| /* | 
 |  * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | 
 |  * August 2002: added remote node KVA remap - Martin J. Bligh  | 
 |  * | 
 |  * Copyright (C) 2002, IBM Corp. | 
 |  * | 
 |  * All rights reserved.           | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  * NON INFRINGEMENT.  See the GNU General Public License for more | 
 |  * details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/acpi.h> | 
 |  | 
 | #include <asm/e820.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/mmzone.h> | 
 | #include <asm/bios_ebda.h> | 
 | #include <asm/proto.h> | 
 |  | 
 | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | /* | 
 |  * numa interface - we expect the numa architecture specific code to have | 
 |  *                  populated the following initialisation. | 
 |  * | 
 |  * 1) node_online_map  - the map of all nodes configured (online) in the system | 
 |  * 2) node_start_pfn   - the starting page frame number for a node | 
 |  * 3) node_end_pfn     - the ending page fram number for a node | 
 |  */ | 
 | unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; | 
 | unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; | 
 |  | 
 |  | 
 | #ifdef CONFIG_DISCONTIGMEM | 
 | /* | 
 |  * 4) physnode_map     - the mapping between a pfn and owning node | 
 |  * physnode_map keeps track of the physical memory layout of a generic | 
 |  * numa node on a 64Mb break (each element of the array will | 
 |  * represent 64Mb of memory and will be marked by the node id.  so, | 
 |  * if the first gig is on node 0, and the second gig is on node 1 | 
 |  * physnode_map will contain: | 
 |  * | 
 |  *     physnode_map[0-15] = 0; | 
 |  *     physnode_map[16-31] = 1; | 
 |  *     physnode_map[32- ] = -1; | 
 |  */ | 
 | s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | 
 | EXPORT_SYMBOL(physnode_map); | 
 |  | 
 | void memory_present(int nid, unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	printk(KERN_INFO "Node: %d, start_pfn: %lx, end_pfn: %lx\n", | 
 | 			nid, start, end); | 
 | 	printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid); | 
 | 	printk(KERN_DEBUG "  "); | 
 | 	for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | 
 | 		physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | 
 | 		printk(KERN_CONT "%lx ", pfn); | 
 | 	} | 
 | 	printk(KERN_CONT "\n"); | 
 | } | 
 |  | 
 | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
 | 					      unsigned long end_pfn) | 
 | { | 
 | 	unsigned long nr_pages = end_pfn - start_pfn; | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return 0; | 
 |  | 
 | 	return (nr_pages + 1) * sizeof(struct page); | 
 | } | 
 | #endif | 
 |  | 
 | extern unsigned long find_max_low_pfn(void); | 
 | extern unsigned long highend_pfn, highstart_pfn; | 
 |  | 
 | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | 
 |  | 
 | unsigned long node_remap_size[MAX_NUMNODES]; | 
 | static void *node_remap_start_vaddr[MAX_NUMNODES]; | 
 | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | 
 |  | 
 | static unsigned long kva_start_pfn; | 
 | static unsigned long kva_pages; | 
 | /* | 
 |  * FLAT - support for basic PC memory model with discontig enabled, essentially | 
 |  *        a single node with all available processors in it with a flat | 
 |  *        memory map. | 
 |  */ | 
 | int __init get_memcfg_numa_flat(void) | 
 | { | 
 | 	printk(KERN_DEBUG "NUMA - single node, flat memory mode\n"); | 
 |  | 
 | 	node_start_pfn[0] = 0; | 
 | 	node_end_pfn[0] = max_pfn; | 
 | 	memblock_x86_register_active_regions(0, 0, max_pfn); | 
 | 	memory_present(0, 0, max_pfn); | 
 | 	node_remap_size[0] = node_memmap_size_bytes(0, 0, max_pfn); | 
 |  | 
 |         /* Indicate there is one node available. */ | 
 | 	nodes_clear(node_online_map); | 
 | 	node_set_online(0); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the highest page frame number we have available for the node | 
 |  */ | 
 | static void __init propagate_e820_map_node(int nid) | 
 | { | 
 | 	if (node_end_pfn[nid] > max_pfn) | 
 | 		node_end_pfn[nid] = max_pfn; | 
 | 	/* | 
 | 	 * if a user has given mem=XXXX, then we need to make sure  | 
 | 	 * that the node _starts_ before that, too, not just ends | 
 | 	 */ | 
 | 	if (node_start_pfn[nid] > max_pfn) | 
 | 		node_start_pfn[nid] = max_pfn; | 
 | 	BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); | 
 | } | 
 |  | 
 | /*  | 
 |  * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | 
 |  * method.  For node zero take this from the bottom of memory, for | 
 |  * subsequent nodes place them at node_remap_start_vaddr which contains | 
 |  * node local data in physically node local memory.  See setup_memory() | 
 |  * for details. | 
 |  */ | 
 | static void __init allocate_pgdat(int nid) | 
 | { | 
 | 	char buf[16]; | 
 |  | 
 | 	if (node_has_online_mem(nid) && node_remap_start_vaddr[nid]) | 
 | 		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | 
 | 	else { | 
 | 		unsigned long pgdat_phys; | 
 | 		pgdat_phys = memblock_find_in_range(min_low_pfn<<PAGE_SHIFT, | 
 | 				 max_pfn_mapped<<PAGE_SHIFT, | 
 | 				 sizeof(pg_data_t), | 
 | 				 PAGE_SIZE); | 
 | 		NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(pgdat_phys>>PAGE_SHIFT)); | 
 | 		memset(buf, 0, sizeof(buf)); | 
 | 		sprintf(buf, "NODE_DATA %d",  nid); | 
 | 		memblock_x86_reserve_range(pgdat_phys, pgdat_phys + sizeof(pg_data_t), buf); | 
 | 	} | 
 | 	printk(KERN_DEBUG "allocate_pgdat: node %d NODE_DATA %08lx\n", | 
 | 		nid, (unsigned long)NODE_DATA(nid)); | 
 | } | 
 |  | 
 | /* | 
 |  * In the DISCONTIGMEM and SPARSEMEM memory model, a portion of the kernel | 
 |  * virtual address space (KVA) is reserved and portions of nodes are mapped | 
 |  * using it. This is to allow node-local memory to be allocated for | 
 |  * structures that would normally require ZONE_NORMAL. The memory is | 
 |  * allocated with alloc_remap() and callers should be prepared to allocate | 
 |  * from the bootmem allocator instead. | 
 |  */ | 
 | static unsigned long node_remap_start_pfn[MAX_NUMNODES]; | 
 | static void *node_remap_end_vaddr[MAX_NUMNODES]; | 
 | static void *node_remap_alloc_vaddr[MAX_NUMNODES]; | 
 | static unsigned long node_remap_offset[MAX_NUMNODES]; | 
 |  | 
 | void *alloc_remap(int nid, unsigned long size) | 
 | { | 
 | 	void *allocation = node_remap_alloc_vaddr[nid]; | 
 |  | 
 | 	size = ALIGN(size, L1_CACHE_BYTES); | 
 |  | 
 | 	if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) | 
 | 		return NULL; | 
 |  | 
 | 	node_remap_alloc_vaddr[nid] += size; | 
 | 	memset(allocation, 0, size); | 
 |  | 
 | 	return allocation; | 
 | } | 
 |  | 
 | static void __init remap_numa_kva(void) | 
 | { | 
 | 	void *vaddr; | 
 | 	unsigned long pfn; | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		printk(KERN_DEBUG "remap_numa_kva: node %d\n", node); | 
 | 		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | 
 | 			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | 
 | 			printk(KERN_DEBUG "remap_numa_kva: %08lx to pfn %08lx\n", | 
 | 				(unsigned long)vaddr, | 
 | 				node_remap_start_pfn[node] + pfn); | 
 | 			set_pmd_pfn((ulong) vaddr,  | 
 | 				node_remap_start_pfn[node] + pfn,  | 
 | 				PAGE_KERNEL_LARGE); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HIBERNATION | 
 | /** | 
 |  * resume_map_numa_kva - add KVA mapping to the temporary page tables created | 
 |  *                       during resume from hibernation | 
 |  * @pgd_base - temporary resume page directory | 
 |  */ | 
 | void resume_map_numa_kva(pgd_t *pgd_base) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long start_va, start_pfn, size, pfn; | 
 |  | 
 | 		start_va = (unsigned long)node_remap_start_vaddr[node]; | 
 | 		start_pfn = node_remap_start_pfn[node]; | 
 | 		size = node_remap_size[node]; | 
 |  | 
 | 		printk(KERN_DEBUG "%s: node %d\n", __func__, node); | 
 |  | 
 | 		for (pfn = 0; pfn < size; pfn += PTRS_PER_PTE) { | 
 | 			unsigned long vaddr = start_va + (pfn << PAGE_SHIFT); | 
 | 			pgd_t *pgd = pgd_base + pgd_index(vaddr); | 
 | 			pud_t *pud = pud_offset(pgd, vaddr); | 
 | 			pmd_t *pmd = pmd_offset(pud, vaddr); | 
 |  | 
 | 			set_pmd(pmd, pfn_pmd(start_pfn + pfn, | 
 | 						PAGE_KERNEL_LARGE_EXEC)); | 
 |  | 
 | 			printk(KERN_DEBUG "%s: %08lx -> pfn %08lx\n", | 
 | 				__func__, vaddr, start_pfn + pfn); | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static __init unsigned long calculate_numa_remap_pages(void) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long size, reserve_pages = 0; | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		u64 node_kva_target; | 
 | 		u64 node_kva_final; | 
 |  | 
 | 		/* | 
 | 		 * The acpi/srat node info can show hot-add memroy zones | 
 | 		 * where memory could be added but not currently present. | 
 | 		 */ | 
 | 		printk(KERN_DEBUG "node %d pfn: [%lx - %lx]\n", | 
 | 			nid, node_start_pfn[nid], node_end_pfn[nid]); | 
 | 		if (node_start_pfn[nid] > max_pfn) | 
 | 			continue; | 
 | 		if (!node_end_pfn[nid]) | 
 | 			continue; | 
 | 		if (node_end_pfn[nid] > max_pfn) | 
 | 			node_end_pfn[nid] = max_pfn; | 
 |  | 
 | 		/* ensure the remap includes space for the pgdat. */ | 
 | 		size = node_remap_size[nid] + sizeof(pg_data_t); | 
 |  | 
 | 		/* convert size to large (pmd size) pages, rounding up */ | 
 | 		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | 
 | 		/* now the roundup is correct, convert to PAGE_SIZE pages */ | 
 | 		size = size * PTRS_PER_PTE; | 
 |  | 
 | 		node_kva_target = round_down(node_end_pfn[nid] - size, | 
 | 						 PTRS_PER_PTE); | 
 | 		node_kva_target <<= PAGE_SHIFT; | 
 | 		do { | 
 | 			node_kva_final = memblock_find_in_range(node_kva_target, | 
 | 					((u64)node_end_pfn[nid])<<PAGE_SHIFT, | 
 | 						((u64)size)<<PAGE_SHIFT, | 
 | 						LARGE_PAGE_BYTES); | 
 | 			node_kva_target -= LARGE_PAGE_BYTES; | 
 | 		} while (node_kva_final == MEMBLOCK_ERROR && | 
 | 			 (node_kva_target>>PAGE_SHIFT) > (node_start_pfn[nid])); | 
 |  | 
 | 		if (node_kva_final == MEMBLOCK_ERROR) | 
 | 			panic("Can not get kva ram\n"); | 
 |  | 
 | 		node_remap_size[nid] = size; | 
 | 		node_remap_offset[nid] = reserve_pages; | 
 | 		reserve_pages += size; | 
 | 		printk(KERN_DEBUG "Reserving %ld pages of KVA for lmem_map of" | 
 | 				  " node %d at %llx\n", | 
 | 				size, nid, node_kva_final>>PAGE_SHIFT); | 
 |  | 
 | 		/* | 
 | 		 *  prevent kva address below max_low_pfn want it on system | 
 | 		 *  with less memory later. | 
 | 		 *  layout will be: KVA address , KVA RAM | 
 | 		 * | 
 | 		 *  we are supposed to only record the one less then max_low_pfn | 
 | 		 *  but we could have some hole in high memory, and it will only | 
 | 		 *  check page_is_ram(pfn) && !page_is_reserved_early(pfn) to decide | 
 | 		 *  to use it as free. | 
 | 		 *  So memblock_x86_reserve_range here, hope we don't run out of that array | 
 | 		 */ | 
 | 		memblock_x86_reserve_range(node_kva_final, | 
 | 			      node_kva_final+(((u64)size)<<PAGE_SHIFT), | 
 | 			      "KVA RAM"); | 
 |  | 
 | 		node_remap_start_pfn[nid] = node_kva_final>>PAGE_SHIFT; | 
 | 	} | 
 | 	printk(KERN_INFO "Reserving total of %lx pages for numa KVA remap\n", | 
 | 			reserve_pages); | 
 | 	return reserve_pages; | 
 | } | 
 |  | 
 | static void init_remap_allocator(int nid) | 
 | { | 
 | 	node_remap_start_vaddr[nid] = pfn_to_kaddr( | 
 | 			kva_start_pfn + node_remap_offset[nid]); | 
 | 	node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + | 
 | 		(node_remap_size[nid] * PAGE_SIZE); | 
 | 	node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + | 
 | 		ALIGN(sizeof(pg_data_t), PAGE_SIZE); | 
 |  | 
 | 	printk(KERN_DEBUG "node %d will remap to vaddr %08lx - %08lx\n", nid, | 
 | 		(ulong) node_remap_start_vaddr[nid], | 
 | 		(ulong) node_remap_end_vaddr[nid]); | 
 | } | 
 |  | 
 | void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn, | 
 | 				int acpi, int k8) | 
 | { | 
 | 	int nid; | 
 | 	long kva_target_pfn; | 
 |  | 
 | 	/* | 
 | 	 * When mapping a NUMA machine we allocate the node_mem_map arrays | 
 | 	 * from node local memory.  They are then mapped directly into KVA | 
 | 	 * between zone normal and vmalloc space.  Calculate the size of | 
 | 	 * this space and use it to adjust the boundary between ZONE_NORMAL | 
 | 	 * and ZONE_HIGHMEM. | 
 | 	 */ | 
 |  | 
 | 	get_memcfg_numa(); | 
 |  | 
 | 	kva_pages = roundup(calculate_numa_remap_pages(), PTRS_PER_PTE); | 
 |  | 
 | 	kva_target_pfn = round_down(max_low_pfn - kva_pages, PTRS_PER_PTE); | 
 | 	do { | 
 | 		kva_start_pfn = memblock_find_in_range(kva_target_pfn<<PAGE_SHIFT, | 
 | 					max_low_pfn<<PAGE_SHIFT, | 
 | 					kva_pages<<PAGE_SHIFT, | 
 | 					PTRS_PER_PTE<<PAGE_SHIFT) >> PAGE_SHIFT; | 
 | 		kva_target_pfn -= PTRS_PER_PTE; | 
 | 	} while (kva_start_pfn == MEMBLOCK_ERROR && kva_target_pfn > min_low_pfn); | 
 |  | 
 | 	if (kva_start_pfn == MEMBLOCK_ERROR) | 
 | 		panic("Can not get kva space\n"); | 
 |  | 
 | 	printk(KERN_INFO "kva_start_pfn ~ %lx max_low_pfn ~ %lx\n", | 
 | 		kva_start_pfn, max_low_pfn); | 
 | 	printk(KERN_INFO "max_pfn = %lx\n", max_pfn); | 
 |  | 
 | 	/* avoid clash with initrd */ | 
 | 	memblock_x86_reserve_range(kva_start_pfn<<PAGE_SHIFT, | 
 | 		      (kva_start_pfn + kva_pages)<<PAGE_SHIFT, | 
 | 		     "KVA PG"); | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	highstart_pfn = highend_pfn = max_pfn; | 
 | 	if (max_pfn > max_low_pfn) | 
 | 		highstart_pfn = max_low_pfn; | 
 | 	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
 | 	       pages_to_mb(highend_pfn - highstart_pfn)); | 
 | 	num_physpages = highend_pfn; | 
 | 	high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; | 
 | #else | 
 | 	num_physpages = max_low_pfn; | 
 | 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1; | 
 | #endif | 
 | 	printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
 | 			pages_to_mb(max_low_pfn)); | 
 | 	printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n", | 
 | 			max_low_pfn, highstart_pfn); | 
 |  | 
 | 	printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n", | 
 | 			(ulong) pfn_to_kaddr(max_low_pfn)); | 
 | 	for_each_online_node(nid) { | 
 | 		init_remap_allocator(nid); | 
 |  | 
 | 		allocate_pgdat(nid); | 
 | 	} | 
 | 	remap_numa_kva(); | 
 |  | 
 | 	printk(KERN_DEBUG "High memory starts at vaddr %08lx\n", | 
 | 			(ulong) pfn_to_kaddr(highstart_pfn)); | 
 | 	for_each_online_node(nid) | 
 | 		propagate_e820_map_node(nid); | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
 | 		NODE_DATA(nid)->node_id = nid; | 
 | 	} | 
 |  | 
 | 	setup_bootmem_allocator(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | static int paddr_to_nid(u64 addr) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long pfn = PFN_DOWN(addr); | 
 |  | 
 | 	for_each_node(nid) | 
 | 		if (node_start_pfn[nid] <= pfn && | 
 | 		    pfn < node_end_pfn[nid]) | 
 | 			return nid; | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is used to ask node id BEFORE memmap and mem_section's | 
 |  * initialization (pfn_to_nid() can't be used yet). | 
 |  * If _PXM is not defined on ACPI's DSDT, node id must be found by this. | 
 |  */ | 
 | int memory_add_physaddr_to_nid(u64 addr) | 
 | { | 
 | 	int nid = paddr_to_nid(addr); | 
 | 	return (nid >= 0) ? nid : 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
 | #endif | 
 |  |