|  | /* | 
|  | * sched_clock for unstable cpu clocks | 
|  | * | 
|  | *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | * | 
|  | *  Updates and enhancements: | 
|  | *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> | 
|  | * | 
|  | * Based on code by: | 
|  | *   Ingo Molnar <mingo@redhat.com> | 
|  | *   Guillaume Chazarain <guichaz@gmail.com> | 
|  | * | 
|  | * Create a semi stable clock from a mixture of other events, including: | 
|  | *  - gtod | 
|  | *  - sched_clock() | 
|  | *  - explicit idle events | 
|  | * | 
|  | * We use gtod as base and the unstable clock deltas. The deltas are filtered, | 
|  | * making it monotonic and keeping it within an expected window. | 
|  | * | 
|  | * Furthermore, explicit sleep and wakeup hooks allow us to account for time | 
|  | * that is otherwise invisible (TSC gets stopped). | 
|  | * | 
|  | * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat | 
|  | * consistent between cpus (never more than 2 jiffies difference). | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | /* | 
|  | * Scheduler clock - returns current time in nanosec units. | 
|  | * This is default implementation. | 
|  | * Architectures and sub-architectures can override this. | 
|  | */ | 
|  | unsigned long long __attribute__((weak)) sched_clock(void) | 
|  | { | 
|  | return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ); | 
|  | } | 
|  |  | 
|  | static __read_mostly int sched_clock_running; | 
|  |  | 
|  | #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK | 
|  |  | 
|  | struct sched_clock_data { | 
|  | /* | 
|  | * Raw spinlock - this is a special case: this might be called | 
|  | * from within instrumentation code so we dont want to do any | 
|  | * instrumentation ourselves. | 
|  | */ | 
|  | raw_spinlock_t		lock; | 
|  |  | 
|  | u64			tick_raw; | 
|  | u64			tick_gtod; | 
|  | u64			clock; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); | 
|  |  | 
|  | static inline struct sched_clock_data *this_scd(void) | 
|  | { | 
|  | return &__get_cpu_var(sched_clock_data); | 
|  | } | 
|  |  | 
|  | static inline struct sched_clock_data *cpu_sdc(int cpu) | 
|  | { | 
|  | return &per_cpu(sched_clock_data, cpu); | 
|  | } | 
|  |  | 
|  | void sched_clock_init(void) | 
|  | { | 
|  | u64 ktime_now = ktime_to_ns(ktime_get()); | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | struct sched_clock_data *scd = cpu_sdc(cpu); | 
|  |  | 
|  | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | 
|  | scd->tick_raw = 0; | 
|  | scd->tick_gtod = ktime_now; | 
|  | scd->clock = ktime_now; | 
|  | } | 
|  |  | 
|  | sched_clock_running = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * min,max except they take wrapping into account | 
|  | */ | 
|  |  | 
|  | static inline u64 wrap_min(u64 x, u64 y) | 
|  | { | 
|  | return (s64)(x - y) < 0 ? x : y; | 
|  | } | 
|  |  | 
|  | static inline u64 wrap_max(u64 x, u64 y) | 
|  | { | 
|  | return (s64)(x - y) > 0 ? x : y; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update the percpu scd from the raw @now value | 
|  | * | 
|  | *  - filter out backward motion | 
|  | *  - use the GTOD tick value to create a window to filter crazy TSC values | 
|  | */ | 
|  | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 
|  | { | 
|  | s64 delta = now - scd->tick_raw; | 
|  | u64 clock, min_clock, max_clock; | 
|  |  | 
|  | WARN_ON_ONCE(!irqs_disabled()); | 
|  |  | 
|  | if (unlikely(delta < 0)) | 
|  | delta = 0; | 
|  |  | 
|  | /* | 
|  | * scd->clock = clamp(scd->tick_gtod + delta, | 
|  | * 		      max(scd->tick_gtod, scd->clock), | 
|  | * 		      scd->tick_gtod + TICK_NSEC); | 
|  | */ | 
|  |  | 
|  | clock = scd->tick_gtod + delta; | 
|  | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 
|  | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 
|  |  | 
|  | clock = wrap_max(clock, min_clock); | 
|  | clock = wrap_min(clock, max_clock); | 
|  |  | 
|  | scd->clock = clock; | 
|  |  | 
|  | return scd->clock; | 
|  | } | 
|  |  | 
|  | static void lock_double_clock(struct sched_clock_data *data1, | 
|  | struct sched_clock_data *data2) | 
|  | { | 
|  | if (data1 < data2) { | 
|  | __raw_spin_lock(&data1->lock); | 
|  | __raw_spin_lock(&data2->lock); | 
|  | } else { | 
|  | __raw_spin_lock(&data2->lock); | 
|  | __raw_spin_lock(&data1->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | u64 sched_clock_cpu(int cpu) | 
|  | { | 
|  | struct sched_clock_data *scd = cpu_sdc(cpu); | 
|  | u64 now, clock, this_clock, remote_clock; | 
|  |  | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return 0ull; | 
|  |  | 
|  | WARN_ON_ONCE(!irqs_disabled()); | 
|  | now = sched_clock(); | 
|  |  | 
|  | if (cpu != raw_smp_processor_id()) { | 
|  | struct sched_clock_data *my_scd = this_scd(); | 
|  |  | 
|  | lock_double_clock(scd, my_scd); | 
|  |  | 
|  | this_clock = __update_sched_clock(my_scd, now); | 
|  | remote_clock = scd->clock; | 
|  |  | 
|  | /* | 
|  | * Use the opportunity that we have both locks | 
|  | * taken to couple the two clocks: we take the | 
|  | * larger time as the latest time for both | 
|  | * runqueues. (this creates monotonic movement) | 
|  | */ | 
|  | if (likely((s64)(remote_clock - this_clock) < 0)) { | 
|  | clock = this_clock; | 
|  | scd->clock = clock; | 
|  | } else { | 
|  | /* | 
|  | * Should be rare, but possible: | 
|  | */ | 
|  | clock = remote_clock; | 
|  | my_scd->clock = remote_clock; | 
|  | } | 
|  |  | 
|  | __raw_spin_unlock(&my_scd->lock); | 
|  | } else { | 
|  | __raw_spin_lock(&scd->lock); | 
|  | clock = __update_sched_clock(scd, now); | 
|  | } | 
|  |  | 
|  | __raw_spin_unlock(&scd->lock); | 
|  |  | 
|  | return clock; | 
|  | } | 
|  |  | 
|  | void sched_clock_tick(void) | 
|  | { | 
|  | struct sched_clock_data *scd = this_scd(); | 
|  | u64 now, now_gtod; | 
|  |  | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!irqs_disabled()); | 
|  |  | 
|  | now_gtod = ktime_to_ns(ktime_get()); | 
|  | now = sched_clock(); | 
|  |  | 
|  | __raw_spin_lock(&scd->lock); | 
|  | scd->tick_raw = now; | 
|  | scd->tick_gtod = now_gtod; | 
|  | __update_sched_clock(scd, now); | 
|  | __raw_spin_unlock(&scd->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We are going deep-idle (irqs are disabled): | 
|  | */ | 
|  | void sched_clock_idle_sleep_event(void) | 
|  | { | 
|  | sched_clock_cpu(smp_processor_id()); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); | 
|  |  | 
|  | /* | 
|  | * We just idled delta nanoseconds (called with irqs disabled): | 
|  | */ | 
|  | void sched_clock_idle_wakeup_event(u64 delta_ns) | 
|  | { | 
|  | if (timekeeping_suspended) | 
|  | return; | 
|  |  | 
|  | sched_clock_tick(); | 
|  | touch_softlockup_watchdog(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); | 
|  |  | 
|  | #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ | 
|  |  | 
|  | void sched_clock_init(void) | 
|  | { | 
|  | sched_clock_running = 1; | 
|  | } | 
|  |  | 
|  | u64 sched_clock_cpu(int cpu) | 
|  | { | 
|  | if (unlikely(!sched_clock_running)) | 
|  | return 0; | 
|  |  | 
|  | return sched_clock(); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | unsigned long long cpu_clock(int cpu) | 
|  | { | 
|  | unsigned long long clock; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | clock = sched_clock_cpu(cpu); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | return clock; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_clock); |