| /* | 
 |  * Xen mmu operations | 
 |  * | 
 |  * This file contains the various mmu fetch and update operations. | 
 |  * The most important job they must perform is the mapping between the | 
 |  * domain's pfn and the overall machine mfns. | 
 |  * | 
 |  * Xen allows guests to directly update the pagetable, in a controlled | 
 |  * fashion.  In other words, the guest modifies the same pagetable | 
 |  * that the CPU actually uses, which eliminates the overhead of having | 
 |  * a separate shadow pagetable. | 
 |  * | 
 |  * In order to allow this, it falls on the guest domain to map its | 
 |  * notion of a "physical" pfn - which is just a domain-local linear | 
 |  * address - into a real "machine address" which the CPU's MMU can | 
 |  * use. | 
 |  * | 
 |  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be | 
 |  * inserted directly into the pagetable.  When creating a new | 
 |  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely, | 
 |  * when reading the content back with __(pgd|pmd|pte)_val, it converts | 
 |  * the mfn back into a pfn. | 
 |  * | 
 |  * The other constraint is that all pages which make up a pagetable | 
 |  * must be mapped read-only in the guest.  This prevents uncontrolled | 
 |  * guest updates to the pagetable.  Xen strictly enforces this, and | 
 |  * will disallow any pagetable update which will end up mapping a | 
 |  * pagetable page RW, and will disallow using any writable page as a | 
 |  * pagetable. | 
 |  * | 
 |  * Naively, when loading %cr3 with the base of a new pagetable, Xen | 
 |  * would need to validate the whole pagetable before going on. | 
 |  * Naturally, this is quite slow.  The solution is to "pin" a | 
 |  * pagetable, which enforces all the constraints on the pagetable even | 
 |  * when it is not actively in use.  This menas that Xen can be assured | 
 |  * that it is still valid when you do load it into %cr3, and doesn't | 
 |  * need to revalidate it. | 
 |  * | 
 |  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
 |  */ | 
 | #include <linux/sched.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/debugfs.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/memblock.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/paravirt.h> | 
 | #include <asm/e820.h> | 
 | #include <asm/linkage.h> | 
 | #include <asm/page.h> | 
 | #include <asm/init.h> | 
 | #include <asm/pat.h> | 
 |  | 
 | #include <asm/xen/hypercall.h> | 
 | #include <asm/xen/hypervisor.h> | 
 |  | 
 | #include <xen/xen.h> | 
 | #include <xen/page.h> | 
 | #include <xen/interface/xen.h> | 
 | #include <xen/interface/hvm/hvm_op.h> | 
 | #include <xen/interface/version.h> | 
 | #include <xen/interface/memory.h> | 
 | #include <xen/hvc-console.h> | 
 |  | 
 | #include "multicalls.h" | 
 | #include "mmu.h" | 
 | #include "debugfs.h" | 
 |  | 
 | #define MMU_UPDATE_HISTO	30 | 
 |  | 
 | /* | 
 |  * Protects atomic reservation decrease/increase against concurrent increases. | 
 |  * Also protects non-atomic updates of current_pages and driver_pages, and | 
 |  * balloon lists. | 
 |  */ | 
 | DEFINE_SPINLOCK(xen_reservation_lock); | 
 |  | 
 | #ifdef CONFIG_XEN_DEBUG_FS | 
 |  | 
 | static struct { | 
 | 	u32 pgd_update; | 
 | 	u32 pgd_update_pinned; | 
 | 	u32 pgd_update_batched; | 
 |  | 
 | 	u32 pud_update; | 
 | 	u32 pud_update_pinned; | 
 | 	u32 pud_update_batched; | 
 |  | 
 | 	u32 pmd_update; | 
 | 	u32 pmd_update_pinned; | 
 | 	u32 pmd_update_batched; | 
 |  | 
 | 	u32 pte_update; | 
 | 	u32 pte_update_pinned; | 
 | 	u32 pte_update_batched; | 
 |  | 
 | 	u32 mmu_update; | 
 | 	u32 mmu_update_extended; | 
 | 	u32 mmu_update_histo[MMU_UPDATE_HISTO]; | 
 |  | 
 | 	u32 prot_commit; | 
 | 	u32 prot_commit_batched; | 
 |  | 
 | 	u32 set_pte_at; | 
 | 	u32 set_pte_at_batched; | 
 | 	u32 set_pte_at_pinned; | 
 | 	u32 set_pte_at_current; | 
 | 	u32 set_pte_at_kernel; | 
 | } mmu_stats; | 
 |  | 
 | static u8 zero_stats; | 
 |  | 
 | static inline void check_zero(void) | 
 | { | 
 | 	if (unlikely(zero_stats)) { | 
 | 		memset(&mmu_stats, 0, sizeof(mmu_stats)); | 
 | 		zero_stats = 0; | 
 | 	} | 
 | } | 
 |  | 
 | #define ADD_STATS(elem, val)			\ | 
 | 	do { check_zero(); mmu_stats.elem += (val); } while(0) | 
 |  | 
 | #else  /* !CONFIG_XEN_DEBUG_FS */ | 
 |  | 
 | #define ADD_STATS(elem, val)	do { (void)(val); } while(0) | 
 |  | 
 | #endif /* CONFIG_XEN_DEBUG_FS */ | 
 |  | 
 |  | 
 | /* | 
 |  * Identity map, in addition to plain kernel map.  This needs to be | 
 |  * large enough to allocate page table pages to allocate the rest. | 
 |  * Each page can map 2MB. | 
 |  */ | 
 | #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4) | 
 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | /* l3 pud for userspace vsyscall mapping */ | 
 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | 
 | #endif /* CONFIG_X86_64 */ | 
 |  | 
 | /* | 
 |  * Note about cr3 (pagetable base) values: | 
 |  * | 
 |  * xen_cr3 contains the current logical cr3 value; it contains the | 
 |  * last set cr3.  This may not be the current effective cr3, because | 
 |  * its update may be being lazily deferred.  However, a vcpu looking | 
 |  * at its own cr3 can use this value knowing that it everything will | 
 |  * be self-consistent. | 
 |  * | 
 |  * xen_current_cr3 contains the actual vcpu cr3; it is set once the | 
 |  * hypercall to set the vcpu cr3 is complete (so it may be a little | 
 |  * out of date, but it will never be set early).  If one vcpu is | 
 |  * looking at another vcpu's cr3 value, it should use this variable. | 
 |  */ | 
 | DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */ | 
 | DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */ | 
 |  | 
 |  | 
 | /* | 
 |  * Just beyond the highest usermode address.  STACK_TOP_MAX has a | 
 |  * redzone above it, so round it up to a PGD boundary. | 
 |  */ | 
 | #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) | 
 |  | 
 | /* | 
 |  * Xen leaves the responsibility for maintaining p2m mappings to the | 
 |  * guests themselves, but it must also access and update the p2m array | 
 |  * during suspend/resume when all the pages are reallocated. | 
 |  * | 
 |  * The p2m table is logically a flat array, but we implement it as a | 
 |  * three-level tree to allow the address space to be sparse. | 
 |  * | 
 |  *                               Xen | 
 |  *                                | | 
 |  *     p2m_top              p2m_top_mfn | 
 |  *       /  \                   /   \ | 
 |  * p2m_mid p2m_mid	p2m_mid_mfn p2m_mid_mfn | 
 |  *    / \      / \         /           / | 
 |  *  p2m p2m p2m p2m p2m p2m p2m ... | 
 |  * | 
 |  * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p. | 
 |  * | 
 |  * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the | 
 |  * maximum representable pseudo-physical address space is: | 
 |  *  P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages | 
 |  * | 
 |  * P2M_PER_PAGE depends on the architecture, as a mfn is always | 
 |  * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to | 
 |  * 512 and 1024 entries respectively.  | 
 |  */ | 
 |  | 
 | unsigned long xen_max_p2m_pfn __read_mostly; | 
 |  | 
 | #define P2M_PER_PAGE		(PAGE_SIZE / sizeof(unsigned long)) | 
 | #define P2M_MID_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long *)) | 
 | #define P2M_TOP_PER_PAGE	(PAGE_SIZE / sizeof(unsigned long **)) | 
 |  | 
 | #define MAX_P2M_PFN		(P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE) | 
 |  | 
 | /* Placeholders for holes in the address space */ | 
 | static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE); | 
 | static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE); | 
 | static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE); | 
 |  | 
 | static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE); | 
 | static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE); | 
 | static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE); | 
 |  | 
 | RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); | 
 | RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); | 
 |  | 
 | static inline unsigned p2m_top_index(unsigned long pfn) | 
 | { | 
 | 	BUG_ON(pfn >= MAX_P2M_PFN); | 
 | 	return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE); | 
 | } | 
 |  | 
 | static inline unsigned p2m_mid_index(unsigned long pfn) | 
 | { | 
 | 	return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE; | 
 | } | 
 |  | 
 | static inline unsigned p2m_index(unsigned long pfn) | 
 | { | 
 | 	return pfn % P2M_PER_PAGE; | 
 | } | 
 |  | 
 | static void p2m_top_init(unsigned long ***top) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_TOP_PER_PAGE; i++) | 
 | 		top[i] = p2m_mid_missing; | 
 | } | 
 |  | 
 | static void p2m_top_mfn_init(unsigned long *top) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_TOP_PER_PAGE; i++) | 
 | 		top[i] = virt_to_mfn(p2m_mid_missing_mfn); | 
 | } | 
 |  | 
 | static void p2m_top_mfn_p_init(unsigned long **top) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_TOP_PER_PAGE; i++) | 
 | 		top[i] = p2m_mid_missing_mfn; | 
 | } | 
 |  | 
 | static void p2m_mid_init(unsigned long **mid) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_MID_PER_PAGE; i++) | 
 | 		mid[i] = p2m_missing; | 
 | } | 
 |  | 
 | static void p2m_mid_mfn_init(unsigned long *mid) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_MID_PER_PAGE; i++) | 
 | 		mid[i] = virt_to_mfn(p2m_missing); | 
 | } | 
 |  | 
 | static void p2m_init(unsigned long *p2m) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < P2M_MID_PER_PAGE; i++) | 
 | 		p2m[i] = INVALID_P2M_ENTRY; | 
 | } | 
 |  | 
 | /* | 
 |  * Build the parallel p2m_top_mfn and p2m_mid_mfn structures | 
 |  * | 
 |  * This is called both at boot time, and after resuming from suspend: | 
 |  * - At boot time we're called very early, and must use extend_brk() | 
 |  *   to allocate memory. | 
 |  * | 
 |  * - After resume we're called from within stop_machine, but the mfn | 
 |  *   tree should alreay be completely allocated. | 
 |  */ | 
 | void xen_build_mfn_list_list(void) | 
 | { | 
 | 	unsigned long pfn; | 
 |  | 
 | 	/* Pre-initialize p2m_top_mfn to be completely missing */ | 
 | 	if (p2m_top_mfn == NULL) { | 
 | 		p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 		p2m_mid_mfn_init(p2m_mid_missing_mfn); | 
 |  | 
 | 		p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 		p2m_top_mfn_p_init(p2m_top_mfn_p); | 
 |  | 
 | 		p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 		p2m_top_mfn_init(p2m_top_mfn); | 
 | 	} else { | 
 | 		/* Reinitialise, mfn's all change after migration */ | 
 | 		p2m_mid_mfn_init(p2m_mid_missing_mfn); | 
 | 	} | 
 |  | 
 | 	for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) { | 
 | 		unsigned topidx = p2m_top_index(pfn); | 
 | 		unsigned mididx = p2m_mid_index(pfn); | 
 | 		unsigned long **mid; | 
 | 		unsigned long *mid_mfn_p; | 
 |  | 
 | 		mid = p2m_top[topidx]; | 
 | 		mid_mfn_p = p2m_top_mfn_p[topidx]; | 
 |  | 
 | 		/* Don't bother allocating any mfn mid levels if | 
 | 		 * they're just missing, just update the stored mfn, | 
 | 		 * since all could have changed over a migrate. | 
 | 		 */ | 
 | 		if (mid == p2m_mid_missing) { | 
 | 			BUG_ON(mididx); | 
 | 			BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); | 
 | 			p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn); | 
 | 			pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (mid_mfn_p == p2m_mid_missing_mfn) { | 
 | 			/* | 
 | 			 * XXX boot-time only!  We should never find | 
 | 			 * missing parts of the mfn tree after | 
 | 			 * runtime.  extend_brk() will BUG if we call | 
 | 			 * it too late. | 
 | 			 */ | 
 | 			mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 			p2m_mid_mfn_init(mid_mfn_p); | 
 |  | 
 | 			p2m_top_mfn_p[topidx] = mid_mfn_p; | 
 | 		} | 
 |  | 
 | 		p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); | 
 | 		mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]); | 
 | 	} | 
 | } | 
 |  | 
 | void xen_setup_mfn_list_list(void) | 
 | { | 
 | 	BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); | 
 |  | 
 | 	HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = | 
 | 		virt_to_mfn(p2m_top_mfn); | 
 | 	HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn; | 
 | } | 
 |  | 
 | /* Set up p2m_top to point to the domain-builder provided p2m pages */ | 
 | void __init xen_build_dynamic_phys_to_machine(void) | 
 | { | 
 | 	unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list; | 
 | 	unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages); | 
 | 	unsigned long pfn; | 
 |  | 
 | 	xen_max_p2m_pfn = max_pfn; | 
 |  | 
 | 	p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 	p2m_init(p2m_missing); | 
 |  | 
 | 	p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 	p2m_mid_init(p2m_mid_missing); | 
 |  | 
 | 	p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 	p2m_top_init(p2m_top); | 
 |  | 
 | 	/* | 
 | 	 * The domain builder gives us a pre-constructed p2m array in | 
 | 	 * mfn_list for all the pages initially given to us, so we just | 
 | 	 * need to graft that into our tree structure. | 
 | 	 */ | 
 | 	for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) { | 
 | 		unsigned topidx = p2m_top_index(pfn); | 
 | 		unsigned mididx = p2m_mid_index(pfn); | 
 |  | 
 | 		if (p2m_top[topidx] == p2m_mid_missing) { | 
 | 			unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE); | 
 | 			p2m_mid_init(mid); | 
 |  | 
 | 			p2m_top[topidx] = mid; | 
 | 		} | 
 |  | 
 | 		p2m_top[topidx][mididx] = &mfn_list[pfn]; | 
 | 	} | 
 | } | 
 |  | 
 | unsigned long get_phys_to_machine(unsigned long pfn) | 
 | { | 
 | 	unsigned topidx, mididx, idx; | 
 |  | 
 | 	if (unlikely(pfn >= MAX_P2M_PFN)) | 
 | 		return INVALID_P2M_ENTRY; | 
 |  | 
 | 	topidx = p2m_top_index(pfn); | 
 | 	mididx = p2m_mid_index(pfn); | 
 | 	idx = p2m_index(pfn); | 
 |  | 
 | 	return p2m_top[topidx][mididx][idx]; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_phys_to_machine); | 
 |  | 
 | static void *alloc_p2m_page(void) | 
 | { | 
 | 	return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT); | 
 | } | 
 |  | 
 | static void free_p2m_page(void *p) | 
 | { | 
 | 	free_page((unsigned long)p); | 
 | } | 
 |  | 
 | /*  | 
 |  * Fully allocate the p2m structure for a given pfn.  We need to check | 
 |  * that both the top and mid levels are allocated, and make sure the | 
 |  * parallel mfn tree is kept in sync.  We may race with other cpus, so | 
 |  * the new pages are installed with cmpxchg; if we lose the race then | 
 |  * simply free the page we allocated and use the one that's there. | 
 |  */ | 
 | static bool alloc_p2m(unsigned long pfn) | 
 | { | 
 | 	unsigned topidx, mididx; | 
 | 	unsigned long ***top_p, **mid; | 
 | 	unsigned long *top_mfn_p, *mid_mfn; | 
 |  | 
 | 	topidx = p2m_top_index(pfn); | 
 | 	mididx = p2m_mid_index(pfn); | 
 |  | 
 | 	top_p = &p2m_top[topidx]; | 
 | 	mid = *top_p; | 
 |  | 
 | 	if (mid == p2m_mid_missing) { | 
 | 		/* Mid level is missing, allocate a new one */ | 
 | 		mid = alloc_p2m_page(); | 
 | 		if (!mid) | 
 | 			return false; | 
 |  | 
 | 		p2m_mid_init(mid); | 
 |  | 
 | 		if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing) | 
 | 			free_p2m_page(mid); | 
 | 	} | 
 |  | 
 | 	top_mfn_p = &p2m_top_mfn[topidx]; | 
 | 	mid_mfn = p2m_top_mfn_p[topidx]; | 
 |  | 
 | 	BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p); | 
 |  | 
 | 	if (mid_mfn == p2m_mid_missing_mfn) { | 
 | 		/* Separately check the mid mfn level */ | 
 | 		unsigned long missing_mfn; | 
 | 		unsigned long mid_mfn_mfn; | 
 |  | 
 | 		mid_mfn = alloc_p2m_page(); | 
 | 		if (!mid_mfn) | 
 | 			return false; | 
 |  | 
 | 		p2m_mid_mfn_init(mid_mfn); | 
 |  | 
 | 		missing_mfn = virt_to_mfn(p2m_mid_missing_mfn); | 
 | 		mid_mfn_mfn = virt_to_mfn(mid_mfn); | 
 | 		if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn) | 
 | 			free_p2m_page(mid_mfn); | 
 | 		else | 
 | 			p2m_top_mfn_p[topidx] = mid_mfn; | 
 | 	} | 
 |  | 
 | 	if (p2m_top[topidx][mididx] == p2m_missing) { | 
 | 		/* p2m leaf page is missing */ | 
 | 		unsigned long *p2m; | 
 |  | 
 | 		p2m = alloc_p2m_page(); | 
 | 		if (!p2m) | 
 | 			return false; | 
 |  | 
 | 		p2m_init(p2m); | 
 |  | 
 | 		if (cmpxchg(&mid[mididx], p2m_missing, p2m) != p2m_missing) | 
 | 			free_p2m_page(p2m); | 
 | 		else | 
 | 			mid_mfn[mididx] = virt_to_mfn(p2m); | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Try to install p2m mapping; fail if intermediate bits missing */ | 
 | bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn) | 
 | { | 
 | 	unsigned topidx, mididx, idx; | 
 |  | 
 | 	if (unlikely(pfn >= MAX_P2M_PFN)) { | 
 | 		BUG_ON(mfn != INVALID_P2M_ENTRY); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	topidx = p2m_top_index(pfn); | 
 | 	mididx = p2m_mid_index(pfn); | 
 | 	idx = p2m_index(pfn); | 
 |  | 
 | 	if (p2m_top[topidx][mididx] == p2m_missing) | 
 | 		return mfn == INVALID_P2M_ENTRY; | 
 |  | 
 | 	p2m_top[topidx][mididx][idx] = mfn; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | bool set_phys_to_machine(unsigned long pfn, unsigned long mfn) | 
 | { | 
 | 	if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) { | 
 | 		BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!__set_phys_to_machine(pfn, mfn)))  { | 
 | 		if (!alloc_p2m(pfn)) | 
 | 			return false; | 
 |  | 
 | 		if (!__set_phys_to_machine(pfn, mfn)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | unsigned long arbitrary_virt_to_mfn(void *vaddr) | 
 | { | 
 | 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); | 
 |  | 
 | 	return PFN_DOWN(maddr.maddr); | 
 | } | 
 |  | 
 | xmaddr_t arbitrary_virt_to_machine(void *vaddr) | 
 | { | 
 | 	unsigned long address = (unsigned long)vaddr; | 
 | 	unsigned int level; | 
 | 	pte_t *pte; | 
 | 	unsigned offset; | 
 |  | 
 | 	/* | 
 | 	 * if the PFN is in the linear mapped vaddr range, we can just use | 
 | 	 * the (quick) virt_to_machine() p2m lookup | 
 | 	 */ | 
 | 	if (virt_addr_valid(vaddr)) | 
 | 		return virt_to_machine(vaddr); | 
 |  | 
 | 	/* otherwise we have to do a (slower) full page-table walk */ | 
 |  | 
 | 	pte = lookup_address(address, &level); | 
 | 	BUG_ON(pte == NULL); | 
 | 	offset = address & ~PAGE_MASK; | 
 | 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); | 
 | } | 
 |  | 
 | void make_lowmem_page_readonly(void *vaddr) | 
 | { | 
 | 	pte_t *pte, ptev; | 
 | 	unsigned long address = (unsigned long)vaddr; | 
 | 	unsigned int level; | 
 |  | 
 | 	pte = lookup_address(address, &level); | 
 | 	if (pte == NULL) | 
 | 		return;		/* vaddr missing */ | 
 |  | 
 | 	ptev = pte_wrprotect(*pte); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | void make_lowmem_page_readwrite(void *vaddr) | 
 | { | 
 | 	pte_t *pte, ptev; | 
 | 	unsigned long address = (unsigned long)vaddr; | 
 | 	unsigned int level; | 
 |  | 
 | 	pte = lookup_address(address, &level); | 
 | 	if (pte == NULL) | 
 | 		return;		/* vaddr missing */ | 
 |  | 
 | 	ptev = pte_mkwrite(*pte); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping(address, ptev, 0)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 |  | 
 | static bool xen_page_pinned(void *ptr) | 
 | { | 
 | 	struct page *page = virt_to_page(ptr); | 
 |  | 
 | 	return PagePinned(page); | 
 | } | 
 |  | 
 | static bool xen_iomap_pte(pte_t pte) | 
 | { | 
 | 	return pte_flags(pte) & _PAGE_IOMAP; | 
 | } | 
 |  | 
 | void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmu_update *u; | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*u)); | 
 | 	u = mcs.args; | 
 |  | 
 | 	/* ptep might be kmapped when using 32-bit HIGHPTE */ | 
 | 	u->ptr = arbitrary_virt_to_machine(ptep).maddr; | 
 | 	u->val = pte_val_ma(pteval); | 
 |  | 
 | 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_set_domain_pte); | 
 |  | 
 | static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	xen_set_domain_pte(ptep, pteval, DOMID_IO); | 
 | } | 
 |  | 
 | static void xen_extend_mmu_update(const struct mmu_update *update) | 
 | { | 
 | 	struct multicall_space mcs; | 
 | 	struct mmu_update *u; | 
 |  | 
 | 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); | 
 |  | 
 | 	if (mcs.mc != NULL) { | 
 | 		ADD_STATS(mmu_update_extended, 1); | 
 | 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1); | 
 |  | 
 | 		mcs.mc->args[1]++; | 
 |  | 
 | 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO) | 
 | 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1); | 
 | 		else | 
 | 			ADD_STATS(mmu_update_histo[0], 1); | 
 | 	} else { | 
 | 		ADD_STATS(mmu_update, 1); | 
 | 		mcs = __xen_mc_entry(sizeof(*u)); | 
 | 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); | 
 | 		ADD_STATS(mmu_update_histo[1], 1); | 
 | 	} | 
 |  | 
 | 	u = mcs.args; | 
 | 	*u = *update; | 
 | } | 
 |  | 
 | void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	/* ptr may be ioremapped for 64-bit pagetable setup */ | 
 | 	u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
 | 	u.val = pmd_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void xen_set_pmd(pmd_t *ptr, pmd_t val) | 
 | { | 
 | 	ADD_STATS(pmd_update, 1); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ADD_STATS(pmd_update_pinned, 1); | 
 |  | 
 | 	xen_set_pmd_hyper(ptr, val); | 
 | } | 
 |  | 
 | /* | 
 |  * Associate a virtual page frame with a given physical page frame | 
 |  * and protection flags for that frame. | 
 |  */ | 
 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) | 
 | { | 
 | 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); | 
 | } | 
 |  | 
 | void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, | 
 | 		    pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	if (xen_iomap_pte(pteval)) { | 
 | 		xen_set_iomap_pte(ptep, pteval); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ADD_STATS(set_pte_at, 1); | 
 | //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep)); | 
 | 	ADD_STATS(set_pte_at_current, mm == current->mm); | 
 | 	ADD_STATS(set_pte_at_kernel, mm == &init_mm); | 
 |  | 
 | 	if (mm == current->mm || mm == &init_mm) { | 
 | 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) { | 
 | 			struct multicall_space mcs; | 
 | 			mcs = xen_mc_entry(0); | 
 |  | 
 | 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0); | 
 | 			ADD_STATS(set_pte_at_batched, 1); | 
 | 			xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | 			goto out; | 
 | 		} else | 
 | 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0) | 
 | 				goto out; | 
 | 	} | 
 | 	xen_set_pte(ptep, pteval); | 
 |  | 
 | out:	return; | 
 | } | 
 |  | 
 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, | 
 | 				 unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	/* Just return the pte as-is.  We preserve the bits on commit */ | 
 | 	return *ptep; | 
 | } | 
 |  | 
 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, | 
 | 				 pte_t *ptep, pte_t pte) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; | 
 | 	u.val = pte_val_ma(pte); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	ADD_STATS(prot_commit, 1); | 
 | 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 |  | 
 | /* Assume pteval_t is equivalent to all the other *val_t types. */ | 
 | static pteval_t pte_mfn_to_pfn(pteval_t val) | 
 | { | 
 | 	if (val & _PAGE_PRESENT) { | 
 | 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 		pteval_t flags = val & PTE_FLAGS_MASK; | 
 | 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static pteval_t pte_pfn_to_mfn(pteval_t val) | 
 | { | 
 | 	if (val & _PAGE_PRESENT) { | 
 | 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 		pteval_t flags = val & PTE_FLAGS_MASK; | 
 | 		unsigned long mfn = pfn_to_mfn(pfn); | 
 |  | 
 | 		/* | 
 | 		 * If there's no mfn for the pfn, then just create an | 
 | 		 * empty non-present pte.  Unfortunately this loses | 
 | 		 * information about the original pfn, so | 
 | 		 * pte_mfn_to_pfn is asymmetric. | 
 | 		 */ | 
 | 		if (unlikely(mfn == INVALID_P2M_ENTRY)) { | 
 | 			mfn = 0; | 
 | 			flags = 0; | 
 | 		} | 
 |  | 
 | 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | static pteval_t iomap_pte(pteval_t val) | 
 | { | 
 | 	if (val & _PAGE_PRESENT) { | 
 | 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; | 
 | 		pteval_t flags = val & PTE_FLAGS_MASK; | 
 |  | 
 | 		/* We assume the pte frame number is a MFN, so | 
 | 		   just use it as-is. */ | 
 | 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags; | 
 | 	} | 
 |  | 
 | 	return val; | 
 | } | 
 |  | 
 | pteval_t xen_pte_val(pte_t pte) | 
 | { | 
 | 	pteval_t pteval = pte.pte; | 
 |  | 
 | 	/* If this is a WC pte, convert back from Xen WC to Linux WC */ | 
 | 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { | 
 | 		WARN_ON(!pat_enabled); | 
 | 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; | 
 | 	} | 
 |  | 
 | 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) | 
 | 		return pteval; | 
 |  | 
 | 	return pte_mfn_to_pfn(pteval); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); | 
 |  | 
 | pgdval_t xen_pgd_val(pgd_t pgd) | 
 | { | 
 | 	return pte_mfn_to_pfn(pgd.pgd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); | 
 |  | 
 | /* | 
 |  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 | 
 |  * are reserved for now, to correspond to the Intel-reserved PAT | 
 |  * types. | 
 |  * | 
 |  * We expect Linux's PAT set as follows: | 
 |  * | 
 |  * Idx  PTE flags        Linux    Xen    Default | 
 |  * 0                     WB       WB     WB | 
 |  * 1            PWT      WC       WT     WT | 
 |  * 2        PCD          UC-      UC-    UC- | 
 |  * 3        PCD PWT      UC       UC     UC | 
 |  * 4    PAT              WB       WC     WB | 
 |  * 5    PAT     PWT      WC       WP     WT | 
 |  * 6    PAT PCD          UC-      UC     UC- | 
 |  * 7    PAT PCD PWT      UC       UC     UC | 
 |  */ | 
 |  | 
 | void xen_set_pat(u64 pat) | 
 | { | 
 | 	/* We expect Linux to use a PAT setting of | 
 | 	 * UC UC- WC WB (ignoring the PAT flag) */ | 
 | 	WARN_ON(pat != 0x0007010600070106ull); | 
 | } | 
 |  | 
 | pte_t xen_make_pte(pteval_t pte) | 
 | { | 
 | 	phys_addr_t addr = (pte & PTE_PFN_MASK); | 
 |  | 
 | 	/* If Linux is trying to set a WC pte, then map to the Xen WC. | 
 | 	 * If _PAGE_PAT is set, then it probably means it is really | 
 | 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope | 
 | 	 * things work out OK... | 
 | 	 * | 
 | 	 * (We should never see kernel mappings with _PAGE_PSE set, | 
 | 	 * but we could see hugetlbfs mappings, I think.). | 
 | 	 */ | 
 | 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { | 
 | 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) | 
 | 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Unprivileged domains are allowed to do IOMAPpings for | 
 | 	 * PCI passthrough, but not map ISA space.  The ISA | 
 | 	 * mappings are just dummy local mappings to keep other | 
 | 	 * parts of the kernel happy. | 
 | 	 */ | 
 | 	if (unlikely(pte & _PAGE_IOMAP) && | 
 | 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { | 
 | 		pte = iomap_pte(pte); | 
 | 	} else { | 
 | 		pte &= ~_PAGE_IOMAP; | 
 | 		pte = pte_pfn_to_mfn(pte); | 
 | 	} | 
 |  | 
 | 	return native_make_pte(pte); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); | 
 |  | 
 | pgd_t xen_make_pgd(pgdval_t pgd) | 
 | { | 
 | 	pgd = pte_pfn_to_mfn(pgd); | 
 | 	return native_make_pgd(pgd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); | 
 |  | 
 | pmdval_t xen_pmd_val(pmd_t pmd) | 
 | { | 
 | 	return pte_mfn_to_pfn(pmd.pmd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); | 
 |  | 
 | void xen_set_pud_hyper(pud_t *ptr, pud_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	/* ptr may be ioremapped for 64-bit pagetable setup */ | 
 | 	u.ptr = arbitrary_virt_to_machine(ptr).maddr; | 
 | 	u.val = pud_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 |  | 
 | 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void xen_set_pud(pud_t *ptr, pud_t val) | 
 | { | 
 | 	ADD_STATS(pud_update, 1); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ADD_STATS(pud_update_pinned, 1); | 
 |  | 
 | 	xen_set_pud_hyper(ptr, val); | 
 | } | 
 |  | 
 | void xen_set_pte(pte_t *ptep, pte_t pte) | 
 | { | 
 | 	if (xen_iomap_pte(pte)) { | 
 | 		xen_set_iomap_pte(ptep, pte); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ADD_STATS(pte_update, 1); | 
 | //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep)); | 
 | 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	ptep->pte_high = pte.pte_high; | 
 | 	smp_wmb(); | 
 | 	ptep->pte_low = pte.pte_low; | 
 | #else | 
 | 	*ptep = pte; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | void xen_set_pte_atomic(pte_t *ptep, pte_t pte) | 
 | { | 
 | 	if (xen_iomap_pte(pte)) { | 
 | 		xen_set_iomap_pte(ptep, pte); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	set_64bit((u64 *)ptep, native_pte_val(pte)); | 
 | } | 
 |  | 
 | void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) | 
 | { | 
 | 	ptep->pte_low = 0; | 
 | 	smp_wmb();		/* make sure low gets written first */ | 
 | 	ptep->pte_high = 0; | 
 | } | 
 |  | 
 | void xen_pmd_clear(pmd_t *pmdp) | 
 | { | 
 | 	set_pmd(pmdp, __pmd(0)); | 
 | } | 
 | #endif	/* CONFIG_X86_PAE */ | 
 |  | 
 | pmd_t xen_make_pmd(pmdval_t pmd) | 
 | { | 
 | 	pmd = pte_pfn_to_mfn(pmd); | 
 | 	return native_make_pmd(pmd); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); | 
 |  | 
 | #if PAGETABLE_LEVELS == 4 | 
 | pudval_t xen_pud_val(pud_t pud) | 
 | { | 
 | 	return pte_mfn_to_pfn(pud.pud); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); | 
 |  | 
 | pud_t xen_make_pud(pudval_t pud) | 
 | { | 
 | 	pud = pte_pfn_to_mfn(pud); | 
 |  | 
 | 	return native_make_pud(pud); | 
 | } | 
 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); | 
 |  | 
 | pgd_t *xen_get_user_pgd(pgd_t *pgd) | 
 | { | 
 | 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); | 
 | 	unsigned offset = pgd - pgd_page; | 
 | 	pgd_t *user_ptr = NULL; | 
 |  | 
 | 	if (offset < pgd_index(USER_LIMIT)) { | 
 | 		struct page *page = virt_to_page(pgd_page); | 
 | 		user_ptr = (pgd_t *)page->private; | 
 | 		if (user_ptr) | 
 | 			user_ptr += offset; | 
 | 	} | 
 |  | 
 | 	return user_ptr; | 
 | } | 
 |  | 
 | static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 
 | { | 
 | 	struct mmu_update u; | 
 |  | 
 | 	u.ptr = virt_to_machine(ptr).maddr; | 
 | 	u.val = pgd_val_ma(val); | 
 | 	xen_extend_mmu_update(&u); | 
 | } | 
 |  | 
 | /* | 
 |  * Raw hypercall-based set_pgd, intended for in early boot before | 
 |  * there's a page structure.  This implies: | 
 |  *  1. The only existing pagetable is the kernel's | 
 |  *  2. It is always pinned | 
 |  *  3. It has no user pagetable attached to it | 
 |  */ | 
 | void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) | 
 | { | 
 | 	preempt_disable(); | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	__xen_set_pgd_hyper(ptr, val); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | void xen_set_pgd(pgd_t *ptr, pgd_t val) | 
 | { | 
 | 	pgd_t *user_ptr = xen_get_user_pgd(ptr); | 
 |  | 
 | 	ADD_STATS(pgd_update, 1); | 
 |  | 
 | 	/* If page is not pinned, we can just update the entry | 
 | 	   directly */ | 
 | 	if (!xen_page_pinned(ptr)) { | 
 | 		*ptr = val; | 
 | 		if (user_ptr) { | 
 | 			WARN_ON(xen_page_pinned(user_ptr)); | 
 | 			*user_ptr = val; | 
 | 		} | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ADD_STATS(pgd_update_pinned, 1); | 
 | 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	/* If it's pinned, then we can at least batch the kernel and | 
 | 	   user updates together. */ | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	__xen_set_pgd_hyper(ptr, val); | 
 | 	if (user_ptr) | 
 | 		__xen_set_pgd_hyper(user_ptr, val); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 | #endif	/* PAGETABLE_LEVELS == 4 */ | 
 |  | 
 | /* | 
 |  * (Yet another) pagetable walker.  This one is intended for pinning a | 
 |  * pagetable.  This means that it walks a pagetable and calls the | 
 |  * callback function on each page it finds making up the page table, | 
 |  * at every level.  It walks the entire pagetable, but it only bothers | 
 |  * pinning pte pages which are below limit.  In the normal case this | 
 |  * will be STACK_TOP_MAX, but at boot we need to pin up to | 
 |  * FIXADDR_TOP. | 
 |  * | 
 |  * For 32-bit the important bit is that we don't pin beyond there, | 
 |  * because then we start getting into Xen's ptes. | 
 |  * | 
 |  * For 64-bit, we must skip the Xen hole in the middle of the address | 
 |  * space, just after the big x86-64 virtual hole. | 
 |  */ | 
 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, | 
 | 			  int (*func)(struct mm_struct *mm, struct page *, | 
 | 				      enum pt_level), | 
 | 			  unsigned long limit) | 
 | { | 
 | 	int flush = 0; | 
 | 	unsigned hole_low, hole_high; | 
 | 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; | 
 | 	unsigned pgdidx, pudidx, pmdidx; | 
 |  | 
 | 	/* The limit is the last byte to be touched */ | 
 | 	limit--; | 
 | 	BUG_ON(limit >= FIXADDR_TOP); | 
 |  | 
 | 	if (xen_feature(XENFEAT_auto_translated_physmap)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * 64-bit has a great big hole in the middle of the address | 
 | 	 * space, which contains the Xen mappings.  On 32-bit these | 
 | 	 * will end up making a zero-sized hole and so is a no-op. | 
 | 	 */ | 
 | 	hole_low = pgd_index(USER_LIMIT); | 
 | 	hole_high = pgd_index(PAGE_OFFSET); | 
 |  | 
 | 	pgdidx_limit = pgd_index(limit); | 
 | #if PTRS_PER_PUD > 1 | 
 | 	pudidx_limit = pud_index(limit); | 
 | #else | 
 | 	pudidx_limit = 0; | 
 | #endif | 
 | #if PTRS_PER_PMD > 1 | 
 | 	pmdidx_limit = pmd_index(limit); | 
 | #else | 
 | 	pmdidx_limit = 0; | 
 | #endif | 
 |  | 
 | 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { | 
 | 		pud_t *pud; | 
 |  | 
 | 		if (pgdidx >= hole_low && pgdidx < hole_high) | 
 | 			continue; | 
 |  | 
 | 		if (!pgd_val(pgd[pgdidx])) | 
 | 			continue; | 
 |  | 
 | 		pud = pud_offset(&pgd[pgdidx], 0); | 
 |  | 
 | 		if (PTRS_PER_PUD > 1) /* not folded */ | 
 | 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD); | 
 |  | 
 | 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { | 
 | 			pmd_t *pmd; | 
 |  | 
 | 			if (pgdidx == pgdidx_limit && | 
 | 			    pudidx > pudidx_limit) | 
 | 				goto out; | 
 |  | 
 | 			if (pud_none(pud[pudidx])) | 
 | 				continue; | 
 |  | 
 | 			pmd = pmd_offset(&pud[pudidx], 0); | 
 |  | 
 | 			if (PTRS_PER_PMD > 1) /* not folded */ | 
 | 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); | 
 |  | 
 | 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { | 
 | 				struct page *pte; | 
 |  | 
 | 				if (pgdidx == pgdidx_limit && | 
 | 				    pudidx == pudidx_limit && | 
 | 				    pmdidx > pmdidx_limit) | 
 | 					goto out; | 
 |  | 
 | 				if (pmd_none(pmd[pmdidx])) | 
 | 					continue; | 
 |  | 
 | 				pte = pmd_page(pmd[pmdidx]); | 
 | 				flush |= (*func)(mm, pte, PT_PTE); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* Do the top level last, so that the callbacks can use it as | 
 | 	   a cue to do final things like tlb flushes. */ | 
 | 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); | 
 |  | 
 | 	return flush; | 
 | } | 
 |  | 
 | static int xen_pgd_walk(struct mm_struct *mm, | 
 | 			int (*func)(struct mm_struct *mm, struct page *, | 
 | 				    enum pt_level), | 
 | 			unsigned long limit) | 
 | { | 
 | 	return __xen_pgd_walk(mm, mm->pgd, func, limit); | 
 | } | 
 |  | 
 | /* If we're using split pte locks, then take the page's lock and | 
 |    return a pointer to it.  Otherwise return NULL. */ | 
 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) | 
 | { | 
 | 	spinlock_t *ptl = NULL; | 
 |  | 
 | #if USE_SPLIT_PTLOCKS | 
 | 	ptl = __pte_lockptr(page); | 
 | 	spin_lock_nest_lock(ptl, &mm->page_table_lock); | 
 | #endif | 
 |  | 
 | 	return ptl; | 
 | } | 
 |  | 
 | static void xen_pte_unlock(void *v) | 
 | { | 
 | 	spinlock_t *ptl = v; | 
 | 	spin_unlock(ptl); | 
 | } | 
 |  | 
 | static void xen_do_pin(unsigned level, unsigned long pfn) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	mcs = __xen_mc_entry(sizeof(*op)); | 
 | 	op = mcs.args; | 
 | 	op->cmd = level; | 
 | 	op->arg1.mfn = pfn_to_mfn(pfn); | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 | } | 
 |  | 
 | static int xen_pin_page(struct mm_struct *mm, struct page *page, | 
 | 			enum pt_level level) | 
 | { | 
 | 	unsigned pgfl = TestSetPagePinned(page); | 
 | 	int flush; | 
 |  | 
 | 	if (pgfl) | 
 | 		flush = 0;		/* already pinned */ | 
 | 	else if (PageHighMem(page)) | 
 | 		/* kmaps need flushing if we found an unpinned | 
 | 		   highpage */ | 
 | 		flush = 1; | 
 | 	else { | 
 | 		void *pt = lowmem_page_address(page); | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		struct multicall_space mcs = __xen_mc_entry(0); | 
 | 		spinlock_t *ptl; | 
 |  | 
 | 		flush = 0; | 
 |  | 
 | 		/* | 
 | 		 * We need to hold the pagetable lock between the time | 
 | 		 * we make the pagetable RO and when we actually pin | 
 | 		 * it.  If we don't, then other users may come in and | 
 | 		 * attempt to update the pagetable by writing it, | 
 | 		 * which will fail because the memory is RO but not | 
 | 		 * pinned, so Xen won't do the trap'n'emulate. | 
 | 		 * | 
 | 		 * If we're using split pte locks, we can't hold the | 
 | 		 * entire pagetable's worth of locks during the | 
 | 		 * traverse, because we may wrap the preempt count (8 | 
 | 		 * bits).  The solution is to mark RO and pin each PTE | 
 | 		 * page while holding the lock.  This means the number | 
 | 		 * of locks we end up holding is never more than a | 
 | 		 * batch size (~32 entries, at present). | 
 | 		 * | 
 | 		 * If we're not using split pte locks, we needn't pin | 
 | 		 * the PTE pages independently, because we're | 
 | 		 * protected by the overall pagetable lock. | 
 | 		 */ | 
 | 		ptl = NULL; | 
 | 		if (level == PT_PTE) | 
 | 			ptl = xen_pte_lock(page, mm); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
 | 					pfn_pte(pfn, PAGE_KERNEL_RO), | 
 | 					level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
 |  | 
 | 		if (ptl) { | 
 | 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); | 
 |  | 
 | 			/* Queue a deferred unlock for when this batch | 
 | 			   is completed. */ | 
 | 			xen_mc_callback(xen_pte_unlock, ptl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return flush; | 
 | } | 
 |  | 
 | /* This is called just after a mm has been created, but it has not | 
 |    been used yet.  We need to make sure that its pagetable is all | 
 |    read-only, and can be pinned. */ | 
 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { | 
 | 		/* re-enable interrupts for flushing */ | 
 | 		xen_mc_issue(0); | 
 |  | 
 | 		kmap_flush_unused(); | 
 |  | 
 | 		xen_mc_batch(); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 		if (user_pgd) { | 
 | 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
 | 			xen_do_pin(MMUEXT_PIN_L4_TABLE, | 
 | 				   PFN_DOWN(__pa(user_pgd))); | 
 | 		} | 
 | 	} | 
 | #else /* CONFIG_X86_32 */ | 
 | #ifdef CONFIG_X86_PAE | 
 | 	/* Need to make sure unshared kernel PMD is pinnable */ | 
 | 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
 | 		     PT_PMD); | 
 | #endif | 
 | 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); | 
 | #endif /* CONFIG_X86_64 */ | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | static void xen_pgd_pin(struct mm_struct *mm) | 
 | { | 
 | 	__xen_pgd_pin(mm, mm->pgd); | 
 | } | 
 |  | 
 | /* | 
 |  * On save, we need to pin all pagetables to make sure they get their | 
 |  * mfns turned into pfns.  Search the list for any unpinned pgds and pin | 
 |  * them (unpinned pgds are not currently in use, probably because the | 
 |  * process is under construction or destruction). | 
 |  * | 
 |  * Expected to be called in stop_machine() ("equivalent to taking | 
 |  * every spinlock in the system"), so the locking doesn't really | 
 |  * matter all that much. | 
 |  */ | 
 | void xen_mm_pin_all(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock_irqsave(&pgd_lock, flags); | 
 |  | 
 | 	list_for_each_entry(page, &pgd_list, lru) { | 
 | 		if (!PagePinned(page)) { | 
 | 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); | 
 | 			SetPageSavePinned(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&pgd_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * The init_mm pagetable is really pinned as soon as its created, but | 
 |  * that's before we have page structures to store the bits.  So do all | 
 |  * the book-keeping now. | 
 |  */ | 
 | static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page, | 
 | 				  enum pt_level level) | 
 | { | 
 | 	SetPagePinned(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init xen_mark_init_mm_pinned(void) | 
 | { | 
 | 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); | 
 | } | 
 |  | 
 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, | 
 | 			  enum pt_level level) | 
 | { | 
 | 	unsigned pgfl = TestClearPagePinned(page); | 
 |  | 
 | 	if (pgfl && !PageHighMem(page)) { | 
 | 		void *pt = lowmem_page_address(page); | 
 | 		unsigned long pfn = page_to_pfn(page); | 
 | 		spinlock_t *ptl = NULL; | 
 | 		struct multicall_space mcs; | 
 |  | 
 | 		/* | 
 | 		 * Do the converse to pin_page.  If we're using split | 
 | 		 * pte locks, we must be holding the lock for while | 
 | 		 * the pte page is unpinned but still RO to prevent | 
 | 		 * concurrent updates from seeing it in this | 
 | 		 * partially-pinned state. | 
 | 		 */ | 
 | 		if (level == PT_PTE) { | 
 | 			ptl = xen_pte_lock(page, mm); | 
 |  | 
 | 			if (ptl) | 
 | 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); | 
 | 		} | 
 |  | 
 | 		mcs = __xen_mc_entry(0); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, | 
 | 					pfn_pte(pfn, PAGE_KERNEL), | 
 | 					level == PT_PGD ? UVMF_TLB_FLUSH : 0); | 
 |  | 
 | 		if (ptl) { | 
 | 			/* unlock when batch completed */ | 
 | 			xen_mc_callback(xen_pte_unlock, ptl); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0;		/* never need to flush on unpin */ | 
 | } | 
 |  | 
 | /* Release a pagetables pages back as normal RW */ | 
 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 		if (user_pgd) { | 
 | 			xen_do_pin(MMUEXT_UNPIN_TABLE, | 
 | 				   PFN_DOWN(__pa(user_pgd))); | 
 | 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	/* Need to make sure unshared kernel PMD is unpinned */ | 
 | 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), | 
 | 		       PT_PMD); | 
 | #endif | 
 |  | 
 | 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); | 
 |  | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | static void xen_pgd_unpin(struct mm_struct *mm) | 
 | { | 
 | 	__xen_pgd_unpin(mm, mm->pgd); | 
 | } | 
 |  | 
 | /* | 
 |  * On resume, undo any pinning done at save, so that the rest of the | 
 |  * kernel doesn't see any unexpected pinned pagetables. | 
 |  */ | 
 | void xen_mm_unpin_all(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock_irqsave(&pgd_lock, flags); | 
 |  | 
 | 	list_for_each_entry(page, &pgd_list, lru) { | 
 | 		if (PageSavePinned(page)) { | 
 | 			BUG_ON(!PagePinned(page)); | 
 | 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); | 
 | 			ClearPageSavePinned(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&pgd_lock, flags); | 
 | } | 
 |  | 
 | void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) | 
 | { | 
 | 	spin_lock(&next->page_table_lock); | 
 | 	xen_pgd_pin(next); | 
 | 	spin_unlock(&next->page_table_lock); | 
 | } | 
 |  | 
 | void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) | 
 | { | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	xen_pgd_pin(mm); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* Another cpu may still have their %cr3 pointing at the pagetable, so | 
 |    we need to repoint it somewhere else before we can unpin it. */ | 
 | static void drop_other_mm_ref(void *info) | 
 | { | 
 | 	struct mm_struct *mm = info; | 
 | 	struct mm_struct *active_mm; | 
 |  | 
 | 	active_mm = percpu_read(cpu_tlbstate.active_mm); | 
 |  | 
 | 	if (active_mm == mm) | 
 | 		leave_mm(smp_processor_id()); | 
 |  | 
 | 	/* If this cpu still has a stale cr3 reference, then make sure | 
 | 	   it has been flushed. */ | 
 | 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) | 
 | 		load_cr3(swapper_pg_dir); | 
 | } | 
 |  | 
 | static void xen_drop_mm_ref(struct mm_struct *mm) | 
 | { | 
 | 	cpumask_var_t mask; | 
 | 	unsigned cpu; | 
 |  | 
 | 	if (current->active_mm == mm) { | 
 | 		if (current->mm == mm) | 
 | 			load_cr3(swapper_pg_dir); | 
 | 		else | 
 | 			leave_mm(smp_processor_id()); | 
 | 	} | 
 |  | 
 | 	/* Get the "official" set of cpus referring to our pagetable. */ | 
 | 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { | 
 | 		for_each_online_cpu(cpu) { | 
 | 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) | 
 | 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) | 
 | 				continue; | 
 | 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); | 
 | 		} | 
 | 		return; | 
 | 	} | 
 | 	cpumask_copy(mask, mm_cpumask(mm)); | 
 |  | 
 | 	/* It's possible that a vcpu may have a stale reference to our | 
 | 	   cr3, because its in lazy mode, and it hasn't yet flushed | 
 | 	   its set of pending hypercalls yet.  In this case, we can | 
 | 	   look at its actual current cr3 value, and force it to flush | 
 | 	   if needed. */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) | 
 | 			cpumask_set_cpu(cpu, mask); | 
 | 	} | 
 |  | 
 | 	if (!cpumask_empty(mask)) | 
 | 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1); | 
 | 	free_cpumask_var(mask); | 
 | } | 
 | #else | 
 | static void xen_drop_mm_ref(struct mm_struct *mm) | 
 | { | 
 | 	if (current->active_mm == mm) | 
 | 		load_cr3(swapper_pg_dir); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * While a process runs, Xen pins its pagetables, which means that the | 
 |  * hypervisor forces it to be read-only, and it controls all updates | 
 |  * to it.  This means that all pagetable updates have to go via the | 
 |  * hypervisor, which is moderately expensive. | 
 |  * | 
 |  * Since we're pulling the pagetable down, we switch to use init_mm, | 
 |  * unpin old process pagetable and mark it all read-write, which | 
 |  * allows further operations on it to be simple memory accesses. | 
 |  * | 
 |  * The only subtle point is that another CPU may be still using the | 
 |  * pagetable because of lazy tlb flushing.  This means we need need to | 
 |  * switch all CPUs off this pagetable before we can unpin it. | 
 |  */ | 
 | void xen_exit_mmap(struct mm_struct *mm) | 
 | { | 
 | 	get_cpu();		/* make sure we don't move around */ | 
 | 	xen_drop_mm_ref(mm); | 
 | 	put_cpu(); | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 |  | 
 | 	/* pgd may not be pinned in the error exit path of execve */ | 
 | 	if (xen_page_pinned(mm->pgd)) | 
 | 		xen_pgd_unpin(mm); | 
 |  | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 | static __init void xen_pagetable_setup_start(pgd_t *base) | 
 | { | 
 | } | 
 |  | 
 | static void xen_post_allocator_init(void); | 
 |  | 
 | static __init void xen_pagetable_setup_done(pgd_t *base) | 
 | { | 
 | 	xen_setup_shared_info(); | 
 | 	xen_post_allocator_init(); | 
 | } | 
 |  | 
 | static void xen_write_cr2(unsigned long cr2) | 
 | { | 
 | 	percpu_read(xen_vcpu)->arch.cr2 = cr2; | 
 | } | 
 |  | 
 | static unsigned long xen_read_cr2(void) | 
 | { | 
 | 	return percpu_read(xen_vcpu)->arch.cr2; | 
 | } | 
 |  | 
 | unsigned long xen_read_cr2_direct(void) | 
 | { | 
 | 	return percpu_read(xen_vcpu_info.arch.cr2); | 
 | } | 
 |  | 
 | static void xen_flush_tlb(void) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*op)); | 
 |  | 
 | 	op = mcs.args; | 
 | 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_flush_tlb_single(unsigned long addr) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*op)); | 
 | 	op = mcs.args; | 
 | 	op->cmd = MMUEXT_INVLPG_LOCAL; | 
 | 	op->arg1.linear_addr = addr & PAGE_MASK; | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 |  | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static void xen_flush_tlb_others(const struct cpumask *cpus, | 
 | 				 struct mm_struct *mm, unsigned long va) | 
 | { | 
 | 	struct { | 
 | 		struct mmuext_op op; | 
 | 		DECLARE_BITMAP(mask, NR_CPUS); | 
 | 	} *args; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	if (cpumask_empty(cpus)) | 
 | 		return;		/* nothing to do */ | 
 |  | 
 | 	mcs = xen_mc_entry(sizeof(*args)); | 
 | 	args = mcs.args; | 
 | 	args->op.arg2.vcpumask = to_cpumask(args->mask); | 
 |  | 
 | 	/* Remove us, and any offline CPUS. */ | 
 | 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); | 
 | 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); | 
 |  | 
 | 	if (va == TLB_FLUSH_ALL) { | 
 | 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | 
 | 	} else { | 
 | 		args->op.cmd = MMUEXT_INVLPG_MULTI; | 
 | 		args->op.arg1.linear_addr = va; | 
 | 	} | 
 |  | 
 | 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_MMU); | 
 | } | 
 |  | 
 | static unsigned long xen_read_cr3(void) | 
 | { | 
 | 	return percpu_read(xen_cr3); | 
 | } | 
 |  | 
 | static void set_current_cr3(void *v) | 
 | { | 
 | 	percpu_write(xen_current_cr3, (unsigned long)v); | 
 | } | 
 |  | 
 | static void __xen_write_cr3(bool kernel, unsigned long cr3) | 
 | { | 
 | 	struct mmuext_op *op; | 
 | 	struct multicall_space mcs; | 
 | 	unsigned long mfn; | 
 |  | 
 | 	if (cr3) | 
 | 		mfn = pfn_to_mfn(PFN_DOWN(cr3)); | 
 | 	else | 
 | 		mfn = 0; | 
 |  | 
 | 	WARN_ON(mfn == 0 && kernel); | 
 |  | 
 | 	mcs = __xen_mc_entry(sizeof(*op)); | 
 |  | 
 | 	op = mcs.args; | 
 | 	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | 
 | 	op->arg1.mfn = mfn; | 
 |  | 
 | 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
 |  | 
 | 	if (kernel) { | 
 | 		percpu_write(xen_cr3, cr3); | 
 |  | 
 | 		/* Update xen_current_cr3 once the batch has actually | 
 | 		   been submitted. */ | 
 | 		xen_mc_callback(set_current_cr3, (void *)cr3); | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_write_cr3(unsigned long cr3) | 
 | { | 
 | 	BUG_ON(preemptible()); | 
 |  | 
 | 	xen_mc_batch();  /* disables interrupts */ | 
 |  | 
 | 	/* Update while interrupts are disabled, so its atomic with | 
 | 	   respect to ipis */ | 
 | 	percpu_write(xen_cr3, cr3); | 
 |  | 
 | 	__xen_write_cr3(true, cr3); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | 
 | 		if (user_pgd) | 
 | 			__xen_write_cr3(false, __pa(user_pgd)); | 
 | 		else | 
 | 			__xen_write_cr3(false, 0); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */ | 
 | } | 
 |  | 
 | static int xen_pgd_alloc(struct mm_struct *mm) | 
 | { | 
 | 	pgd_t *pgd = mm->pgd; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(PagePinned(virt_to_page(pgd))); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ | 
 | 		struct page *page = virt_to_page(pgd); | 
 | 		pgd_t *user_pgd; | 
 |  | 
 | 		BUG_ON(page->private != 0); | 
 |  | 
 | 		ret = -ENOMEM; | 
 |  | 
 | 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
 | 		page->private = (unsigned long)user_pgd; | 
 |  | 
 | 		if (user_pgd != NULL) { | 
 | 			user_pgd[pgd_index(VSYSCALL_START)] = | 
 | 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | 
 | 			ret = 0; | 
 | 		} | 
 |  | 
 | 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
 |  | 
 | 	if (user_pgd) | 
 | 		free_page((unsigned long)user_pgd); | 
 | #endif | 
 | } | 
 |  | 
 | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | 
 | { | 
 | 	unsigned long pfn = pte_pfn(pte); | 
 |  | 
 | #ifdef CONFIG_X86_32 | 
 | 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */ | 
 | 	if (pte_val_ma(*ptep) & _PAGE_PRESENT) | 
 | 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | 
 | 			       pte_val_ma(pte)); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * If the new pfn is within the range of the newly allocated | 
 | 	 * kernel pagetable, and it isn't being mapped into an | 
 | 	 * early_ioremap fixmap slot, make sure it is RO. | 
 | 	 */ | 
 | 	if (!is_early_ioremap_ptep(ptep) && | 
 | 	    pfn >= e820_table_start && pfn < e820_table_end) | 
 | 		pte = pte_wrprotect(pte); | 
 |  | 
 | 	return pte; | 
 | } | 
 |  | 
 | /* Init-time set_pte while constructing initial pagetables, which | 
 |    doesn't allow RO pagetable pages to be remapped RW */ | 
 | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | 
 | { | 
 | 	pte = mask_rw_pte(ptep, pte); | 
 |  | 
 | 	xen_set_pte(ptep, pte); | 
 | } | 
 |  | 
 | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 
 | { | 
 | 	struct mmuext_op op; | 
 | 	op.cmd = cmd; | 
 | 	op.arg1.mfn = pfn_to_mfn(pfn); | 
 | 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | /* Early in boot, while setting up the initial pagetable, assume | 
 |    everything is pinned. */ | 
 | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(mem_map);	/* should only be used early */ | 
 | #endif | 
 | 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
 | } | 
 |  | 
 | /* Used for pmd and pud */ | 
 | static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | #ifdef CONFIG_FLATMEM | 
 | 	BUG_ON(mem_map);	/* should only be used early */ | 
 | #endif | 
 | 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | /* Early release_pte assumes that all pts are pinned, since there's | 
 |    only init_mm and anything attached to that is pinned. */ | 
 | static __init void xen_release_pte_init(unsigned long pfn) | 
 | { | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
 | 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | static __init void xen_release_pmd_init(unsigned long pfn) | 
 | { | 
 | 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | } | 
 |  | 
 | /* This needs to make sure the new pte page is pinned iff its being | 
 |    attached to a pinned pagetable. */ | 
 | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | 
 | { | 
 | 	struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 	if (PagePinned(virt_to_page(mm->pgd))) { | 
 | 		SetPagePinned(page); | 
 |  | 
 | 		if (!PageHighMem(page)) { | 
 | 			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | 
 | 			if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
 | 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
 | 		} else { | 
 | 			/* make sure there are no stray mappings of | 
 | 			   this page */ | 
 | 			kmap_flush_unused(); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PTE); | 
 | } | 
 |  | 
 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PMD); | 
 | } | 
 |  | 
 | /* This should never happen until we're OK to use struct page */ | 
 | static void xen_release_ptpage(unsigned long pfn, unsigned level) | 
 | { | 
 | 	struct page *page = pfn_to_page(pfn); | 
 |  | 
 | 	if (PagePinned(page)) { | 
 | 		if (!PageHighMem(page)) { | 
 | 			if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
 | 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
 | 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
 | 		} | 
 | 		ClearPagePinned(page); | 
 | 	} | 
 | } | 
 |  | 
 | static void xen_release_pte(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PTE); | 
 | } | 
 |  | 
 | static void xen_release_pmd(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PMD); | 
 | } | 
 |  | 
 | #if PAGETABLE_LEVELS == 4 | 
 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | 
 | { | 
 | 	xen_alloc_ptpage(mm, pfn, PT_PUD); | 
 | } | 
 |  | 
 | static void xen_release_pud(unsigned long pfn) | 
 | { | 
 | 	xen_release_ptpage(pfn, PT_PUD); | 
 | } | 
 | #endif | 
 |  | 
 | void __init xen_reserve_top(void) | 
 | { | 
 | #ifdef CONFIG_X86_32 | 
 | 	unsigned long top = HYPERVISOR_VIRT_START; | 
 | 	struct xen_platform_parameters pp; | 
 |  | 
 | 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | 
 | 		top = pp.virt_start; | 
 |  | 
 | 	reserve_top_address(-top); | 
 | #endif	/* CONFIG_X86_32 */ | 
 | } | 
 |  | 
 | /* | 
 |  * Like __va(), but returns address in the kernel mapping (which is | 
 |  * all we have until the physical memory mapping has been set up. | 
 |  */ | 
 | static void *__ka(phys_addr_t paddr) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return (void *)(paddr + __START_KERNEL_map); | 
 | #else | 
 | 	return __va(paddr); | 
 | #endif | 
 | } | 
 |  | 
 | /* Convert a machine address to physical address */ | 
 | static unsigned long m2p(phys_addr_t maddr) | 
 | { | 
 | 	phys_addr_t paddr; | 
 |  | 
 | 	maddr &= PTE_PFN_MASK; | 
 | 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | 
 |  | 
 | 	return paddr; | 
 | } | 
 |  | 
 | /* Convert a machine address to kernel virtual */ | 
 | static void *m2v(phys_addr_t maddr) | 
 | { | 
 | 	return __ka(m2p(maddr)); | 
 | } | 
 |  | 
 | /* Set the page permissions on an identity-mapped pages */ | 
 | static void set_page_prot(void *addr, pgprot_t prot) | 
 | { | 
 | 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | 
 | 	pte_t pte = pfn_pte(pfn, prot); | 
 |  | 
 | 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | 
 | 		BUG(); | 
 | } | 
 |  | 
 | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | 
 | { | 
 | 	unsigned pmdidx, pteidx; | 
 | 	unsigned ident_pte; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, | 
 | 				      PAGE_SIZE); | 
 |  | 
 | 	ident_pte = 0; | 
 | 	pfn = 0; | 
 | 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | 
 | 		pte_t *pte_page; | 
 |  | 
 | 		/* Reuse or allocate a page of ptes */ | 
 | 		if (pmd_present(pmd[pmdidx])) | 
 | 			pte_page = m2v(pmd[pmdidx].pmd); | 
 | 		else { | 
 | 			/* Check for free pte pages */ | 
 | 			if (ident_pte == LEVEL1_IDENT_ENTRIES) | 
 | 				break; | 
 |  | 
 | 			pte_page = &level1_ident_pgt[ident_pte]; | 
 | 			ident_pte += PTRS_PER_PTE; | 
 |  | 
 | 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | 
 | 		} | 
 |  | 
 | 		/* Install mappings */ | 
 | 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | 
 | 			pte_t pte; | 
 |  | 
 | 			if (pfn > max_pfn_mapped) | 
 | 				max_pfn_mapped = pfn; | 
 |  | 
 | 			if (!pte_none(pte_page[pteidx])) | 
 | 				continue; | 
 |  | 
 | 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | 
 | 			pte_page[pteidx] = pte; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | 
 | 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | 
 |  | 
 | 	set_page_prot(pmd, PAGE_KERNEL_RO); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void convert_pfn_mfn(void *v) | 
 | { | 
 | 	pte_t *pte = v; | 
 | 	int i; | 
 |  | 
 | 	/* All levels are converted the same way, so just treat them | 
 | 	   as ptes. */ | 
 | 	for (i = 0; i < PTRS_PER_PTE; i++) | 
 | 		pte[i] = xen_make_pte(pte[i].pte); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the inital kernel pagetable. | 
 |  * | 
 |  * We can construct this by grafting the Xen provided pagetable into | 
 |  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into | 
 |  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This | 
 |  * means that only the kernel has a physical mapping to start with - | 
 |  * but that's enough to get __va working.  We need to fill in the rest | 
 |  * of the physical mapping once some sort of allocator has been set | 
 |  * up. | 
 |  */ | 
 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | 
 | 					 unsigned long max_pfn) | 
 | { | 
 | 	pud_t *l3; | 
 | 	pmd_t *l2; | 
 |  | 
 | 	/* Zap identity mapping */ | 
 | 	init_level4_pgt[0] = __pgd(0); | 
 |  | 
 | 	/* Pre-constructed entries are in pfn, so convert to mfn */ | 
 | 	convert_pfn_mfn(init_level4_pgt); | 
 | 	convert_pfn_mfn(level3_ident_pgt); | 
 | 	convert_pfn_mfn(level3_kernel_pgt); | 
 |  | 
 | 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | 
 | 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | 
 |  | 
 | 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
 | 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
 |  | 
 | 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | 
 | 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | 
 | 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
 |  | 
 | 	/* Set up identity map */ | 
 | 	xen_map_identity_early(level2_ident_pgt, max_pfn); | 
 |  | 
 | 	/* Make pagetable pieces RO */ | 
 | 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | 
 |  | 
 | 	/* Pin down new L4 */ | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | 
 | 			  PFN_DOWN(__pa_symbol(init_level4_pgt))); | 
 |  | 
 | 	/* Unpin Xen-provided one */ | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 	/* Switch over */ | 
 | 	pgd = init_level4_pgt; | 
 |  | 
 | 	/* | 
 | 	 * At this stage there can be no user pgd, and no page | 
 | 	 * structure to attach it to, so make sure we just set kernel | 
 | 	 * pgd. | 
 | 	 */ | 
 | 	xen_mc_batch(); | 
 | 	__xen_write_cr3(true, __pa(pgd)); | 
 | 	xen_mc_issue(PARAVIRT_LAZY_CPU); | 
 |  | 
 | 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base), | 
 | 		      __pa(xen_start_info->pt_base + | 
 | 			   xen_start_info->nr_pt_frames * PAGE_SIZE), | 
 | 		      "XEN PAGETABLES"); | 
 |  | 
 | 	return pgd; | 
 | } | 
 | #else	/* !CONFIG_X86_64 */ | 
 | static RESERVE_BRK_ARRAY(pmd_t, level2_kernel_pgt, PTRS_PER_PMD); | 
 |  | 
 | __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | 
 | 					 unsigned long max_pfn) | 
 | { | 
 | 	pmd_t *kernel_pmd; | 
 |  | 
 | 	level2_kernel_pgt = extend_brk(sizeof(pmd_t *) * PTRS_PER_PMD, PAGE_SIZE); | 
 |  | 
 | 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + | 
 | 				  xen_start_info->nr_pt_frames * PAGE_SIZE + | 
 | 				  512*1024); | 
 |  | 
 | 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | 
 | 	memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | 
 |  | 
 | 	xen_map_identity_early(level2_kernel_pgt, max_pfn); | 
 |  | 
 | 	memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | 
 | 	set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | 
 | 			__pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | 
 |  | 
 | 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
 | 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | 
 | 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | 
 |  | 
 | 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
 |  | 
 | 	xen_write_cr3(__pa(swapper_pg_dir)); | 
 |  | 
 | 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | 
 |  | 
 | 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base), | 
 | 		      __pa(xen_start_info->pt_base + | 
 | 			   xen_start_info->nr_pt_frames * PAGE_SIZE), | 
 | 		      "XEN PAGETABLES"); | 
 |  | 
 | 	return swapper_pg_dir; | 
 | } | 
 | #endif	/* CONFIG_X86_64 */ | 
 |  | 
 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; | 
 |  | 
 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) | 
 | { | 
 | 	pte_t pte; | 
 |  | 
 | 	phys >>= PAGE_SHIFT; | 
 |  | 
 | 	switch (idx) { | 
 | 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | 
 | #ifdef CONFIG_X86_F00F_BUG | 
 | 	case FIX_F00F_IDT: | 
 | #endif | 
 | #ifdef CONFIG_X86_32 | 
 | 	case FIX_WP_TEST: | 
 | 	case FIX_VDSO: | 
 | # ifdef CONFIG_HIGHMEM | 
 | 	case FIX_KMAP_BEGIN ... FIX_KMAP_END: | 
 | # endif | 
 | #else | 
 | 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | 
 | #endif | 
 | 	case FIX_TEXT_POKE0: | 
 | 	case FIX_TEXT_POKE1: | 
 | 		/* All local page mappings */ | 
 | 		pte = pfn_pte(phys, prot); | 
 | 		break; | 
 |  | 
 | #ifdef CONFIG_X86_LOCAL_APIC | 
 | 	case FIX_APIC_BASE:	/* maps dummy local APIC */ | 
 | 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
 | 		break; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_IO_APIC | 
 | 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: | 
 | 		/* | 
 | 		 * We just don't map the IO APIC - all access is via | 
 | 		 * hypercalls.  Keep the address in the pte for reference. | 
 | 		 */ | 
 | 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); | 
 | 		break; | 
 | #endif | 
 |  | 
 | 	case FIX_PARAVIRT_BOOTMAP: | 
 | 		/* This is an MFN, but it isn't an IO mapping from the | 
 | 		   IO domain */ | 
 | 		pte = mfn_pte(phys, prot); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		/* By default, set_fixmap is used for hardware mappings */ | 
 | 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	__native_set_fixmap(idx, pte); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* Replicate changes to map the vsyscall page into the user | 
 | 	   pagetable vsyscall mapping. */ | 
 | 	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | 
 | 		unsigned long vaddr = __fix_to_virt(idx); | 
 | 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | __init void xen_ident_map_ISA(void) | 
 | { | 
 | 	unsigned long pa; | 
 |  | 
 | 	/* | 
 | 	 * If we're dom0, then linear map the ISA machine addresses into | 
 | 	 * the kernel's address space. | 
 | 	 */ | 
 | 	if (!xen_initial_domain()) | 
 | 		return; | 
 |  | 
 | 	xen_raw_printk("Xen: setup ISA identity maps\n"); | 
 |  | 
 | 	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { | 
 | 		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); | 
 |  | 
 | 		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) | 
 | 			BUG(); | 
 | 	} | 
 |  | 
 | 	xen_flush_tlb(); | 
 | } | 
 |  | 
 | static __init void xen_post_allocator_init(void) | 
 | { | 
 | 	pv_mmu_ops.set_pte = xen_set_pte; | 
 | 	pv_mmu_ops.set_pmd = xen_set_pmd; | 
 | 	pv_mmu_ops.set_pud = xen_set_pud; | 
 | #if PAGETABLE_LEVELS == 4 | 
 | 	pv_mmu_ops.set_pgd = xen_set_pgd; | 
 | #endif | 
 |  | 
 | 	/* This will work as long as patching hasn't happened yet | 
 | 	   (which it hasn't) */ | 
 | 	pv_mmu_ops.alloc_pte = xen_alloc_pte; | 
 | 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | 
 | 	pv_mmu_ops.release_pte = xen_release_pte; | 
 | 	pv_mmu_ops.release_pmd = xen_release_pmd; | 
 | #if PAGETABLE_LEVELS == 4 | 
 | 	pv_mmu_ops.alloc_pud = xen_alloc_pud; | 
 | 	pv_mmu_ops.release_pud = xen_release_pud; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	SetPagePinned(virt_to_page(level3_user_vsyscall)); | 
 | #endif | 
 | 	xen_mark_init_mm_pinned(); | 
 | } | 
 |  | 
 | static void xen_leave_lazy_mmu(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	xen_mc_flush(); | 
 | 	paravirt_leave_lazy_mmu(); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static const struct pv_mmu_ops xen_mmu_ops __initdata = { | 
 | 	.read_cr2 = xen_read_cr2, | 
 | 	.write_cr2 = xen_write_cr2, | 
 |  | 
 | 	.read_cr3 = xen_read_cr3, | 
 | 	.write_cr3 = xen_write_cr3, | 
 |  | 
 | 	.flush_tlb_user = xen_flush_tlb, | 
 | 	.flush_tlb_kernel = xen_flush_tlb, | 
 | 	.flush_tlb_single = xen_flush_tlb_single, | 
 | 	.flush_tlb_others = xen_flush_tlb_others, | 
 |  | 
 | 	.pte_update = paravirt_nop, | 
 | 	.pte_update_defer = paravirt_nop, | 
 |  | 
 | 	.pgd_alloc = xen_pgd_alloc, | 
 | 	.pgd_free = xen_pgd_free, | 
 |  | 
 | 	.alloc_pte = xen_alloc_pte_init, | 
 | 	.release_pte = xen_release_pte_init, | 
 | 	.alloc_pmd = xen_alloc_pmd_init, | 
 | 	.release_pmd = xen_release_pmd_init, | 
 |  | 
 | 	.set_pte = xen_set_pte_init, | 
 | 	.set_pte_at = xen_set_pte_at, | 
 | 	.set_pmd = xen_set_pmd_hyper, | 
 |  | 
 | 	.ptep_modify_prot_start = __ptep_modify_prot_start, | 
 | 	.ptep_modify_prot_commit = __ptep_modify_prot_commit, | 
 |  | 
 | 	.pte_val = PV_CALLEE_SAVE(xen_pte_val), | 
 | 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val), | 
 |  | 
 | 	.make_pte = PV_CALLEE_SAVE(xen_make_pte), | 
 | 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd), | 
 |  | 
 | #ifdef CONFIG_X86_PAE | 
 | 	.set_pte_atomic = xen_set_pte_atomic, | 
 | 	.pte_clear = xen_pte_clear, | 
 | 	.pmd_clear = xen_pmd_clear, | 
 | #endif	/* CONFIG_X86_PAE */ | 
 | 	.set_pud = xen_set_pud_hyper, | 
 |  | 
 | 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd), | 
 | 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val), | 
 |  | 
 | #if PAGETABLE_LEVELS == 4 | 
 | 	.pud_val = PV_CALLEE_SAVE(xen_pud_val), | 
 | 	.make_pud = PV_CALLEE_SAVE(xen_make_pud), | 
 | 	.set_pgd = xen_set_pgd_hyper, | 
 |  | 
 | 	.alloc_pud = xen_alloc_pmd_init, | 
 | 	.release_pud = xen_release_pmd_init, | 
 | #endif	/* PAGETABLE_LEVELS == 4 */ | 
 |  | 
 | 	.activate_mm = xen_activate_mm, | 
 | 	.dup_mmap = xen_dup_mmap, | 
 | 	.exit_mmap = xen_exit_mmap, | 
 |  | 
 | 	.lazy_mode = { | 
 | 		.enter = paravirt_enter_lazy_mmu, | 
 | 		.leave = xen_leave_lazy_mmu, | 
 | 	}, | 
 |  | 
 | 	.set_fixmap = xen_set_fixmap, | 
 | }; | 
 |  | 
 | void __init xen_init_mmu_ops(void) | 
 | { | 
 | 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; | 
 | 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; | 
 | 	pv_mmu_ops = xen_mmu_ops; | 
 |  | 
 | 	vmap_lazy_unmap = false; | 
 |  | 
 | 	memset(dummy_mapping, 0xff, PAGE_SIZE); | 
 | } | 
 |  | 
 | /* Protected by xen_reservation_lock. */ | 
 | #define MAX_CONTIG_ORDER 9 /* 2MB */ | 
 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; | 
 |  | 
 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) | 
 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, | 
 | 				unsigned long *in_frames, | 
 | 				unsigned long *out_frames) | 
 | { | 
 | 	int i; | 
 | 	struct multicall_space mcs; | 
 |  | 
 | 	xen_mc_batch(); | 
 | 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { | 
 | 		mcs = __xen_mc_entry(0); | 
 |  | 
 | 		if (in_frames) | 
 | 			in_frames[i] = virt_to_mfn(vaddr); | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); | 
 | 		set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); | 
 |  | 
 | 		if (out_frames) | 
 | 			out_frames[i] = virt_to_pfn(vaddr); | 
 | 	} | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the pfn-to-mfn mappings for a virtual address range, either to | 
 |  * point to an array of mfns, or contiguously from a single starting | 
 |  * mfn. | 
 |  */ | 
 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, | 
 | 				     unsigned long *mfns, | 
 | 				     unsigned long first_mfn) | 
 | { | 
 | 	unsigned i, limit; | 
 | 	unsigned long mfn; | 
 |  | 
 | 	xen_mc_batch(); | 
 |  | 
 | 	limit = 1u << order; | 
 | 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { | 
 | 		struct multicall_space mcs; | 
 | 		unsigned flags; | 
 |  | 
 | 		mcs = __xen_mc_entry(0); | 
 | 		if (mfns) | 
 | 			mfn = mfns[i]; | 
 | 		else | 
 | 			mfn = first_mfn + i; | 
 |  | 
 | 		if (i < (limit - 1)) | 
 | 			flags = 0; | 
 | 		else { | 
 | 			if (order == 0) | 
 | 				flags = UVMF_INVLPG | UVMF_ALL; | 
 | 			else | 
 | 				flags = UVMF_TLB_FLUSH | UVMF_ALL; | 
 | 		} | 
 |  | 
 | 		MULTI_update_va_mapping(mcs.mc, vaddr, | 
 | 				mfn_pte(mfn, PAGE_KERNEL), flags); | 
 |  | 
 | 		set_phys_to_machine(virt_to_pfn(vaddr), mfn); | 
 | 	} | 
 |  | 
 | 	xen_mc_issue(0); | 
 | } | 
 |  | 
 | /* | 
 |  * Perform the hypercall to exchange a region of our pfns to point to | 
 |  * memory with the required contiguous alignment.  Takes the pfns as | 
 |  * input, and populates mfns as output. | 
 |  * | 
 |  * Returns a success code indicating whether the hypervisor was able to | 
 |  * satisfy the request or not. | 
 |  */ | 
 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, | 
 | 			       unsigned long *pfns_in, | 
 | 			       unsigned long extents_out, | 
 | 			       unsigned int order_out, | 
 | 			       unsigned long *mfns_out, | 
 | 			       unsigned int address_bits) | 
 | { | 
 | 	long rc; | 
 | 	int success; | 
 |  | 
 | 	struct xen_memory_exchange exchange = { | 
 | 		.in = { | 
 | 			.nr_extents   = extents_in, | 
 | 			.extent_order = order_in, | 
 | 			.extent_start = pfns_in, | 
 | 			.domid        = DOMID_SELF | 
 | 		}, | 
 | 		.out = { | 
 | 			.nr_extents   = extents_out, | 
 | 			.extent_order = order_out, | 
 | 			.extent_start = mfns_out, | 
 | 			.address_bits = address_bits, | 
 | 			.domid        = DOMID_SELF | 
 | 		} | 
 | 	}; | 
 |  | 
 | 	BUG_ON(extents_in << order_in != extents_out << order_out); | 
 |  | 
 | 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); | 
 | 	success = (exchange.nr_exchanged == extents_in); | 
 |  | 
 | 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); | 
 | 	BUG_ON(success && (rc != 0)); | 
 |  | 
 | 	return success; | 
 | } | 
 |  | 
 | int xen_create_contiguous_region(unsigned long vstart, unsigned int order, | 
 | 				 unsigned int address_bits) | 
 | { | 
 | 	unsigned long *in_frames = discontig_frames, out_frame; | 
 | 	unsigned long  flags; | 
 | 	int            success; | 
 |  | 
 | 	/* | 
 | 	 * Currently an auto-translated guest will not perform I/O, nor will | 
 | 	 * it require PAE page directories below 4GB. Therefore any calls to | 
 | 	 * this function are redundant and can be ignored. | 
 | 	 */ | 
 |  | 
 | 	if (xen_feature(XENFEAT_auto_translated_physmap)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(order > MAX_CONTIG_ORDER)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memset((void *) vstart, 0, PAGE_SIZE << order); | 
 |  | 
 | 	spin_lock_irqsave(&xen_reservation_lock, flags); | 
 |  | 
 | 	/* 1. Zap current PTEs, remembering MFNs. */ | 
 | 	xen_zap_pfn_range(vstart, order, in_frames, NULL); | 
 |  | 
 | 	/* 2. Get a new contiguous memory extent. */ | 
 | 	out_frame = virt_to_pfn(vstart); | 
 | 	success = xen_exchange_memory(1UL << order, 0, in_frames, | 
 | 				      1, order, &out_frame, | 
 | 				      address_bits); | 
 |  | 
 | 	/* 3. Map the new extent in place of old pages. */ | 
 | 	if (success) | 
 | 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); | 
 | 	else | 
 | 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0); | 
 |  | 
 | 	spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
 |  | 
 | 	return success ? 0 : -ENOMEM; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); | 
 |  | 
 | void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) | 
 | { | 
 | 	unsigned long *out_frames = discontig_frames, in_frame; | 
 | 	unsigned long  flags; | 
 | 	int success; | 
 |  | 
 | 	if (xen_feature(XENFEAT_auto_translated_physmap)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(order > MAX_CONTIG_ORDER)) | 
 | 		return; | 
 |  | 
 | 	memset((void *) vstart, 0, PAGE_SIZE << order); | 
 |  | 
 | 	spin_lock_irqsave(&xen_reservation_lock, flags); | 
 |  | 
 | 	/* 1. Find start MFN of contiguous extent. */ | 
 | 	in_frame = virt_to_mfn(vstart); | 
 |  | 
 | 	/* 2. Zap current PTEs. */ | 
 | 	xen_zap_pfn_range(vstart, order, NULL, out_frames); | 
 |  | 
 | 	/* 3. Do the exchange for non-contiguous MFNs. */ | 
 | 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order, | 
 | 					0, out_frames, 0); | 
 |  | 
 | 	/* 4. Map new pages in place of old pages. */ | 
 | 	if (success) | 
 | 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0); | 
 | 	else | 
 | 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); | 
 |  | 
 | 	spin_unlock_irqrestore(&xen_reservation_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); | 
 |  | 
 | #ifdef CONFIG_XEN_PVHVM | 
 | static void xen_hvm_exit_mmap(struct mm_struct *mm) | 
 | { | 
 | 	struct xen_hvm_pagetable_dying a; | 
 | 	int rc; | 
 |  | 
 | 	a.domid = DOMID_SELF; | 
 | 	a.gpa = __pa(mm->pgd); | 
 | 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 
 | 	WARN_ON_ONCE(rc < 0); | 
 | } | 
 |  | 
 | static int is_pagetable_dying_supported(void) | 
 | { | 
 | 	struct xen_hvm_pagetable_dying a; | 
 | 	int rc = 0; | 
 |  | 
 | 	a.domid = DOMID_SELF; | 
 | 	a.gpa = 0x00; | 
 | 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); | 
 | 	if (rc < 0) { | 
 | 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | void __init xen_hvm_init_mmu_ops(void) | 
 | { | 
 | 	if (is_pagetable_dying_supported()) | 
 | 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; | 
 | } | 
 | #endif | 
 |  | 
 | #define REMAP_BATCH_SIZE 16 | 
 |  | 
 | struct remap_data { | 
 | 	unsigned long mfn; | 
 | 	pgprot_t prot; | 
 | 	struct mmu_update *mmu_update; | 
 | }; | 
 |  | 
 | static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, | 
 | 				 unsigned long addr, void *data) | 
 | { | 
 | 	struct remap_data *rmd = data; | 
 | 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); | 
 |  | 
 | 	rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr; | 
 | 	rmd->mmu_update->val = pte_val_ma(pte); | 
 | 	rmd->mmu_update++; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int xen_remap_domain_mfn_range(struct vm_area_struct *vma, | 
 | 			       unsigned long addr, | 
 | 			       unsigned long mfn, int nr, | 
 | 			       pgprot_t prot, unsigned domid) | 
 | { | 
 | 	struct remap_data rmd; | 
 | 	struct mmu_update mmu_update[REMAP_BATCH_SIZE]; | 
 | 	int batch; | 
 | 	unsigned long range; | 
 | 	int err = 0; | 
 |  | 
 | 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); | 
 |  | 
 | 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; | 
 |  | 
 | 	rmd.mfn = mfn; | 
 | 	rmd.prot = prot; | 
 |  | 
 | 	while (nr) { | 
 | 		batch = min(REMAP_BATCH_SIZE, nr); | 
 | 		range = (unsigned long)batch << PAGE_SHIFT; | 
 |  | 
 | 		rmd.mmu_update = mmu_update; | 
 | 		err = apply_to_page_range(vma->vm_mm, addr, range, | 
 | 					  remap_area_mfn_pte_fn, &rmd); | 
 | 		if (err) | 
 | 			goto out; | 
 |  | 
 | 		err = -EFAULT; | 
 | 		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) | 
 | 			goto out; | 
 |  | 
 | 		nr -= batch; | 
 | 		addr += range; | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | out: | 
 |  | 
 | 	flush_tlb_all(); | 
 |  | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); | 
 |  | 
 | #ifdef CONFIG_XEN_DEBUG_FS | 
 |  | 
 | static struct dentry *d_mmu_debug; | 
 |  | 
 | static int __init xen_mmu_debugfs(void) | 
 | { | 
 | 	struct dentry *d_xen = xen_init_debugfs(); | 
 |  | 
 | 	if (d_xen == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	d_mmu_debug = debugfs_create_dir("mmu", d_xen); | 
 |  | 
 | 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats); | 
 |  | 
 | 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update); | 
 | 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pgd_update_pinned); | 
 | 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pgd_update_pinned); | 
 |  | 
 | 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update); | 
 | 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pud_update_pinned); | 
 | 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pud_update_pinned); | 
 |  | 
 | 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update); | 
 | 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pmd_update_pinned); | 
 | 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pmd_update_pinned); | 
 |  | 
 | 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update); | 
 | //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug, | 
 | //			   &mmu_stats.pte_update_pinned); | 
 | 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.pte_update_pinned); | 
 |  | 
 | 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update); | 
 | 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.mmu_update_extended); | 
 | 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug, | 
 | 				     mmu_stats.mmu_update_histo, 20); | 
 |  | 
 | 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at); | 
 | 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.set_pte_at_batched); | 
 | 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.set_pte_at_current); | 
 | 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.set_pte_at_kernel); | 
 |  | 
 | 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit); | 
 | 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug, | 
 | 			   &mmu_stats.prot_commit_batched); | 
 |  | 
 | 	return 0; | 
 | } | 
 | fs_initcall(xen_mmu_debugfs); | 
 |  | 
 | #endif	/* CONFIG_XEN_DEBUG_FS */ |