u_char *)buf; | 
|  | u32	status = 0; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite8(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = readl(info->reg.gpmc_status) & | 
|  | STATUS_BUFF_EMPTY; | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf16 - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct nand_chip *nand = mtd->priv; | 
|  |  | 
|  | ioread16_rep(nand->IO_ADDR_R, buf, len / 2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf16 - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | u16 *p = (u16 *) buf; | 
|  | u32	status = 0; | 
|  | /* FIXME try bursts of writesw() or DMA ... */ | 
|  | len >>= 1; | 
|  |  | 
|  | while (len--) { | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | /* wait until buffer is available for write */ | 
|  | do { | 
|  | status = readl(info->reg.gpmc_status) & | 
|  | STATUS_BUFF_EMPTY; | 
|  | } while (!status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | uint32_t r_count = 0; | 
|  | int ret = 0; | 
|  | u32 *p = (u32 *)buf; | 
|  |  | 
|  | /* take care of subpage reads */ | 
|  | if (len % 4) { | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len % 4); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len % 4); | 
|  | p = (u32 *) (buf + len % 4); | 
|  | len -= len % 4; | 
|  | } | 
|  |  | 
|  | /* configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, (u_char *)p, len); | 
|  | else | 
|  | omap_read_buf8(mtd, (u_char *)p, len); | 
|  | } else { | 
|  | do { | 
|  | r_count = readl(info->reg.gpmc_prefetch_status); | 
|  | r_count = PREFETCH_STATUS_FIFO_CNT(r_count); | 
|  | r_count = r_count >> 2; | 
|  | ioread32_rep(info->nand.IO_ADDR_R, p, r_count); | 
|  | p += r_count; | 
|  | len -= r_count << 2; | 
|  | } while (len); | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | uint32_t w_count = 0; | 
|  | int i = 0, ret = 0; | 
|  | u16 *p = (u16 *)buf; | 
|  | unsigned long tim, limit; | 
|  | u32 val; | 
|  |  | 
|  | /* take care of subpage writes */ | 
|  | if (len % 2 != 0) { | 
|  | writeb(*buf, info->nand.IO_ADDR_W); | 
|  | p = (u16 *)(buf + 1); | 
|  | len--; | 
|  | } | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); | 
|  | if (ret) { | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, (u_char *)p, len); | 
|  | else | 
|  | omap_write_buf8(mtd, (u_char *)p, len); | 
|  | } else { | 
|  | while (len) { | 
|  | w_count = readl(info->reg.gpmc_prefetch_status); | 
|  | w_count = PREFETCH_STATUS_FIFO_CNT(w_count); | 
|  | w_count = w_count >> 1; | 
|  | for (i = 0; (i < w_count) && len; i++, len -= 2) | 
|  | iowrite16(*p++, info->nand.IO_ADDR_W); | 
|  | } | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * | 
|  | msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | do { | 
|  | cpu_relax(); | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_callback: callback on the completion of dma transfer | 
|  | * @data: pointer to completion data structure | 
|  | */ | 
|  | static void omap_nand_dma_callback(void *data) | 
|  | { | 
|  | complete((struct completion *) data); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_dma_transfer: configure and start dma transfer | 
|  | * @mtd: MTD device structure | 
|  | * @addr: virtual address in RAM of source/destination | 
|  | * @len: number of data bytes to be transferred | 
|  | * @is_write: flag for read/write operation | 
|  | */ | 
|  | static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, | 
|  | unsigned int len, int is_write) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : | 
|  | DMA_FROM_DEVICE; | 
|  | struct scatterlist sg; | 
|  | unsigned long tim, limit; | 
|  | unsigned n; | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (addr >= high_memory) { | 
|  | struct page *p1; | 
|  |  | 
|  | if (((size_t)addr & PAGE_MASK) != | 
|  | ((size_t)(addr + len - 1) & PAGE_MASK)) | 
|  | goto out_copy; | 
|  | p1 = vmalloc_to_page(addr); | 
|  | if (!p1) | 
|  | goto out_copy; | 
|  | addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK); | 
|  | } | 
|  |  | 
|  | sg_init_one(&sg, addr, len); | 
|  | n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | if (n == 0) { | 
|  | dev_err(&info->pdev->dev, | 
|  | "Couldn't DMA map a %d byte buffer\n", len); | 
|  | goto out_copy; | 
|  | } | 
|  |  | 
|  | tx = dmaengine_prep_slave_sg(info->dma, &sg, n, | 
|  | is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, | 
|  | DMA_PREP_INTERRUPT | DMA_CTRL_ACK); | 
|  | if (!tx) | 
|  | goto out_copy_unmap; | 
|  |  | 
|  | tx->callback = omap_nand_dma_callback; | 
|  | tx->callback_param = &info->comp; | 
|  | dmaengine_submit(tx); | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy_unmap; | 
|  |  | 
|  | init_completion(&info->comp); | 
|  | dma_async_issue_pending(info->dma); | 
|  |  | 
|  | /* setup and start DMA using dma_addr */ | 
|  | wait_for_completion(&info->comp); | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  |  | 
|  | do { | 
|  | cpu_relax(); | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  |  | 
|  | dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | return 0; | 
|  |  | 
|  | out_copy_unmap: | 
|  | dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf16(mtd, (u_char *) addr, len); | 
|  | else | 
|  | is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) | 
|  | : omap_write_buf8(mtd, (u_char *) addr, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_read_buf_dma_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, buf, len, 0x0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_write_buf_dma_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_dma_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | if (len <= mtd->oobsize) | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | else | 
|  | /* start transfer in DMA mode */ | 
|  | omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_nand_irq - GPMC irq handler | 
|  | * @this_irq: gpmc irq number | 
|  | * @dev: omap_nand_info structure pointer is passed here | 
|  | */ | 
|  | static irqreturn_t omap_nand_irq(int this_irq, void *dev) | 
|  | { | 
|  | struct omap_nand_info *info = (struct omap_nand_info *) dev; | 
|  | u32 bytes; | 
|  |  | 
|  | bytes = readl(info->reg.gpmc_prefetch_status); | 
|  | bytes = PREFETCH_STATUS_FIFO_CNT(bytes); | 
|  | bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */ | 
|  | if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ | 
|  | if (this_irq == info->gpmc_irq_count) | 
|  | goto done; | 
|  |  | 
|  | if (info->buf_len && (info->buf_len < bytes)) | 
|  | bytes = info->buf_len; | 
|  | else if (!info->buf_len) | 
|  | bytes = 0; | 
|  | iowrite32_rep(info->nand.IO_ADDR_W, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  | info->buf_len -= bytes; | 
|  |  | 
|  | } else { | 
|  | ioread32_rep(info->nand.IO_ADDR_R, | 
|  | (u32 *)info->buf, bytes >> 2); | 
|  | info->buf = info->buf + bytes; | 
|  |  | 
|  | if (this_irq == info->gpmc_irq_count) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | done: | 
|  | complete(&info->comp); | 
|  |  | 
|  | disable_irq_nosync(info->gpmc_irq_fifo); | 
|  | disable_irq_nosync(info->gpmc_irq_count); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_read_buf_irq_pref - read data from NAND controller into buffer | 
|  | * @mtd: MTD device structure | 
|  | * @buf: buffer to store date | 
|  | * @len: number of bytes to read | 
|  | */ | 
|  | static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | int ret = 0; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_read_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_READ; | 
|  | info->buf = buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /*  configure and start prefetch transfer */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  |  | 
|  | enable_irq(info->gpmc_irq_count); | 
|  | enable_irq(info->gpmc_irq_fifo); | 
|  |  | 
|  | /* waiting for read to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_read_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_read_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * omap_write_buf_irq_pref - write buffer to NAND controller | 
|  | * @mtd: MTD device structure | 
|  | * @buf: data buffer | 
|  | * @len: number of bytes to write | 
|  | */ | 
|  | static void omap_write_buf_irq_pref(struct mtd_info *mtd, | 
|  | const u_char *buf, int len) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, | 
|  | struct omap_nand_info, mtd); | 
|  | int ret = 0; | 
|  | unsigned long tim, limit; | 
|  | u32 val; | 
|  |  | 
|  | if (len <= mtd->oobsize) { | 
|  | omap_write_buf_pref(mtd, buf, len); | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->iomode = OMAP_NAND_IO_WRITE; | 
|  | info->buf = (u_char *) buf; | 
|  | init_completion(&info->comp); | 
|  |  | 
|  | /* configure and start prefetch transfer : size=24 */ | 
|  | ret = omap_prefetch_enable(info->gpmc_cs, | 
|  | (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); | 
|  | if (ret) | 
|  | /* PFPW engine is busy, use cpu copy method */ | 
|  | goto out_copy; | 
|  |  | 
|  | info->buf_len = len; | 
|  |  | 
|  | enable_irq(info->gpmc_irq_count); | 
|  | enable_irq(info->gpmc_irq_fifo); | 
|  |  | 
|  | /* waiting for write to complete */ | 
|  | wait_for_completion(&info->comp); | 
|  |  | 
|  | /* wait for data to flushed-out before reset the prefetch */ | 
|  | tim = 0; | 
|  | limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); | 
|  | do { | 
|  | val = readl(info->reg.gpmc_prefetch_status); | 
|  | val = PREFETCH_STATUS_COUNT(val); | 
|  | cpu_relax(); | 
|  | } while (val && (tim++ < limit)); | 
|  |  | 
|  | /* disable and stop the PFPW engine */ | 
|  | omap_prefetch_reset(info->gpmc_cs, info); | 
|  | return; | 
|  |  | 
|  | out_copy: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | omap_write_buf16(mtd, buf, len); | 
|  | else | 
|  | omap_write_buf8(mtd, buf, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * gen_true_ecc - This function will generate true ECC value | 
|  | * @ecc_buf: buffer to store ecc code | 
|  | * | 
|  | * This generated true ECC value can be used when correcting | 
|  | * data read from NAND flash memory core | 
|  | */ | 
|  | static void gen_true_ecc(u8 *ecc_buf) | 
|  | { | 
|  | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | | 
|  | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); | 
|  |  | 
|  | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | | 
|  | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); | 
|  | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | | 
|  | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); | 
|  | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | | 
|  | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data | 
|  | * @ecc_data1:  ecc code from nand spare area | 
|  | * @ecc_data2:  ecc code from hardware register obtained from hardware ecc | 
|  | * @page_data:  page data | 
|  | * | 
|  | * This function compares two ECC's and indicates if there is an error. | 
|  | * If the error can be corrected it will be corrected to the buffer. | 
|  | * If there is no error, %0 is returned. If there is an error but it | 
|  | * was corrected, %1 is returned. Otherwise, %-1 is returned. | 
|  | */ | 
|  | static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */ | 
|  | u8 *ecc_data2,	/* read from register */ | 
|  | u8 *page_data) | 
|  | { | 
|  | uint	i; | 
|  | u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; | 
|  | u8	comp0_bit[8], comp1_bit[8], comp2_bit[8]; | 
|  | u8	ecc_bit[24]; | 
|  | u8	ecc_sum = 0; | 
|  | u8	find_bit = 0; | 
|  | uint	find_byte = 0; | 
|  | int	isEccFF; | 
|  |  | 
|  | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); | 
|  |  | 
|  | gen_true_ecc(ecc_data1); | 
|  | gen_true_ecc(ecc_data2); | 
|  |  | 
|  | for (i = 0; i <= 2; i++) { | 
|  | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); | 
|  | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp0_bit[i]     = *ecc_data1 % 2; | 
|  | *ecc_data1	= *ecc_data1 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp1_bit[i]	 = *(ecc_data1 + 1) % 2; | 
|  | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | tmp2_bit[i]	 = *(ecc_data1 + 2) % 2; | 
|  | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp0_bit[i]     = *ecc_data2 % 2; | 
|  | *ecc_data2       = *ecc_data2 / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp1_bit[i]     = *(ecc_data2 + 1) % 2; | 
|  | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | comp2_bit[i]     = *(ecc_data2 + 2) % 2; | 
|  | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 6; i++) | 
|  | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; | 
|  |  | 
|  | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; | 
|  | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; | 
|  |  | 
|  | for (i = 0; i < 24; i++) | 
|  | ecc_sum += ecc_bit[i]; | 
|  |  | 
|  | switch (ecc_sum) { | 
|  | case 0: | 
|  | /* Not reached because this function is not called if | 
|  | *  ECC values are equal | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | case 1: | 
|  | /* Uncorrectable error */ | 
|  | pr_debug("ECC UNCORRECTED_ERROR 1\n"); | 
|  | return -1; | 
|  |  | 
|  | case 11: | 
|  | /* UN-Correctable error */ | 
|  | pr_debug("ECC UNCORRECTED_ERROR B\n"); | 
|  | return -1; | 
|  |  | 
|  | case 12: | 
|  | /* Correctable error */ | 
|  | find_byte = (ecc_bit[23] << 8) + | 
|  | (ecc_bit[21] << 7) + | 
|  | (ecc_bit[19] << 6) + | 
|  | (ecc_bit[17] << 5) + | 
|  | (ecc_bit[15] << 4) + | 
|  | (ecc_bit[13] << 3) + | 
|  | (ecc_bit[11] << 2) + | 
|  | (ecc_bit[9]  << 1) + | 
|  | ecc_bit[7]; | 
|  |  | 
|  | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; | 
|  |  | 
|  | pr_debug("Correcting single bit ECC error at offset: " | 
|  | "%d, bit: %d\n", find_byte, find_bit); | 
|  |  | 
|  | page_data[find_byte] ^= (1 << find_bit); | 
|  |  | 
|  | return 1; | 
|  | default: | 
|  | if (isEccFF) { | 
|  | if (ecc_data2[0] == 0 && | 
|  | ecc_data2[1] == 0 && | 
|  | ecc_data2[2] == 0) | 
|  | return 0; | 
|  | } | 
|  | pr_debug("UNCORRECTED_ERROR default\n"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_correct_data - Compares the ECC read with HW generated ECC | 
|  | * @mtd: MTD device structure | 
|  | * @dat: page data | 
|  | * @read_ecc: ecc read from nand flash | 
|  | * @calc_ecc: ecc read from HW ECC registers | 
|  | * | 
|  | * Compares the ecc read from nand spare area with ECC registers values | 
|  | * and if ECC's mismatched, it will call 'omap_compare_ecc' for error | 
|  | * detection and correction. If there are no errors, %0 is returned. If | 
|  | * there were errors and all of the errors were corrected, the number of | 
|  | * corrected errors is returned. If uncorrectable errors exist, %-1 is | 
|  | * returned. | 
|  | */ | 
|  | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | int blockCnt = 0, i = 0, ret = 0; | 
|  | int stat = 0; | 
|  |  | 
|  | /* Ex NAND_ECC_HW12_2048 */ | 
|  | if ((info->nand.ecc.mode == NAND_ECC_HW) && | 
|  | (info->nand.ecc.size  == 2048)) | 
|  | blockCnt = 4; | 
|  | else | 
|  | blockCnt = 1; | 
|  |  | 
|  | for (i = 0; i < blockCnt; i++) { | 
|  | if (memcmp(read_ecc, calc_ecc, 3) != 0) { | 
|  | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | /* keep track of the number of corrected errors */ | 
|  | stat += ret; | 
|  | } | 
|  | read_ecc += 3; | 
|  | calc_ecc += 3; | 
|  | dat      += 512; | 
|  | } | 
|  | return stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_calcuate_ecc - Generate non-inverted ECC bytes. | 
|  | * @mtd: MTD device structure | 
|  | * @dat: The pointer to data on which ecc is computed | 
|  | * @ecc_code: The ecc_code buffer | 
|  | * | 
|  | * Using noninverted ECC can be considered ugly since writing a blank | 
|  | * page ie. padding will clear the ECC bytes. This is no problem as long | 
|  | * nobody is trying to write data on the seemingly unused page. Reading | 
|  | * an erased page will produce an ECC mismatch between generated and read | 
|  | * ECC bytes that has to be dealt with separately. | 
|  | */ | 
|  | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | u32 val; | 
|  |  | 
|  | val = readl(info->reg.gpmc_ecc_config); | 
|  | if (((val >> ECC_CONFIG_CS_SHIFT)  & ~CS_MASK) != info->gpmc_cs) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* read ecc result */ | 
|  | val = readl(info->reg.gpmc_ecc1_result); | 
|  | *ecc_code++ = val;          /* P128e, ..., P1e */ | 
|  | *ecc_code++ = val >> 16;    /* P128o, ..., P1o */ | 
|  | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ | 
|  | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_enable_hwecc - This function enables the hardware ecc functionality | 
|  | * @mtd: MTD device structure | 
|  | * @mode: Read/Write mode | 
|  | */ | 
|  | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | 
|  | u32 val; | 
|  |  | 
|  | /* clear ecc and enable bits */ | 
|  | val = ECCCLEAR | ECC1; | 
|  | writel(val, info->reg.gpmc_ecc_control); | 
|  |  | 
|  | /* program ecc and result sizes */ | 
|  | val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | | 
|  | ECC1RESULTSIZE); | 
|  | writel(val, info->reg.gpmc_ecc_size_config); | 
|  |  | 
|  | switch (mode) { | 
|  | case NAND_ECC_READ: | 
|  | case NAND_ECC_WRITE: | 
|  | writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); | 
|  | break; | 
|  | case NAND_ECC_READSYN: | 
|  | writel(ECCCLEAR, info->reg.gpmc_ecc_control); | 
|  | break; | 
|  | default: | 
|  | dev_info(&info->pdev->dev, | 
|  | "error: unrecognized Mode[%d]!\n", mode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */ | 
|  | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | 
|  | writel(val, info->reg.gpmc_ecc_config); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_wait - wait until the command is done | 
|  | * @mtd: MTD device structure | 
|  | * @chip: NAND Chip structure | 
|  | * | 
|  | * Wait function is called during Program and erase operations and | 
|  | * the way it is called from MTD layer, we should wait till the NAND | 
|  | * chip is ready after the programming/erase operation has completed. | 
|  | * | 
|  | * Erase can take up to 400ms and program up to 20ms according to | 
|  | * general NAND and SmartMedia specs | 
|  | */ | 
|  | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | unsigned long timeo = jiffies; | 
|  | int status, state = this->state; | 
|  |  | 
|  | if (state == FL_ERASING) | 
|  | timeo += (HZ * 400) / 1000; | 
|  | else | 
|  | timeo += (HZ * 20) / 1000; | 
|  |  | 
|  | writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); | 
|  | while (time_before(jiffies, timeo)) { | 
|  | status = readb(info->reg.gpmc_nand_data); | 
|  | if (status & NAND_STATUS_READY) | 
|  | break; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | status = readb(info->reg.gpmc_nand_data); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap_dev_ready - calls the platform specific dev_ready function | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static int omap_dev_ready(struct mtd_info *mtd) | 
|  | { | 
|  | unsigned int val = 0; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  |  | 
|  | val = readl(info->reg.gpmc_status); | 
|  |  | 
|  | if ((val & 0x100) == 0x100) { | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_OMAP_BCH | 
|  |  | 
|  | /** | 
|  | * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction | 
|  | * @mtd: MTD device structure | 
|  | * @mode: Read/Write mode | 
|  | */ | 
|  | static void omap3_enable_hwecc_bch(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | int nerrors; | 
|  | unsigned int dev_width, nsectors; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | struct nand_chip *chip = mtd->priv; | 
|  | u32 val; | 
|  |  | 
|  | nerrors = (info->nand.ecc.bytes == 13) ? 8 : 4; | 
|  | dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | 
|  | nsectors = 1; | 
|  | /* | 
|  | * Program GPMC to perform correction on one 512-byte sector at a time. | 
|  | * Using 4 sectors at a time (i.e. ecc.size = 2048) is also possible and | 
|  | * gives a slight (5%) performance gain (but requires additional code). | 
|  | */ | 
|  |  | 
|  | writel(ECC1, info->reg.gpmc_ecc_control); | 
|  |  | 
|  | /* | 
|  | * When using BCH, sector size is hardcoded to 512 bytes. | 
|  | * Here we are using wrapping mode 6 both for reading and writing, with: | 
|  | *  size0 = 0  (no additional protected byte in spare area) | 
|  | *  size1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) | 
|  | */ | 
|  | val = (32 << ECCSIZE1_SHIFT) | (0 << ECCSIZE0_SHIFT); | 
|  | writel(val, info->reg.gpmc_ecc_size_config); | 
|  |  | 
|  | /* BCH configuration */ | 
|  | val = ((1                        << 16) | /* enable BCH */ | 
|  | (((nerrors == 8) ? 1 : 0) << 12) | /* 8 or 4 bits */ | 
|  | (0x06                     <<  8) | /* wrap mode = 6 */ | 
|  | (dev_width                <<  7) | /* bus width */ | 
|  | (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */ | 
|  | (info->gpmc_cs            <<  1) | /* ECC CS */ | 
|  | (0x1));                            /* enable ECC */ | 
|  |  | 
|  | writel(val, info->reg.gpmc_ecc_config); | 
|  |  | 
|  | /* clear ecc and enable bits */ | 
|  | writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes | 
|  | * @mtd: MTD device structure | 
|  | * @dat: The pointer to data on which ecc is computed | 
|  | * @ecc_code: The ecc_code buffer | 
|  | */ | 
|  | static int omap3_calculate_ecc_bch4(struct mtd_info *mtd, const u_char *dat, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | unsigned long nsectors, val1, val2; | 
|  | int i; | 
|  |  | 
|  | nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; | 
|  |  | 
|  | for (i = 0; i < nsectors; i++) { | 
|  |  | 
|  | /* Read hw-computed remainder */ | 
|  | val1 = readl(info->reg.gpmc_bch_result0[i]); | 
|  | val2 = readl(info->reg.gpmc_bch_result1[i]); | 
|  |  | 
|  | /* | 
|  | * Add constant polynomial to remainder, in order to get an ecc | 
|  | * sequence of 0xFFs for a buffer filled with 0xFFs; and | 
|  | * left-justify the resulting polynomial. | 
|  | */ | 
|  | *ecc_code++ = 0x28 ^ ((val2 >> 12) & 0xFF); | 
|  | *ecc_code++ = 0x13 ^ ((val2 >>  4) & 0xFF); | 
|  | *ecc_code++ = 0xcc ^ (((val2 & 0xF) << 4)|((val1 >> 28) & 0xF)); | 
|  | *ecc_code++ = 0x39 ^ ((val1 >> 20) & 0xFF); | 
|  | *ecc_code++ = 0x96 ^ ((val1 >> 12) & 0xFF); | 
|  | *ecc_code++ = 0xac ^ ((val1 >> 4) & 0xFF); | 
|  | *ecc_code++ = 0x7f ^ ((val1 & 0xF) << 4); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes | 
|  | * @mtd: MTD device structure | 
|  | * @dat: The pointer to data on which ecc is computed | 
|  | * @ecc_code: The ecc_code buffer | 
|  | */ | 
|  | static int omap3_calculate_ecc_bch8(struct mtd_info *mtd, const u_char *dat, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | unsigned long nsectors, val1, val2, val3, val4; | 
|  | int i; | 
|  |  | 
|  | nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; | 
|  |  | 
|  | for (i = 0; i < nsectors; i++) { | 
|  |  | 
|  | /* Read hw-computed remainder */ | 
|  | val1 = readl(info->reg.gpmc_bch_result0[i]); | 
|  | val2 = readl(info->reg.gpmc_bch_result1[i]); | 
|  | val3 = readl(info->reg.gpmc_bch_result2[i]); | 
|  | val4 = readl(info->reg.gpmc_bch_result3[i]); | 
|  |  | 
|  | /* | 
|  | * Add constant polynomial to remainder, in order to get an ecc | 
|  | * sequence of 0xFFs for a buffer filled with 0xFFs. | 
|  | */ | 
|  | *ecc_code++ = 0xef ^ (val4 & 0xFF); | 
|  | *ecc_code++ = 0x51 ^ ((val3 >> 24) & 0xFF); | 
|  | *ecc_code++ = 0x2e ^ ((val3 >> 16) & 0xFF); | 
|  | *ecc_code++ = 0x09 ^ ((val3 >> 8) & 0xFF); | 
|  | *ecc_code++ = 0xed ^ (val3 & 0xFF); | 
|  | *ecc_code++ = 0x93 ^ ((val2 >> 24) & 0xFF); | 
|  | *ecc_code++ = 0x9a ^ ((val2 >> 16) & 0xFF); | 
|  | *ecc_code++ = 0xc2 ^ ((val2 >> 8) & 0xFF); | 
|  | *ecc_code++ = 0x97 ^ (val2 & 0xFF); | 
|  | *ecc_code++ = 0x79 ^ ((val1 >> 24) & 0xFF); | 
|  | *ecc_code++ = 0xe5 ^ ((val1 >> 16) & 0xFF); | 
|  | *ecc_code++ = 0x24 ^ ((val1 >> 8) & 0xFF); | 
|  | *ecc_code++ = 0xb5 ^ (val1 & 0xFF); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_correct_data_bch - Decode received data and correct errors | 
|  | * @mtd: MTD device structure | 
|  | * @data: page data | 
|  | * @read_ecc: ecc read from nand flash | 
|  | * @calc_ecc: ecc read from HW ECC registers | 
|  | */ | 
|  | static int omap3_correct_data_bch(struct mtd_info *mtd, u_char *data, | 
|  | u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | int i, count; | 
|  | /* cannot correct more than 8 errors */ | 
|  | unsigned int errloc[8]; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  |  | 
|  | count = decode_bch(info->bch, NULL, 512, read_ecc, calc_ecc, NULL, | 
|  | errloc); | 
|  | if (count > 0) { | 
|  | /* correct errors */ | 
|  | for (i = 0; i < count; i++) { | 
|  | /* correct data only, not ecc bytes */ | 
|  | if (errloc[i] < 8*512) | 
|  | data[errloc[i]/8] ^= 1 << (errloc[i] & 7); | 
|  | pr_debug("corrected bitflip %u\n", errloc[i]); | 
|  | } | 
|  | } else if (count < 0) { | 
|  | pr_err("ecc unrecoverable error\n"); | 
|  | } | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_free_bch - Release BCH ecc resources | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static void omap3_free_bch(struct mtd_info *mtd) | 
|  | { | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | if (info->bch) { | 
|  | free_bch(info->bch); | 
|  | info->bch = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_init_bch - Initialize BCH ECC | 
|  | * @mtd: MTD device structure | 
|  | * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW) | 
|  | */ | 
|  | static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) | 
|  | { | 
|  | int max_errors; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | #ifdef CONFIG_MTD_NAND_OMAP_BCH8 | 
|  | const int hw_errors = 8; | 
|  | #else | 
|  | const int hw_errors = 4; | 
|  | #endif | 
|  | info->bch = NULL; | 
|  |  | 
|  | max_errors = (ecc_opt == OMAP_ECC_BCH8_CODE_HW) ? 8 : 4; | 
|  | if (max_errors != hw_errors) { | 
|  | pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported", | 
|  | max_errors, hw_errors); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* software bch library is only used to detect and locate errors */ | 
|  | info->bch = init_bch(13, max_errors, 0x201b /* hw polynomial */); | 
|  | if (!info->bch) | 
|  | goto fail; | 
|  |  | 
|  | info->nand.ecc.size    = 512; | 
|  | info->nand.ecc.hwctl   = omap3_enable_hwecc_bch; | 
|  | info->nand.ecc.correct = omap3_correct_data_bch; | 
|  | info->nand.ecc.mode    = NAND_ECC_HW; | 
|  |  | 
|  | /* | 
|  | * The number of corrected errors in an ecc block that will trigger | 
|  | * block scrubbing defaults to the ecc strength (4 or 8). | 
|  | * Set mtd->bitflip_threshold here to define a custom threshold. | 
|  | */ | 
|  |  | 
|  | if (max_errors == 8) { | 
|  | info->nand.ecc.strength  = 8; | 
|  | info->nand.ecc.bytes     = 13; | 
|  | info->nand.ecc.calculate = omap3_calculate_ecc_bch8; | 
|  | } else { | 
|  | info->nand.ecc.strength  = 4; | 
|  | info->nand.ecc.bytes     = 7; | 
|  | info->nand.ecc.calculate = omap3_calculate_ecc_bch4; | 
|  | } | 
|  |  | 
|  | pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors); | 
|  | return 0; | 
|  | fail: | 
|  | omap3_free_bch(mtd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * omap3_init_bch_tail - Build an oob layout for BCH ECC correction. | 
|  | * @mtd: MTD device structure | 
|  | */ | 
|  | static int omap3_init_bch_tail(struct mtd_info *mtd) | 
|  | { | 
|  | int i, steps; | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | struct nand_ecclayout *layout = &info->ecclayout; | 
|  |  | 
|  | /* build oob layout */ | 
|  | steps = mtd->writesize/info->nand.ecc.size; | 
|  | layout->eccbytes = steps*info->nand.ecc.bytes; | 
|  |  | 
|  | /* do not bother creating special oob layouts for small page devices */ | 
|  | if (mtd->oobsize < 64) { | 
|  | pr_err("BCH ecc is not supported on small page devices\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* reserve 2 bytes for bad block marker */ | 
|  | if (layout->eccbytes+2 > mtd->oobsize) { | 
|  | pr_err("no oob layout available for oobsize %d eccbytes %u\n", | 
|  | mtd->oobsize, layout->eccbytes); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* put ecc bytes at oob tail */ | 
|  | for (i = 0; i < layout->eccbytes; i++) | 
|  | layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; | 
|  |  | 
|  | layout->oobfree[0].offset = 2; | 
|  | layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; | 
|  | info->nand.ecc.layout = layout; | 
|  |  | 
|  | if (!(info->nand.options & NAND_BUSWIDTH_16)) | 
|  | info->nand.badblock_pattern = &bb_descrip_flashbased; | 
|  | return 0; | 
|  | fail: | 
|  | omap3_free_bch(mtd); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #else | 
|  | static int omap3_init_bch(struct mtd_info *mtd, int ecc_opt) | 
|  | { | 
|  | pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n"); | 
|  | return -1; | 
|  | } | 
|  | static int omap3_init_bch_tail(struct mtd_info *mtd) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  | static void omap3_free_bch(struct mtd_info *mtd) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_MTD_NAND_OMAP_BCH */ | 
|  |  | 
|  | static int omap_nand_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct omap_nand_info		*info; | 
|  | struct omap_nand_platform_data	*pdata; | 
|  | int				err; | 
|  | int				i, offset; | 
|  | dma_cap_mask_t mask; | 
|  | unsigned sig; | 
|  | struct resource			*res; | 
|  | struct mtd_part_parser_data	ppdata = {}; | 
|  |  | 
|  | pdata = pdev->dev.platform_data; | 
|  | if (pdata == NULL) { | 
|  | dev_err(&pdev->dev, "platform data missing\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | platform_set_drvdata(pdev, info); | 
|  |  | 
|  | spin_lock_init(&info->controller.lock); | 
|  | init_waitqueue_head(&info->controller.wq); | 
|  |  | 
|  | info->pdev = pdev; | 
|  |  | 
|  | info->gpmc_cs		= pdata->cs; | 
|  | info->reg		= pdata->reg; | 
|  |  | 
|  | info->mtd.priv		= &info->nand; | 
|  | info->mtd.name		= dev_name(&pdev->dev); | 
|  | info->mtd.owner		= THIS_MODULE; | 
|  |  | 
|  | info->nand.options	= pdata->devsize; | 
|  | info->nand.options	|= NAND_SKIP_BBTSCAN; | 
|  |  | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (res == NULL) { | 
|  | err = -EINVAL; | 
|  | dev_err(&pdev->dev, "error getting memory resource\n"); | 
|  | goto out_free_info; | 
|  | } | 
|  |  | 
|  | info->phys_base = res->start; | 
|  | info->mem_size = resource_size(res); | 
|  |  | 
|  | if (!request_mem_region(info->phys_base, info->mem_size, | 
|  | pdev->dev.driver->name)) { | 
|  | err = -EBUSY; | 
|  | goto out_free_info; | 
|  | } | 
|  |  | 
|  | info->nand.IO_ADDR_R = ioremap(info->phys_base, info->mem_size); | 
|  | if (!info->nand.IO_ADDR_R) { | 
|  | err = -ENOMEM; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | info->nand.controller = &info->controller; | 
|  |  | 
|  | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; | 
|  | info->nand.cmd_ctrl  = omap_hwcontrol; | 
|  |  | 
|  | /* | 
|  | * If RDY/BSY line is connected to OMAP then use the omap ready | 
|  | * function and the generic nand_wait function which reads the status | 
|  | * register after monitoring the RDY/BSY line. Otherwise use a standard | 
|  | * chip delay which is slightly more than tR (AC Timing) of the NAND | 
|  | * device and read status register until you get a failure or success | 
|  | */ | 
|  | if (pdata->dev_ready) { | 
|  | info->nand.dev_ready = omap_dev_ready; | 
|  | info->nand.chip_delay = 0; | 
|  | } else { | 
|  | info->nand.waitfunc = omap_wait; | 
|  | info->nand.chip_delay = 50; | 
|  | } | 
|  |  | 
|  | switch (pdata->xfer_type) { | 
|  | case NAND_OMAP_PREFETCH_POLLED: | 
|  | info->nand.read_buf   = omap_read_buf_pref; | 
|  | info->nand.write_buf  = omap_write_buf_pref; | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_POLLED: | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) { | 
|  | info->nand.read_buf   = omap_read_buf16; | 
|  | info->nand.write_buf  = omap_write_buf16; | 
|  | } else { | 
|  | info->nand.read_buf   = omap_read_buf8; | 
|  | info->nand.write_buf  = omap_write_buf8; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_DMA: | 
|  | dma_cap_zero(mask); | 
|  | dma_cap_set(DMA_SLAVE, mask); | 
|  | sig = OMAP24XX_DMA_GPMC; | 
|  | info->dma = dma_request_channel(mask, omap_dma_filter_fn, &sig); | 
|  | if (!info->dma) { | 
|  | dev_err(&pdev->dev, "DMA engine request failed\n"); | 
|  | err = -ENXIO; | 
|  | goto out_release_mem_region; | 
|  | } else { | 
|  | struct dma_slave_config cfg; | 
|  |  | 
|  | memset(&cfg, 0, sizeof(cfg)); | 
|  | cfg.src_addr = info->phys_base; | 
|  | cfg.dst_addr = info->phys_base; | 
|  | cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; | 
|  | cfg.src_maxburst = 16; | 
|  | cfg.dst_maxburst = 16; | 
|  | err = dmaengine_slave_config(info->dma, &cfg); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", | 
|  | err); | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | info->nand.read_buf   = omap_read_buf_dma_pref; | 
|  | info->nand.write_buf  = omap_write_buf_dma_pref; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case NAND_OMAP_PREFETCH_IRQ: | 
|  | info->gpmc_irq_fifo = platform_get_irq(pdev, 0); | 
|  | if (info->gpmc_irq_fifo <= 0) { | 
|  | dev_err(&pdev->dev, "error getting fifo irq\n"); | 
|  | err = -ENODEV; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | err = request_irq(info->gpmc_irq_fifo,	omap_nand_irq, | 
|  | IRQF_SHARED, "gpmc-nand-fifo", info); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "requesting irq(%d) error:%d", | 
|  | info->gpmc_irq_fifo, err); | 
|  | info->gpmc_irq_fifo = 0; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | info->gpmc_irq_count = platform_get_irq(pdev, 1); | 
|  | if (info->gpmc_irq_count <= 0) { | 
|  | dev_err(&pdev->dev, "error getting count irq\n"); | 
|  | err = -ENODEV; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | err = request_irq(info->gpmc_irq_count,	omap_nand_irq, | 
|  | IRQF_SHARED, "gpmc-nand-count", info); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "requesting irq(%d) error:%d", | 
|  | info->gpmc_irq_count, err); | 
|  | info->gpmc_irq_count = 0; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | info->nand.read_buf  = omap_read_buf_irq_pref; | 
|  | info->nand.write_buf = omap_write_buf_irq_pref; | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(&pdev->dev, | 
|  | "xfer_type(%d) not supported!\n", pdata->xfer_type); | 
|  | err = -EINVAL; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | /* select the ecc type */ | 
|  | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT) | 
|  | info->nand.ecc.mode = NAND_ECC_SOFT; | 
|  | else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) || | 
|  | (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) { | 
|  | info->nand.ecc.bytes            = 3; | 
|  | info->nand.ecc.size             = 512; | 
|  | info->nand.ecc.strength         = 1; | 
|  | info->nand.ecc.calculate        = omap_calculate_ecc; | 
|  | info->nand.ecc.hwctl            = omap_enable_hwecc; | 
|  | info->nand.ecc.correct          = omap_correct_data; | 
|  | info->nand.ecc.mode             = NAND_ECC_HW; | 
|  | } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || | 
|  | (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { | 
|  | err = omap3_init_bch(&info->mtd, pdata->ecc_opt); | 
|  | if (err) { | 
|  | err = -EINVAL; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* DIP switches on some boards change between 8 and 16 bit | 
|  | * bus widths for flash.  Try the other width if the first try fails. | 
|  | */ | 
|  | if (nand_scan_ident(&info->mtd, 1, NULL)) { | 
|  | info->nand.options ^= NAND_BUSWIDTH_16; | 
|  | if (nand_scan_ident(&info->mtd, 1, NULL)) { | 
|  | err = -ENXIO; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* rom code layout */ | 
|  | if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) { | 
|  |  | 
|  | if (info->nand.options & NAND_BUSWIDTH_16) | 
|  | offset = 2; | 
|  | else { | 
|  | offset = 1; | 
|  | info->nand.badblock_pattern = &bb_descrip_flashbased; | 
|  | } | 
|  | omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16); | 
|  | for (i = 0; i < omap_oobinfo.eccbytes; i++) | 
|  | omap_oobinfo.eccpos[i] = i+offset; | 
|  |  | 
|  | omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes; | 
|  | omap_oobinfo.oobfree->length = info->mtd.oobsize - | 
|  | (offset + omap_oobinfo.eccbytes); | 
|  |  | 
|  | info->nand.ecc.layout = &omap_oobinfo; | 
|  | } else if ((pdata->ecc_opt == OMAP_ECC_BCH4_CODE_HW) || | 
|  | (pdata->ecc_opt == OMAP_ECC_BCH8_CODE_HW)) { | 
|  | /* build OOB layout for BCH ECC correction */ | 
|  | err = omap3_init_bch_tail(&info->mtd); | 
|  | if (err) { | 
|  | err = -EINVAL; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* second phase scan */ | 
|  | if (nand_scan_tail(&info->mtd)) { | 
|  | err = -ENXIO; | 
|  | goto out_release_mem_region; | 
|  | } | 
|  |  | 
|  | ppdata.of_node = pdata->of_node; | 
|  | mtd_device_parse_register(&info->mtd, NULL, &ppdata, pdata->parts, | 
|  | pdata->nr_parts); | 
|  |  | 
|  | platform_set_drvdata(pdev, &info->mtd); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_release_mem_region: | 
|  | if (info->dma) | 
|  | dma_release_channel(info->dma); | 
|  | if (info->gpmc_irq_count > 0) | 
|  | free_irq(info->gpmc_irq_count, info); | 
|  | if (info->gpmc_irq_fifo > 0) | 
|  | free_irq(info->gpmc_irq_fifo, info); | 
|  | release_mem_region(info->phys_base, info->mem_size); | 
|  | out_free_info: | 
|  | kfree(info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int omap_nand_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct mtd_info *mtd = platform_get_drvdata(pdev); | 
|  | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | 
|  | mtd); | 
|  | omap3_free_bch(&info->mtd); | 
|  |  | 
|  | platform_set_drvdata(pdev, NULL); | 
|  | if (info->dma) | 
|  | dma_release_channel(info->dma); | 
|  |  | 
|  | if (info->gpmc_irq_count > 0) | 
|  | free_irq(info->gpmc_irq_count, info); | 
|  | if (info->gpmc_irq_fifo > 0) | 
|  | free_irq(info->gpmc_irq_fifo, info); | 
|  |  | 
|  | /* Release NAND device, its internal structures and partitions */ | 
|  | nand_release(&info->mtd); | 
|  | iounmap(info->nand.IO_ADDR_R); | 
|  | release_mem_region(info->phys_base, info->mem_size); | 
|  | kfree(info); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct platform_driver omap_nand_driver = { | 
|  | .probe		= omap_nand_probe, | 
|  | .remove		= omap_nand_remove, | 
|  | .driver		= { | 
|  | .name	= DRIVER_NAME, | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | module_platform_driver(omap_nand_driver); | 
|  |  | 
|  | MODULE_ALIAS("platform:" DRIVER_NAME); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); |