| /* | 
 |  *  linux/kernel/signal.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  * | 
 |  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
 |  * | 
 |  *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
 |  *		Changes to use preallocated sigqueue structures | 
 |  *		to allow signals to be sent reliably. | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/posix-timers.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/audit.h> | 
 | #include <asm/param.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/siginfo.h> | 
 |  | 
 | /* | 
 |  * SLAB caches for signal bits. | 
 |  */ | 
 |  | 
 | static kmem_cache_t *sigqueue_cachep; | 
 |  | 
 | /* | 
 |  * In POSIX a signal is sent either to a specific thread (Linux task) | 
 |  * or to the process as a whole (Linux thread group).  How the signal | 
 |  * is sent determines whether it's to one thread or the whole group, | 
 |  * which determines which signal mask(s) are involved in blocking it | 
 |  * from being delivered until later.  When the signal is delivered, | 
 |  * either it's caught or ignored by a user handler or it has a default | 
 |  * effect that applies to the whole thread group (POSIX process). | 
 |  * | 
 |  * The possible effects an unblocked signal set to SIG_DFL can have are: | 
 |  *   ignore	- Nothing Happens | 
 |  *   terminate	- kill the process, i.e. all threads in the group, | 
 |  * 		  similar to exit_group.  The group leader (only) reports | 
 |  *		  WIFSIGNALED status to its parent. | 
 |  *   coredump	- write a core dump file describing all threads using | 
 |  *		  the same mm and then kill all those threads | 
 |  *   stop 	- stop all the threads in the group, i.e. TASK_STOPPED state | 
 |  * | 
 |  * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. | 
 |  * Other signals when not blocked and set to SIG_DFL behaves as follows. | 
 |  * The job control signals also have other special effects. | 
 |  * | 
 |  *	+--------------------+------------------+ | 
 |  *	|  POSIX signal      |  default action  | | 
 |  *	+--------------------+------------------+ | 
 |  *	|  SIGHUP            |  terminate	| | 
 |  *	|  SIGINT            |	terminate	| | 
 |  *	|  SIGQUIT           |	coredump 	| | 
 |  *	|  SIGILL            |	coredump 	| | 
 |  *	|  SIGTRAP           |	coredump 	| | 
 |  *	|  SIGABRT/SIGIOT    |	coredump 	| | 
 |  *	|  SIGBUS            |	coredump 	| | 
 |  *	|  SIGFPE            |	coredump 	| | 
 |  *	|  SIGKILL           |	terminate(+)	| | 
 |  *	|  SIGUSR1           |	terminate	| | 
 |  *	|  SIGSEGV           |	coredump 	| | 
 |  *	|  SIGUSR2           |	terminate	| | 
 |  *	|  SIGPIPE           |	terminate	| | 
 |  *	|  SIGALRM           |	terminate	| | 
 |  *	|  SIGTERM           |	terminate	| | 
 |  *	|  SIGCHLD           |	ignore   	| | 
 |  *	|  SIGCONT           |	ignore(*)	| | 
 |  *	|  SIGSTOP           |	stop(*)(+)  	| | 
 |  *	|  SIGTSTP           |	stop(*)  	| | 
 |  *	|  SIGTTIN           |	stop(*)  	| | 
 |  *	|  SIGTTOU           |	stop(*)  	| | 
 |  *	|  SIGURG            |	ignore   	| | 
 |  *	|  SIGXCPU           |	coredump 	| | 
 |  *	|  SIGXFSZ           |	coredump 	| | 
 |  *	|  SIGVTALRM         |	terminate	| | 
 |  *	|  SIGPROF           |	terminate	| | 
 |  *	|  SIGPOLL/SIGIO     |	terminate	| | 
 |  *	|  SIGSYS/SIGUNUSED  |	coredump 	| | 
 |  *	|  SIGSTKFLT         |	terminate	| | 
 |  *	|  SIGWINCH          |	ignore   	| | 
 |  *	|  SIGPWR            |	terminate	| | 
 |  *	|  SIGRTMIN-SIGRTMAX |	terminate       | | 
 |  *	+--------------------+------------------+ | 
 |  *	|  non-POSIX signal  |  default action  | | 
 |  *	+--------------------+------------------+ | 
 |  *	|  SIGEMT            |  coredump	| | 
 |  *	+--------------------+------------------+ | 
 |  * | 
 |  * (+) For SIGKILL and SIGSTOP the action is "always", not just "default". | 
 |  * (*) Special job control effects: | 
 |  * When SIGCONT is sent, it resumes the process (all threads in the group) | 
 |  * from TASK_STOPPED state and also clears any pending/queued stop signals | 
 |  * (any of those marked with "stop(*)").  This happens regardless of blocking, | 
 |  * catching, or ignoring SIGCONT.  When any stop signal is sent, it clears | 
 |  * any pending/queued SIGCONT signals; this happens regardless of blocking, | 
 |  * catching, or ignored the stop signal, though (except for SIGSTOP) the | 
 |  * default action of stopping the process may happen later or never. | 
 |  */ | 
 |  | 
 | #ifdef SIGEMT | 
 | #define M_SIGEMT	M(SIGEMT) | 
 | #else | 
 | #define M_SIGEMT	0 | 
 | #endif | 
 |  | 
 | #if SIGRTMIN > BITS_PER_LONG | 
 | #define M(sig) (1ULL << ((sig)-1)) | 
 | #else | 
 | #define M(sig) (1UL << ((sig)-1)) | 
 | #endif | 
 | #define T(sig, mask) (M(sig) & (mask)) | 
 |  | 
 | #define SIG_KERNEL_ONLY_MASK (\ | 
 | 	M(SIGKILL)   |  M(SIGSTOP)                                   ) | 
 |  | 
 | #define SIG_KERNEL_STOP_MASK (\ | 
 | 	M(SIGSTOP)   |  M(SIGTSTP)   |  M(SIGTTIN)   |  M(SIGTTOU)   ) | 
 |  | 
 | #define SIG_KERNEL_COREDUMP_MASK (\ | 
 |         M(SIGQUIT)   |  M(SIGILL)    |  M(SIGTRAP)   |  M(SIGABRT)   | \ | 
 |         M(SIGFPE)    |  M(SIGSEGV)   |  M(SIGBUS)    |  M(SIGSYS)    | \ | 
 |         M(SIGXCPU)   |  M(SIGXFSZ)   |  M_SIGEMT                     ) | 
 |  | 
 | #define SIG_KERNEL_IGNORE_MASK (\ | 
 |         M(SIGCONT)   |  M(SIGCHLD)   |  M(SIGWINCH)  |  M(SIGURG)    ) | 
 |  | 
 | #define sig_kernel_only(sig) \ | 
 | 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_ONLY_MASK)) | 
 | #define sig_kernel_coredump(sig) \ | 
 | 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_COREDUMP_MASK)) | 
 | #define sig_kernel_ignore(sig) \ | 
 | 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_IGNORE_MASK)) | 
 | #define sig_kernel_stop(sig) \ | 
 | 		(((sig) < SIGRTMIN)  && T(sig, SIG_KERNEL_STOP_MASK)) | 
 |  | 
 | #define sig_user_defined(t, signr) \ | 
 | 	(((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) &&	\ | 
 | 	 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN)) | 
 |  | 
 | #define sig_fatal(t, signr) \ | 
 | 	(!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \ | 
 | 	 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL) | 
 |  | 
 | static int sig_ignored(struct task_struct *t, int sig) | 
 | { | 
 | 	void __user * handler; | 
 |  | 
 | 	/* | 
 | 	 * Tracers always want to know about signals.. | 
 | 	 */ | 
 | 	if (t->ptrace & PT_PTRACED) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Blocked signals are never ignored, since the | 
 | 	 * signal handler may change by the time it is | 
 | 	 * unblocked. | 
 | 	 */ | 
 | 	if (sigismember(&t->blocked, sig)) | 
 | 		return 0; | 
 |  | 
 | 	/* Is it explicitly or implicitly ignored? */ | 
 | 	handler = t->sighand->action[sig-1].sa.sa_handler; | 
 | 	return   handler == SIG_IGN || | 
 | 		(handler == SIG_DFL && sig_kernel_ignore(sig)); | 
 | } | 
 |  | 
 | /* | 
 |  * Re-calculate pending state from the set of locally pending | 
 |  * signals, globally pending signals, and blocked signals. | 
 |  */ | 
 | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
 | { | 
 | 	unsigned long ready; | 
 | 	long i; | 
 |  | 
 | 	switch (_NSIG_WORDS) { | 
 | 	default: | 
 | 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
 | 			ready |= signal->sig[i] &~ blocked->sig[i]; | 
 | 		break; | 
 |  | 
 | 	case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
 | 		ready |= signal->sig[2] &~ blocked->sig[2]; | 
 | 		ready |= signal->sig[1] &~ blocked->sig[1]; | 
 | 		ready |= signal->sig[0] &~ blocked->sig[0]; | 
 | 		break; | 
 |  | 
 | 	case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
 | 		ready |= signal->sig[0] &~ blocked->sig[0]; | 
 | 		break; | 
 |  | 
 | 	case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
 | 	} | 
 | 	return ready !=	0; | 
 | } | 
 |  | 
 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
 |  | 
 | fastcall void recalc_sigpending_tsk(struct task_struct *t) | 
 | { | 
 | 	if (t->signal->group_stop_count > 0 || | 
 | 	    (freezing(t)) || | 
 | 	    PENDING(&t->pending, &t->blocked) || | 
 | 	    PENDING(&t->signal->shared_pending, &t->blocked)) | 
 | 		set_tsk_thread_flag(t, TIF_SIGPENDING); | 
 | 	else | 
 | 		clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
 | } | 
 |  | 
 | void recalc_sigpending(void) | 
 | { | 
 | 	recalc_sigpending_tsk(current); | 
 | } | 
 |  | 
 | /* Given the mask, find the first available signal that should be serviced. */ | 
 |  | 
 | static int | 
 | next_signal(struct sigpending *pending, sigset_t *mask) | 
 | { | 
 | 	unsigned long i, *s, *m, x; | 
 | 	int sig = 0; | 
 | 	 | 
 | 	s = pending->signal.sig; | 
 | 	m = mask->sig; | 
 | 	switch (_NSIG_WORDS) { | 
 | 	default: | 
 | 		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) | 
 | 			if ((x = *s &~ *m) != 0) { | 
 | 				sig = ffz(~x) + i*_NSIG_BPW + 1; | 
 | 				break; | 
 | 			} | 
 | 		break; | 
 |  | 
 | 	case 2: if ((x = s[0] &~ m[0]) != 0) | 
 | 			sig = 1; | 
 | 		else if ((x = s[1] &~ m[1]) != 0) | 
 | 			sig = _NSIG_BPW + 1; | 
 | 		else | 
 | 			break; | 
 | 		sig += ffz(~x); | 
 | 		break; | 
 |  | 
 | 	case 1: if ((x = *s &~ *m) != 0) | 
 | 			sig = ffz(~x) + 1; | 
 | 		break; | 
 | 	} | 
 | 	 | 
 | 	return sig; | 
 | } | 
 |  | 
 | static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, | 
 | 					 int override_rlimit) | 
 | { | 
 | 	struct sigqueue *q = NULL; | 
 |  | 
 | 	atomic_inc(&t->user->sigpending); | 
 | 	if (override_rlimit || | 
 | 	    atomic_read(&t->user->sigpending) <= | 
 | 			t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) | 
 | 		q = kmem_cache_alloc(sigqueue_cachep, flags); | 
 | 	if (unlikely(q == NULL)) { | 
 | 		atomic_dec(&t->user->sigpending); | 
 | 	} else { | 
 | 		INIT_LIST_HEAD(&q->list); | 
 | 		q->flags = 0; | 
 | 		q->user = get_uid(t->user); | 
 | 	} | 
 | 	return(q); | 
 | } | 
 |  | 
 | static inline void __sigqueue_free(struct sigqueue *q) | 
 | { | 
 | 	if (q->flags & SIGQUEUE_PREALLOC) | 
 | 		return; | 
 | 	atomic_dec(&q->user->sigpending); | 
 | 	free_uid(q->user); | 
 | 	kmem_cache_free(sigqueue_cachep, q); | 
 | } | 
 |  | 
 | static void flush_sigqueue(struct sigpending *queue) | 
 | { | 
 | 	struct sigqueue *q; | 
 |  | 
 | 	sigemptyset(&queue->signal); | 
 | 	while (!list_empty(&queue->list)) { | 
 | 		q = list_entry(queue->list.next, struct sigqueue , list); | 
 | 		list_del_init(&q->list); | 
 | 		__sigqueue_free(q); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Flush all pending signals for a task. | 
 |  */ | 
 |  | 
 | void | 
 | flush_signals(struct task_struct *t) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&t->sighand->siglock, flags); | 
 | 	clear_tsk_thread_flag(t,TIF_SIGPENDING); | 
 | 	flush_sigqueue(&t->pending); | 
 | 	flush_sigqueue(&t->signal->shared_pending); | 
 | 	spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * This function expects the tasklist_lock write-locked. | 
 |  */ | 
 | void __exit_sighand(struct task_struct *tsk) | 
 | { | 
 | 	struct sighand_struct * sighand = tsk->sighand; | 
 |  | 
 | 	/* Ok, we're done with the signal handlers */ | 
 | 	tsk->sighand = NULL; | 
 | 	if (atomic_dec_and_test(&sighand->count)) | 
 | 		sighand_free(sighand); | 
 | } | 
 |  | 
 | void exit_sighand(struct task_struct *tsk) | 
 | { | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	rcu_read_lock(); | 
 | 	if (tsk->sighand != NULL) { | 
 | 		struct sighand_struct *sighand = rcu_dereference(tsk->sighand); | 
 | 		spin_lock(&sighand->siglock); | 
 | 		__exit_sighand(tsk); | 
 | 		spin_unlock(&sighand->siglock); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * This function expects the tasklist_lock write-locked. | 
 |  */ | 
 | void __exit_signal(struct task_struct *tsk) | 
 | { | 
 | 	struct signal_struct * sig = tsk->signal; | 
 | 	struct sighand_struct * sighand; | 
 |  | 
 | 	if (!sig) | 
 | 		BUG(); | 
 | 	if (!atomic_read(&sig->count)) | 
 | 		BUG(); | 
 | 	rcu_read_lock(); | 
 | 	sighand = rcu_dereference(tsk->sighand); | 
 | 	spin_lock(&sighand->siglock); | 
 | 	posix_cpu_timers_exit(tsk); | 
 | 	if (atomic_dec_and_test(&sig->count)) { | 
 | 		posix_cpu_timers_exit_group(tsk); | 
 | 		tsk->signal = NULL; | 
 | 		__exit_sighand(tsk); | 
 | 		spin_unlock(&sighand->siglock); | 
 | 		flush_sigqueue(&sig->shared_pending); | 
 | 	} else { | 
 | 		/* | 
 | 		 * If there is any task waiting for the group exit | 
 | 		 * then notify it: | 
 | 		 */ | 
 | 		if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | 
 | 			wake_up_process(sig->group_exit_task); | 
 | 			sig->group_exit_task = NULL; | 
 | 		} | 
 | 		if (tsk == sig->curr_target) | 
 | 			sig->curr_target = next_thread(tsk); | 
 | 		tsk->signal = NULL; | 
 | 		/* | 
 | 		 * Accumulate here the counters for all threads but the | 
 | 		 * group leader as they die, so they can be added into | 
 | 		 * the process-wide totals when those are taken. | 
 | 		 * The group leader stays around as a zombie as long | 
 | 		 * as there are other threads.  When it gets reaped, | 
 | 		 * the exit.c code will add its counts into these totals. | 
 | 		 * We won't ever get here for the group leader, since it | 
 | 		 * will have been the last reference on the signal_struct. | 
 | 		 */ | 
 | 		sig->utime = cputime_add(sig->utime, tsk->utime); | 
 | 		sig->stime = cputime_add(sig->stime, tsk->stime); | 
 | 		sig->min_flt += tsk->min_flt; | 
 | 		sig->maj_flt += tsk->maj_flt; | 
 | 		sig->nvcsw += tsk->nvcsw; | 
 | 		sig->nivcsw += tsk->nivcsw; | 
 | 		sig->sched_time += tsk->sched_time; | 
 | 		__exit_sighand(tsk); | 
 | 		spin_unlock(&sighand->siglock); | 
 | 		sig = NULL;	/* Marker for below.  */ | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | 	clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 
 | 	flush_sigqueue(&tsk->pending); | 
 | 	if (sig) { | 
 | 		/* | 
 | 		 * We are cleaning up the signal_struct here. | 
 | 		 */ | 
 | 		exit_thread_group_keys(sig); | 
 | 		kmem_cache_free(signal_cachep, sig); | 
 | 	} | 
 | } | 
 |  | 
 | void exit_signal(struct task_struct *tsk) | 
 | { | 
 | 	atomic_dec(&tsk->signal->live); | 
 |  | 
 | 	write_lock_irq(&tasklist_lock); | 
 | 	__exit_signal(tsk); | 
 | 	write_unlock_irq(&tasklist_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush all handlers for a task. | 
 |  */ | 
 |  | 
 | void | 
 | flush_signal_handlers(struct task_struct *t, int force_default) | 
 | { | 
 | 	int i; | 
 | 	struct k_sigaction *ka = &t->sighand->action[0]; | 
 | 	for (i = _NSIG ; i != 0 ; i--) { | 
 | 		if (force_default || ka->sa.sa_handler != SIG_IGN) | 
 | 			ka->sa.sa_handler = SIG_DFL; | 
 | 		ka->sa.sa_flags = 0; | 
 | 		sigemptyset(&ka->sa.sa_mask); | 
 | 		ka++; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Notify the system that a driver wants to block all signals for this | 
 |  * process, and wants to be notified if any signals at all were to be | 
 |  * sent/acted upon.  If the notifier routine returns non-zero, then the | 
 |  * signal will be acted upon after all.  If the notifier routine returns 0, | 
 |  * then then signal will be blocked.  Only one block per process is | 
 |  * allowed.  priv is a pointer to private data that the notifier routine | 
 |  * can use to determine if the signal should be blocked or not.  */ | 
 |  | 
 | void | 
 | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(¤t->sighand->siglock, flags); | 
 | 	current->notifier_mask = mask; | 
 | 	current->notifier_data = priv; | 
 | 	current->notifier = notifier; | 
 | 	spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | /* Notify the system that blocking has ended. */ | 
 |  | 
 | void | 
 | unblock_all_signals(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(¤t->sighand->siglock, flags); | 
 | 	current->notifier = NULL; | 
 | 	current->notifier_data = NULL; | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info) | 
 | { | 
 | 	struct sigqueue *q, *first = NULL; | 
 | 	int still_pending = 0; | 
 |  | 
 | 	if (unlikely(!sigismember(&list->signal, sig))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Collect the siginfo appropriate to this signal.  Check if | 
 | 	 * there is another siginfo for the same signal. | 
 | 	*/ | 
 | 	list_for_each_entry(q, &list->list, list) { | 
 | 		if (q->info.si_signo == sig) { | 
 | 			if (first) { | 
 | 				still_pending = 1; | 
 | 				break; | 
 | 			} | 
 | 			first = q; | 
 | 		} | 
 | 	} | 
 | 	if (first) { | 
 | 		list_del_init(&first->list); | 
 | 		copy_siginfo(info, &first->info); | 
 | 		__sigqueue_free(first); | 
 | 		if (!still_pending) | 
 | 			sigdelset(&list->signal, sig); | 
 | 	} else { | 
 |  | 
 | 		/* Ok, it wasn't in the queue.  This must be | 
 | 		   a fast-pathed signal or we must have been | 
 | 		   out of queue space.  So zero out the info. | 
 | 		 */ | 
 | 		sigdelset(&list->signal, sig); | 
 | 		info->si_signo = sig; | 
 | 		info->si_errno = 0; | 
 | 		info->si_code = 0; | 
 | 		info->si_pid = 0; | 
 | 		info->si_uid = 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
 | 			siginfo_t *info) | 
 | { | 
 | 	int sig = 0; | 
 |  | 
 | 	sig = next_signal(pending, mask); | 
 | 	if (sig) { | 
 | 		if (current->notifier) { | 
 | 			if (sigismember(current->notifier_mask, sig)) { | 
 | 				if (!(current->notifier)(current->notifier_data)) { | 
 | 					clear_thread_flag(TIF_SIGPENDING); | 
 | 					return 0; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (!collect_signal(sig, pending, info)) | 
 | 			sig = 0; | 
 | 				 | 
 | 	} | 
 | 	recalc_sigpending(); | 
 |  | 
 | 	return sig; | 
 | } | 
 |  | 
 | /* | 
 |  * Dequeue a signal and return the element to the caller, which is  | 
 |  * expected to free it. | 
 |  * | 
 |  * All callers have to hold the siglock. | 
 |  */ | 
 | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) | 
 | { | 
 | 	int signr = __dequeue_signal(&tsk->pending, mask, info); | 
 | 	if (!signr) | 
 | 		signr = __dequeue_signal(&tsk->signal->shared_pending, | 
 | 					 mask, info); | 
 |  	if (signr && unlikely(sig_kernel_stop(signr))) { | 
 |  		/* | 
 |  		 * Set a marker that we have dequeued a stop signal.  Our | 
 |  		 * caller might release the siglock and then the pending | 
 |  		 * stop signal it is about to process is no longer in the | 
 |  		 * pending bitmasks, but must still be cleared by a SIGCONT | 
 |  		 * (and overruled by a SIGKILL).  So those cases clear this | 
 |  		 * shared flag after we've set it.  Note that this flag may | 
 |  		 * remain set after the signal we return is ignored or | 
 |  		 * handled.  That doesn't matter because its only purpose | 
 |  		 * is to alert stop-signal processing code when another | 
 |  		 * processor has come along and cleared the flag. | 
 |  		 */ | 
 |  		if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) | 
 |  			tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; | 
 |  	} | 
 | 	if ( signr && | 
 | 	     ((info->si_code & __SI_MASK) == __SI_TIMER) && | 
 | 	     info->si_sys_private){ | 
 | 		/* | 
 | 		 * Release the siglock to ensure proper locking order | 
 | 		 * of timer locks outside of siglocks.  Note, we leave | 
 | 		 * irqs disabled here, since the posix-timers code is | 
 | 		 * about to disable them again anyway. | 
 | 		 */ | 
 | 		spin_unlock(&tsk->sighand->siglock); | 
 | 		do_schedule_next_timer(info); | 
 | 		spin_lock(&tsk->sighand->siglock); | 
 | 	} | 
 | 	return signr; | 
 | } | 
 |  | 
 | /* | 
 |  * Tell a process that it has a new active signal.. | 
 |  * | 
 |  * NOTE! we rely on the previous spin_lock to | 
 |  * lock interrupts for us! We can only be called with | 
 |  * "siglock" held, and the local interrupt must | 
 |  * have been disabled when that got acquired! | 
 |  * | 
 |  * No need to set need_resched since signal event passing | 
 |  * goes through ->blocked | 
 |  */ | 
 | void signal_wake_up(struct task_struct *t, int resume) | 
 | { | 
 | 	unsigned int mask; | 
 |  | 
 | 	set_tsk_thread_flag(t, TIF_SIGPENDING); | 
 |  | 
 | 	/* | 
 | 	 * For SIGKILL, we want to wake it up in the stopped/traced case. | 
 | 	 * We don't check t->state here because there is a race with it | 
 | 	 * executing another processor and just now entering stopped state. | 
 | 	 * By using wake_up_state, we ensure the process will wake up and | 
 | 	 * handle its death signal. | 
 | 	 */ | 
 | 	mask = TASK_INTERRUPTIBLE; | 
 | 	if (resume) | 
 | 		mask |= TASK_STOPPED | TASK_TRACED; | 
 | 	if (!wake_up_state(t, mask)) | 
 | 		kick_process(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove signals in mask from the pending set and queue. | 
 |  * Returns 1 if any signals were found. | 
 |  * | 
 |  * All callers must be holding the siglock. | 
 |  * | 
 |  * This version takes a sigset mask and looks at all signals, | 
 |  * not just those in the first mask word. | 
 |  */ | 
 | static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) | 
 | { | 
 | 	struct sigqueue *q, *n; | 
 | 	sigset_t m; | 
 |  | 
 | 	sigandsets(&m, mask, &s->signal); | 
 | 	if (sigisemptyset(&m)) | 
 | 		return 0; | 
 |  | 
 | 	signandsets(&s->signal, &s->signal, mask); | 
 | 	list_for_each_entry_safe(q, n, &s->list, list) { | 
 | 		if (sigismember(mask, q->info.si_signo)) { | 
 | 			list_del_init(&q->list); | 
 | 			__sigqueue_free(q); | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Remove signals in mask from the pending set and queue. | 
 |  * Returns 1 if any signals were found. | 
 |  * | 
 |  * All callers must be holding the siglock. | 
 |  */ | 
 | static int rm_from_queue(unsigned long mask, struct sigpending *s) | 
 | { | 
 | 	struct sigqueue *q, *n; | 
 |  | 
 | 	if (!sigtestsetmask(&s->signal, mask)) | 
 | 		return 0; | 
 |  | 
 | 	sigdelsetmask(&s->signal, mask); | 
 | 	list_for_each_entry_safe(q, n, &s->list, list) { | 
 | 		if (q->info.si_signo < SIGRTMIN && | 
 | 		    (mask & sigmask(q->info.si_signo))) { | 
 | 			list_del_init(&q->list); | 
 | 			__sigqueue_free(q); | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Bad permissions for sending the signal | 
 |  */ | 
 | static int check_kill_permission(int sig, struct siginfo *info, | 
 | 				 struct task_struct *t) | 
 | { | 
 | 	int error = -EINVAL; | 
 | 	if (!valid_signal(sig)) | 
 | 		return error; | 
 | 	error = -EPERM; | 
 | 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) | 
 | 	    && ((sig != SIGCONT) || | 
 | 		(current->signal->session != t->signal->session)) | 
 | 	    && (current->euid ^ t->suid) && (current->euid ^ t->uid) | 
 | 	    && (current->uid ^ t->suid) && (current->uid ^ t->uid) | 
 | 	    && !capable(CAP_KILL)) | 
 | 		return error; | 
 |  | 
 | 	error = security_task_kill(t, info, sig); | 
 | 	if (!error) | 
 | 		audit_signal_info(sig, t); /* Let audit system see the signal */ | 
 | 	return error; | 
 | } | 
 |  | 
 | /* forward decl */ | 
 | static void do_notify_parent_cldstop(struct task_struct *tsk, | 
 | 				     int to_self, | 
 | 				     int why); | 
 |  | 
 | /* | 
 |  * Handle magic process-wide effects of stop/continue signals. | 
 |  * Unlike the signal actions, these happen immediately at signal-generation | 
 |  * time regardless of blocking, ignoring, or handling.  This does the | 
 |  * actual continuing for SIGCONT, but not the actual stopping for stop | 
 |  * signals.  The process stop is done as a signal action for SIG_DFL. | 
 |  */ | 
 | static void handle_stop_signal(int sig, struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	if (p->signal->flags & SIGNAL_GROUP_EXIT) | 
 | 		/* | 
 | 		 * The process is in the middle of dying already. | 
 | 		 */ | 
 | 		return; | 
 |  | 
 | 	if (sig_kernel_stop(sig)) { | 
 | 		/* | 
 | 		 * This is a stop signal.  Remove SIGCONT from all queues. | 
 | 		 */ | 
 | 		rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending); | 
 | 		t = p; | 
 | 		do { | 
 | 			rm_from_queue(sigmask(SIGCONT), &t->pending); | 
 | 			t = next_thread(t); | 
 | 		} while (t != p); | 
 | 	} else if (sig == SIGCONT) { | 
 | 		/* | 
 | 		 * Remove all stop signals from all queues, | 
 | 		 * and wake all threads. | 
 | 		 */ | 
 | 		if (unlikely(p->signal->group_stop_count > 0)) { | 
 | 			/* | 
 | 			 * There was a group stop in progress.  We'll | 
 | 			 * pretend it finished before we got here.  We are | 
 | 			 * obliged to report it to the parent: if the | 
 | 			 * SIGSTOP happened "after" this SIGCONT, then it | 
 | 			 * would have cleared this pending SIGCONT.  If it | 
 | 			 * happened "before" this SIGCONT, then the parent | 
 | 			 * got the SIGCHLD about the stop finishing before | 
 | 			 * the continue happened.  We do the notification | 
 | 			 * now, and it's as if the stop had finished and | 
 | 			 * the SIGCHLD was pending on entry to this kill. | 
 | 			 */ | 
 | 			p->signal->group_stop_count = 0; | 
 | 			p->signal->flags = SIGNAL_STOP_CONTINUED; | 
 | 			spin_unlock(&p->sighand->siglock); | 
 | 			do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED); | 
 | 			spin_lock(&p->sighand->siglock); | 
 | 		} | 
 | 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); | 
 | 		t = p; | 
 | 		do { | 
 | 			unsigned int state; | 
 | 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
 | 			 | 
 | 			/* | 
 | 			 * If there is a handler for SIGCONT, we must make | 
 | 			 * sure that no thread returns to user mode before | 
 | 			 * we post the signal, in case it was the only | 
 | 			 * thread eligible to run the signal handler--then | 
 | 			 * it must not do anything between resuming and | 
 | 			 * running the handler.  With the TIF_SIGPENDING | 
 | 			 * flag set, the thread will pause and acquire the | 
 | 			 * siglock that we hold now and until we've queued | 
 | 			 * the pending signal.  | 
 | 			 * | 
 | 			 * Wake up the stopped thread _after_ setting | 
 | 			 * TIF_SIGPENDING | 
 | 			 */ | 
 | 			state = TASK_STOPPED; | 
 | 			if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { | 
 | 				set_tsk_thread_flag(t, TIF_SIGPENDING); | 
 | 				state |= TASK_INTERRUPTIBLE; | 
 | 			} | 
 | 			wake_up_state(t, state); | 
 |  | 
 | 			t = next_thread(t); | 
 | 		} while (t != p); | 
 |  | 
 | 		if (p->signal->flags & SIGNAL_STOP_STOPPED) { | 
 | 			/* | 
 | 			 * We were in fact stopped, and are now continued. | 
 | 			 * Notify the parent with CLD_CONTINUED. | 
 | 			 */ | 
 | 			p->signal->flags = SIGNAL_STOP_CONTINUED; | 
 | 			p->signal->group_exit_code = 0; | 
 | 			spin_unlock(&p->sighand->siglock); | 
 | 			do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED); | 
 | 			spin_lock(&p->sighand->siglock); | 
 | 		} else { | 
 | 			/* | 
 | 			 * We are not stopped, but there could be a stop | 
 | 			 * signal in the middle of being processed after | 
 | 			 * being removed from the queue.  Clear that too. | 
 | 			 */ | 
 | 			p->signal->flags = 0; | 
 | 		} | 
 | 	} else if (sig == SIGKILL) { | 
 | 		/* | 
 | 		 * Make sure that any pending stop signal already dequeued | 
 | 		 * is undone by the wakeup for SIGKILL. | 
 | 		 */ | 
 | 		p->signal->flags = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
 | 			struct sigpending *signals) | 
 | { | 
 | 	struct sigqueue * q = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * fast-pathed signals for kernel-internal things like SIGSTOP | 
 | 	 * or SIGKILL. | 
 | 	 */ | 
 | 	if (info == SEND_SIG_FORCED) | 
 | 		goto out_set; | 
 |  | 
 | 	/* Real-time signals must be queued if sent by sigqueue, or | 
 | 	   some other real-time mechanism.  It is implementation | 
 | 	   defined whether kill() does so.  We attempt to do so, on | 
 | 	   the principle of least surprise, but since kill is not | 
 | 	   allowed to fail with EAGAIN when low on memory we just | 
 | 	   make sure at least one signal gets delivered and don't | 
 | 	   pass on the info struct.  */ | 
 |  | 
 | 	q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN && | 
 | 					     (is_si_special(info) || | 
 | 					      info->si_code >= 0))); | 
 | 	if (q) { | 
 | 		list_add_tail(&q->list, &signals->list); | 
 | 		switch ((unsigned long) info) { | 
 | 		case (unsigned long) SEND_SIG_NOINFO: | 
 | 			q->info.si_signo = sig; | 
 | 			q->info.si_errno = 0; | 
 | 			q->info.si_code = SI_USER; | 
 | 			q->info.si_pid = current->pid; | 
 | 			q->info.si_uid = current->uid; | 
 | 			break; | 
 | 		case (unsigned long) SEND_SIG_PRIV: | 
 | 			q->info.si_signo = sig; | 
 | 			q->info.si_errno = 0; | 
 | 			q->info.si_code = SI_KERNEL; | 
 | 			q->info.si_pid = 0; | 
 | 			q->info.si_uid = 0; | 
 | 			break; | 
 | 		default: | 
 | 			copy_siginfo(&q->info, info); | 
 | 			break; | 
 | 		} | 
 | 	} else if (!is_si_special(info)) { | 
 | 		if (sig >= SIGRTMIN && info->si_code != SI_USER) | 
 | 		/* | 
 | 		 * Queue overflow, abort.  We may abort if the signal was rt | 
 | 		 * and sent by user using something other than kill(). | 
 | 		 */ | 
 | 			return -EAGAIN; | 
 | 	} | 
 |  | 
 | out_set: | 
 | 	sigaddset(&signals->signal, sig); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define LEGACY_QUEUE(sigptr, sig) \ | 
 | 	(((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig))) | 
 |  | 
 |  | 
 | static int | 
 | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!irqs_disabled()) | 
 | 		BUG(); | 
 | 	assert_spin_locked(&t->sighand->siglock); | 
 |  | 
 | 	/* Short-circuit ignored signals.  */ | 
 | 	if (sig_ignored(t, sig)) | 
 | 		goto out; | 
 |  | 
 | 	/* Support queueing exactly one non-rt signal, so that we | 
 | 	   can get more detailed information about the cause of | 
 | 	   the signal. */ | 
 | 	if (LEGACY_QUEUE(&t->pending, sig)) | 
 | 		goto out; | 
 |  | 
 | 	ret = send_signal(sig, info, t, &t->pending); | 
 | 	if (!ret && !sigismember(&t->blocked, sig)) | 
 | 		signal_wake_up(t, sig == SIGKILL); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Force a signal that the process can't ignore: if necessary | 
 |  * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
 |  */ | 
 |  | 
 | int | 
 | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
 | { | 
 | 	unsigned long int flags; | 
 | 	int ret; | 
 |  | 
 | 	spin_lock_irqsave(&t->sighand->siglock, flags); | 
 | 	if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) { | 
 | 		t->sighand->action[sig-1].sa.sa_handler = SIG_DFL; | 
 | 	} | 
 | 	if (sigismember(&t->blocked, sig)) { | 
 | 		sigdelset(&t->blocked, sig); | 
 | 	} | 
 | 	recalc_sigpending_tsk(t); | 
 | 	ret = specific_send_sig_info(sig, info, t); | 
 | 	spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void | 
 | force_sig_specific(int sig, struct task_struct *t) | 
 | { | 
 | 	force_sig_info(sig, SEND_SIG_FORCED, t); | 
 | } | 
 |  | 
 | /* | 
 |  * Test if P wants to take SIG.  After we've checked all threads with this, | 
 |  * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
 |  * blocking SIG were ruled out because they are not running and already | 
 |  * have pending signals.  Such threads will dequeue from the shared queue | 
 |  * as soon as they're available, so putting the signal on the shared queue | 
 |  * will be equivalent to sending it to one such thread. | 
 |  */ | 
 | static inline int wants_signal(int sig, struct task_struct *p) | 
 | { | 
 | 	if (sigismember(&p->blocked, sig)) | 
 | 		return 0; | 
 | 	if (p->flags & PF_EXITING) | 
 | 		return 0; | 
 | 	if (sig == SIGKILL) | 
 | 		return 1; | 
 | 	if (p->state & (TASK_STOPPED | TASK_TRACED)) | 
 | 		return 0; | 
 | 	return task_curr(p) || !signal_pending(p); | 
 | } | 
 |  | 
 | static void | 
 | __group_complete_signal(int sig, struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	/* | 
 | 	 * Now find a thread we can wake up to take the signal off the queue. | 
 | 	 * | 
 | 	 * If the main thread wants the signal, it gets first crack. | 
 | 	 * Probably the least surprising to the average bear. | 
 | 	 */ | 
 | 	if (wants_signal(sig, p)) | 
 | 		t = p; | 
 | 	else if (thread_group_empty(p)) | 
 | 		/* | 
 | 		 * There is just one thread and it does not need to be woken. | 
 | 		 * It will dequeue unblocked signals before it runs again. | 
 | 		 */ | 
 | 		return; | 
 | 	else { | 
 | 		/* | 
 | 		 * Otherwise try to find a suitable thread. | 
 | 		 */ | 
 | 		t = p->signal->curr_target; | 
 | 		if (t == NULL) | 
 | 			/* restart balancing at this thread */ | 
 | 			t = p->signal->curr_target = p; | 
 | 		BUG_ON(t->tgid != p->tgid); | 
 |  | 
 | 		while (!wants_signal(sig, t)) { | 
 | 			t = next_thread(t); | 
 | 			if (t == p->signal->curr_target) | 
 | 				/* | 
 | 				 * No thread needs to be woken. | 
 | 				 * Any eligible threads will see | 
 | 				 * the signal in the queue soon. | 
 | 				 */ | 
 | 				return; | 
 | 		} | 
 | 		p->signal->curr_target = t; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Found a killable thread.  If the signal will be fatal, | 
 | 	 * then start taking the whole group down immediately. | 
 | 	 */ | 
 | 	if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) && | 
 | 	    !sigismember(&t->real_blocked, sig) && | 
 | 	    (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) { | 
 | 		/* | 
 | 		 * This signal will be fatal to the whole group. | 
 | 		 */ | 
 | 		if (!sig_kernel_coredump(sig)) { | 
 | 			/* | 
 | 			 * Start a group exit and wake everybody up. | 
 | 			 * This way we don't have other threads | 
 | 			 * running and doing things after a slower | 
 | 			 * thread has the fatal signal pending. | 
 | 			 */ | 
 | 			p->signal->flags = SIGNAL_GROUP_EXIT; | 
 | 			p->signal->group_exit_code = sig; | 
 | 			p->signal->group_stop_count = 0; | 
 | 			t = p; | 
 | 			do { | 
 | 				sigaddset(&t->pending.signal, SIGKILL); | 
 | 				signal_wake_up(t, 1); | 
 | 				t = next_thread(t); | 
 | 			} while (t != p); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * There will be a core dump.  We make all threads other | 
 | 		 * than the chosen one go into a group stop so that nothing | 
 | 		 * happens until it gets scheduled, takes the signal off | 
 | 		 * the shared queue, and does the core dump.  This is a | 
 | 		 * little more complicated than strictly necessary, but it | 
 | 		 * keeps the signal state that winds up in the core dump | 
 | 		 * unchanged from the death state, e.g. which thread had | 
 | 		 * the core-dump signal unblocked. | 
 | 		 */ | 
 | 		rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
 | 		rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending); | 
 | 		p->signal->group_stop_count = 0; | 
 | 		p->signal->group_exit_task = t; | 
 | 		t = p; | 
 | 		do { | 
 | 			p->signal->group_stop_count++; | 
 | 			signal_wake_up(t, 0); | 
 | 			t = next_thread(t); | 
 | 		} while (t != p); | 
 | 		wake_up_process(p->signal->group_exit_task); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The signal is already in the shared-pending queue. | 
 | 	 * Tell the chosen thread to wake up and dequeue it. | 
 | 	 */ | 
 | 	signal_wake_up(t, sig == SIGKILL); | 
 | 	return; | 
 | } | 
 |  | 
 | int | 
 | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	assert_spin_locked(&p->sighand->siglock); | 
 | 	handle_stop_signal(sig, p); | 
 |  | 
 | 	/* Short-circuit ignored signals.  */ | 
 | 	if (sig_ignored(p, sig)) | 
 | 		return ret; | 
 |  | 
 | 	if (LEGACY_QUEUE(&p->signal->shared_pending, sig)) | 
 | 		/* This is a non-RT signal and we already have one queued.  */ | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * Put this signal on the shared-pending queue, or fail with EAGAIN. | 
 | 	 * We always use the shared queue for process-wide signals, | 
 | 	 * to avoid several races. | 
 | 	 */ | 
 | 	ret = send_signal(sig, info, p, &p->signal->shared_pending); | 
 | 	if (unlikely(ret)) | 
 | 		return ret; | 
 |  | 
 | 	__group_complete_signal(sig, p); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Nuke all other threads in the group. | 
 |  */ | 
 | void zap_other_threads(struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t; | 
 |  | 
 | 	p->signal->flags = SIGNAL_GROUP_EXIT; | 
 | 	p->signal->group_stop_count = 0; | 
 |  | 
 | 	if (thread_group_empty(p)) | 
 | 		return; | 
 |  | 
 | 	for (t = next_thread(p); t != p; t = next_thread(t)) { | 
 | 		/* | 
 | 		 * Don't bother with already dead threads | 
 | 		 */ | 
 | 		if (t->exit_state) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * We don't want to notify the parent, since we are | 
 | 		 * killed as part of a thread group due to another | 
 | 		 * thread doing an execve() or similar. So set the | 
 | 		 * exit signal to -1 to allow immediate reaping of | 
 | 		 * the process.  But don't detach the thread group | 
 | 		 * leader. | 
 | 		 */ | 
 | 		if (t != p->group_leader) | 
 | 			t->exit_signal = -1; | 
 |  | 
 | 		/* SIGKILL will be handled before any pending SIGSTOP */ | 
 | 		sigaddset(&t->pending.signal, SIGKILL); | 
 | 		signal_wake_up(t, 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Must be called under rcu_read_lock() or with tasklist_lock read-held. | 
 |  */ | 
 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct sighand_struct *sp; | 
 | 	int ret; | 
 |  | 
 | retry: | 
 | 	ret = check_kill_permission(sig, info, p); | 
 | 	if (!ret && sig && (sp = rcu_dereference(p->sighand))) { | 
 | 		spin_lock_irqsave(&sp->siglock, flags); | 
 | 		if (p->sighand != sp) { | 
 | 			spin_unlock_irqrestore(&sp->siglock, flags); | 
 | 			goto retry; | 
 | 		} | 
 | 		if ((atomic_read(&sp->count) == 0) || | 
 | 				(atomic_read(&p->usage) == 0)) { | 
 | 			spin_unlock_irqrestore(&sp->siglock, flags); | 
 | 			return -ESRCH; | 
 | 		} | 
 | 		ret = __group_send_sig_info(sig, info, p); | 
 | 		spin_unlock_irqrestore(&sp->siglock, flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * kill_pg_info() sends a signal to a process group: this is what the tty | 
 |  * control characters do (^C, ^Z etc) | 
 |  */ | 
 |  | 
 | int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) | 
 | { | 
 | 	struct task_struct *p = NULL; | 
 | 	int retval, success; | 
 |  | 
 | 	if (pgrp <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	success = 0; | 
 | 	retval = -ESRCH; | 
 | 	do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | 
 | 		int err = group_send_sig_info(sig, info, p); | 
 | 		success |= !err; | 
 | 		retval = err; | 
 | 	} while_each_task_pid(pgrp, PIDTYPE_PGID, p); | 
 | 	return success ? 0 : retval; | 
 | } | 
 |  | 
 | int | 
 | kill_pg_info(int sig, struct siginfo *info, pid_t pgrp) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	retval = __kill_pg_info(sig, info, pgrp); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | int | 
 | kill_proc_info(int sig, struct siginfo *info, pid_t pid) | 
 | { | 
 | 	int error; | 
 | 	int acquired_tasklist_lock = 0; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (unlikely(sig_kernel_stop(sig) || sig == SIGCONT)) { | 
 | 		read_lock(&tasklist_lock); | 
 | 		acquired_tasklist_lock = 1; | 
 | 	} | 
 | 	p = find_task_by_pid(pid); | 
 | 	error = -ESRCH; | 
 | 	if (p) | 
 | 		error = group_send_sig_info(sig, info, p); | 
 | 	if (unlikely(acquired_tasklist_lock)) | 
 | 		read_unlock(&tasklist_lock); | 
 | 	rcu_read_unlock(); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* like kill_proc_info(), but doesn't use uid/euid of "current" */ | 
 | int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid, | 
 | 		      uid_t uid, uid_t euid) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	if (!valid_signal(sig)) | 
 | 		return ret; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_task_by_pid(pid); | 
 | 	if (!p) { | 
 | 		ret = -ESRCH; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info))) | 
 | 	    && (euid != p->suid) && (euid != p->uid) | 
 | 	    && (uid != p->suid) && (uid != p->uid)) { | 
 | 		ret = -EPERM; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	if (sig && p->sighand) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&p->sighand->siglock, flags); | 
 | 		ret = __group_send_sig_info(sig, info, p); | 
 | 		spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
 | 	} | 
 | out_unlock: | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kill_proc_info_as_uid); | 
 |  | 
 | /* | 
 |  * kill_something_info() interprets pid in interesting ways just like kill(2). | 
 |  * | 
 |  * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
 |  * is probably wrong.  Should make it like BSD or SYSV. | 
 |  */ | 
 |  | 
 | static int kill_something_info(int sig, struct siginfo *info, int pid) | 
 | { | 
 | 	if (!pid) { | 
 | 		return kill_pg_info(sig, info, process_group(current)); | 
 | 	} else if (pid == -1) { | 
 | 		int retval = 0, count = 0; | 
 | 		struct task_struct * p; | 
 |  | 
 | 		read_lock(&tasklist_lock); | 
 | 		for_each_process(p) { | 
 | 			if (p->pid > 1 && p->tgid != current->tgid) { | 
 | 				int err = group_send_sig_info(sig, info, p); | 
 | 				++count; | 
 | 				if (err != -EPERM) | 
 | 					retval = err; | 
 | 			} | 
 | 		} | 
 | 		read_unlock(&tasklist_lock); | 
 | 		return count ? retval : -ESRCH; | 
 | 	} else if (pid < 0) { | 
 | 		return kill_pg_info(sig, info, -pid); | 
 | 	} else { | 
 | 		return kill_proc_info(sig, info, pid); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * These are for backward compatibility with the rest of the kernel source. | 
 |  */ | 
 |  | 
 | /* | 
 |  * These two are the most common entry points.  They send a signal | 
 |  * just to the specific thread. | 
 |  */ | 
 | int | 
 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	int ret; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* | 
 | 	 * Make sure legacy kernel users don't send in bad values | 
 | 	 * (normal paths check this in check_kill_permission). | 
 | 	 */ | 
 | 	if (!valid_signal(sig)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * We need the tasklist lock even for the specific | 
 | 	 * thread case (when we don't need to follow the group | 
 | 	 * lists) in order to avoid races with "p->sighand" | 
 | 	 * going away or changing from under us. | 
 | 	 */ | 
 | 	read_lock(&tasklist_lock);   | 
 | 	spin_lock_irqsave(&p->sighand->siglock, flags); | 
 | 	ret = specific_send_sig_info(sig, info, p); | 
 | 	spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define __si_special(priv) \ | 
 | 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) | 
 |  | 
 | int | 
 | send_sig(int sig, struct task_struct *p, int priv) | 
 | { | 
 | 	return send_sig_info(sig, __si_special(priv), p); | 
 | } | 
 |  | 
 | /* | 
 |  * This is the entry point for "process-wide" signals. | 
 |  * They will go to an appropriate thread in the thread group. | 
 |  */ | 
 | int | 
 | send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	int ret; | 
 | 	read_lock(&tasklist_lock); | 
 | 	ret = group_send_sig_info(sig, info, p); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void | 
 | force_sig(int sig, struct task_struct *p) | 
 | { | 
 | 	force_sig_info(sig, SEND_SIG_PRIV, p); | 
 | } | 
 |  | 
 | /* | 
 |  * When things go south during signal handling, we | 
 |  * will force a SIGSEGV. And if the signal that caused | 
 |  * the problem was already a SIGSEGV, we'll want to | 
 |  * make sure we don't even try to deliver the signal.. | 
 |  */ | 
 | int | 
 | force_sigsegv(int sig, struct task_struct *p) | 
 | { | 
 | 	if (sig == SIGSEGV) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&p->sighand->siglock, flags); | 
 | 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; | 
 | 		spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
 | 	} | 
 | 	force_sig(SIGSEGV, p); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | kill_pg(pid_t pgrp, int sig, int priv) | 
 | { | 
 | 	return kill_pg_info(sig, __si_special(priv), pgrp); | 
 | } | 
 |  | 
 | int | 
 | kill_proc(pid_t pid, int sig, int priv) | 
 | { | 
 | 	return kill_proc_info(sig, __si_special(priv), pid); | 
 | } | 
 |  | 
 | /* | 
 |  * These functions support sending signals using preallocated sigqueue | 
 |  * structures.  This is needed "because realtime applications cannot | 
 |  * afford to lose notifications of asynchronous events, like timer | 
 |  * expirations or I/O completions".  In the case of Posix Timers  | 
 |  * we allocate the sigqueue structure from the timer_create.  If this | 
 |  * allocation fails we are able to report the failure to the application | 
 |  * with an EAGAIN error. | 
 |  */ | 
 |   | 
 | struct sigqueue *sigqueue_alloc(void) | 
 | { | 
 | 	struct sigqueue *q; | 
 |  | 
 | 	if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) | 
 | 		q->flags |= SIGQUEUE_PREALLOC; | 
 | 	return(q); | 
 | } | 
 |  | 
 | void sigqueue_free(struct sigqueue *q) | 
 | { | 
 | 	unsigned long flags; | 
 | 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
 | 	/* | 
 | 	 * If the signal is still pending remove it from the | 
 | 	 * pending queue. | 
 | 	 */ | 
 | 	if (unlikely(!list_empty(&q->list))) { | 
 | 		spinlock_t *lock = ¤t->sighand->siglock; | 
 | 		read_lock(&tasklist_lock); | 
 | 		spin_lock_irqsave(lock, flags); | 
 | 		if (!list_empty(&q->list)) | 
 | 			list_del_init(&q->list); | 
 | 		spin_unlock_irqrestore(lock, flags); | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 | 	q->flags &= ~SIGQUEUE_PREALLOC; | 
 | 	__sigqueue_free(q); | 
 | } | 
 |  | 
 | int | 
 | send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 | 	struct sighand_struct *sh; | 
 |  | 
 | 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
 |  | 
 | 	/* | 
 | 	 * The rcu based delayed sighand destroy makes it possible to | 
 | 	 * run this without tasklist lock held. The task struct itself | 
 | 	 * cannot go away as create_timer did get_task_struct(). | 
 | 	 * | 
 | 	 * We return -1, when the task is marked exiting, so | 
 | 	 * posix_timer_event can redirect it to the group leader | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 |  | 
 | 	if (unlikely(p->flags & PF_EXITING)) { | 
 | 		ret = -1; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | retry: | 
 | 	sh = rcu_dereference(p->sighand); | 
 |  | 
 | 	spin_lock_irqsave(&sh->siglock, flags); | 
 | 	if (p->sighand != sh) { | 
 | 		/* We raced with exec() in a multithreaded process... */ | 
 | 		spin_unlock_irqrestore(&sh->siglock, flags); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We do the check here again to handle the following scenario: | 
 | 	 * | 
 | 	 * CPU 0		CPU 1 | 
 | 	 * send_sigqueue | 
 | 	 * check PF_EXITING | 
 | 	 * interrupt		exit code running | 
 | 	 *			__exit_signal | 
 | 	 *			lock sighand->siglock | 
 | 	 *			unlock sighand->siglock | 
 | 	 * lock sh->siglock | 
 | 	 * add(tsk->pending) 	flush_sigqueue(tsk->pending) | 
 | 	 * | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(p->flags & PF_EXITING)) { | 
 | 		ret = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!list_empty(&q->list))) { | 
 | 		/* | 
 | 		 * If an SI_TIMER entry is already queue just increment | 
 | 		 * the overrun count. | 
 | 		 */ | 
 | 		if (q->info.si_code != SI_TIMER) | 
 | 			BUG(); | 
 | 		q->info.si_overrun++; | 
 | 		goto out; | 
 | 	} | 
 | 	/* Short-circuit ignored signals.  */ | 
 | 	if (sig_ignored(p, sig)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	list_add_tail(&q->list, &p->pending.list); | 
 | 	sigaddset(&p->pending.signal, sig); | 
 | 	if (!sigismember(&p->blocked, sig)) | 
 | 		signal_wake_up(p, sig == SIGKILL); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&sh->siglock, flags); | 
 | out_err: | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int | 
 | send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	/* Since it_lock is held, p->sighand cannot be NULL. */ | 
 | 	spin_lock_irqsave(&p->sighand->siglock, flags); | 
 | 	handle_stop_signal(sig, p); | 
 |  | 
 | 	/* Short-circuit ignored signals.  */ | 
 | 	if (sig_ignored(p, sig)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!list_empty(&q->list))) { | 
 | 		/* | 
 | 		 * If an SI_TIMER entry is already queue just increment | 
 | 		 * the overrun count.  Other uses should not try to | 
 | 		 * send the signal multiple times. | 
 | 		 */ | 
 | 		if (q->info.si_code != SI_TIMER) | 
 | 			BUG(); | 
 | 		q->info.si_overrun++; | 
 | 		goto out; | 
 | 	}  | 
 |  | 
 | 	/* | 
 | 	 * Put this signal on the shared-pending queue. | 
 | 	 * We always use the shared queue for process-wide signals, | 
 | 	 * to avoid several races. | 
 | 	 */ | 
 | 	list_add_tail(&q->list, &p->signal->shared_pending.list); | 
 | 	sigaddset(&p->signal->shared_pending.signal, sig); | 
 |  | 
 | 	__group_complete_signal(sig, p); | 
 | out: | 
 | 	spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
 | 	read_unlock(&tasklist_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Wake up any threads in the parent blocked in wait* syscalls. | 
 |  */ | 
 | static inline void __wake_up_parent(struct task_struct *p, | 
 | 				    struct task_struct *parent) | 
 | { | 
 | 	wake_up_interruptible_sync(&parent->signal->wait_chldexit); | 
 | } | 
 |  | 
 | /* | 
 |  * Let a parent know about the death of a child. | 
 |  * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
 |  */ | 
 |  | 
 | void do_notify_parent(struct task_struct *tsk, int sig) | 
 | { | 
 | 	struct siginfo info; | 
 | 	unsigned long flags; | 
 | 	struct sighand_struct *psig; | 
 |  | 
 | 	BUG_ON(sig == -1); | 
 |  | 
 |  	/* do_notify_parent_cldstop should have been called instead.  */ | 
 |  	BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED)); | 
 |  | 
 | 	BUG_ON(!tsk->ptrace && | 
 | 	       (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
 |  | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_pid = tsk->pid; | 
 | 	info.si_uid = tsk->uid; | 
 |  | 
 | 	/* FIXME: find out whether or not this is supposed to be c*time. */ | 
 | 	info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime, | 
 | 						       tsk->signal->utime)); | 
 | 	info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime, | 
 | 						       tsk->signal->stime)); | 
 |  | 
 | 	info.si_status = tsk->exit_code & 0x7f; | 
 | 	if (tsk->exit_code & 0x80) | 
 | 		info.si_code = CLD_DUMPED; | 
 | 	else if (tsk->exit_code & 0x7f) | 
 | 		info.si_code = CLD_KILLED; | 
 | 	else { | 
 | 		info.si_code = CLD_EXITED; | 
 | 		info.si_status = tsk->exit_code >> 8; | 
 | 	} | 
 |  | 
 | 	psig = tsk->parent->sighand; | 
 | 	spin_lock_irqsave(&psig->siglock, flags); | 
 | 	if (!tsk->ptrace && sig == SIGCHLD && | 
 | 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
 | 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
 | 		/* | 
 | 		 * We are exiting and our parent doesn't care.  POSIX.1 | 
 | 		 * defines special semantics for setting SIGCHLD to SIG_IGN | 
 | 		 * or setting the SA_NOCLDWAIT flag: we should be reaped | 
 | 		 * automatically and not left for our parent's wait4 call. | 
 | 		 * Rather than having the parent do it as a magic kind of | 
 | 		 * signal handler, we just set this to tell do_exit that we | 
 | 		 * can be cleaned up without becoming a zombie.  Note that | 
 | 		 * we still call __wake_up_parent in this case, because a | 
 | 		 * blocked sys_wait4 might now return -ECHILD. | 
 | 		 * | 
 | 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
 | 		 * is implementation-defined: we do (if you don't want | 
 | 		 * it, just use SIG_IGN instead). | 
 | 		 */ | 
 | 		tsk->exit_signal = -1; | 
 | 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
 | 			sig = 0; | 
 | 	} | 
 | 	if (valid_signal(sig) && sig > 0) | 
 | 		__group_send_sig_info(sig, &info, tsk->parent); | 
 | 	__wake_up_parent(tsk, tsk->parent); | 
 | 	spin_unlock_irqrestore(&psig->siglock, flags); | 
 | } | 
 |  | 
 | static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why) | 
 | { | 
 | 	struct siginfo info; | 
 | 	unsigned long flags; | 
 | 	struct task_struct *parent; | 
 | 	struct sighand_struct *sighand; | 
 |  | 
 | 	if (to_self) | 
 | 		parent = tsk->parent; | 
 | 	else { | 
 | 		tsk = tsk->group_leader; | 
 | 		parent = tsk->real_parent; | 
 | 	} | 
 |  | 
 | 	info.si_signo = SIGCHLD; | 
 | 	info.si_errno = 0; | 
 | 	info.si_pid = tsk->pid; | 
 | 	info.si_uid = tsk->uid; | 
 |  | 
 | 	/* FIXME: find out whether or not this is supposed to be c*time. */ | 
 | 	info.si_utime = cputime_to_jiffies(tsk->utime); | 
 | 	info.si_stime = cputime_to_jiffies(tsk->stime); | 
 |  | 
 |  	info.si_code = why; | 
 |  	switch (why) { | 
 |  	case CLD_CONTINUED: | 
 |  		info.si_status = SIGCONT; | 
 |  		break; | 
 |  	case CLD_STOPPED: | 
 |  		info.si_status = tsk->signal->group_exit_code & 0x7f; | 
 |  		break; | 
 |  	case CLD_TRAPPED: | 
 |  		info.si_status = tsk->exit_code & 0x7f; | 
 |  		break; | 
 |  	default: | 
 |  		BUG(); | 
 |  	} | 
 |  | 
 | 	sighand = parent->sighand; | 
 | 	spin_lock_irqsave(&sighand->siglock, flags); | 
 | 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
 | 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
 | 		__group_send_sig_info(SIGCHLD, &info, parent); | 
 | 	/* | 
 | 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
 | 	 */ | 
 | 	__wake_up_parent(tsk, parent); | 
 | 	spin_unlock_irqrestore(&sighand->siglock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called with current->sighand->siglock held. | 
 |  * | 
 |  * This should be the path for all ptrace stops. | 
 |  * We always set current->last_siginfo while stopped here. | 
 |  * That makes it a way to test a stopped process for | 
 |  * being ptrace-stopped vs being job-control-stopped. | 
 |  * | 
 |  * If we actually decide not to stop at all because the tracer is gone, | 
 |  * we leave nostop_code in current->exit_code. | 
 |  */ | 
 | static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info) | 
 | { | 
 | 	/* | 
 | 	 * If there is a group stop in progress, | 
 | 	 * we must participate in the bookkeeping. | 
 | 	 */ | 
 | 	if (current->signal->group_stop_count > 0) | 
 | 		--current->signal->group_stop_count; | 
 |  | 
 | 	current->last_siginfo = info; | 
 | 	current->exit_code = exit_code; | 
 |  | 
 | 	/* Let the debugger run.  */ | 
 | 	set_current_state(TASK_TRACED); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	read_lock(&tasklist_lock); | 
 | 	if (likely(current->ptrace & PT_PTRACED) && | 
 | 	    likely(current->parent != current->real_parent || | 
 | 		   !(current->ptrace & PT_ATTACHED)) && | 
 | 	    (likely(current->parent->signal != current->signal) || | 
 | 	     !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) { | 
 | 		do_notify_parent_cldstop(current, 1, CLD_TRAPPED); | 
 | 		read_unlock(&tasklist_lock); | 
 | 		schedule(); | 
 | 	} else { | 
 | 		/* | 
 | 		 * By the time we got the lock, our tracer went away. | 
 | 		 * Don't stop here. | 
 | 		 */ | 
 | 		read_unlock(&tasklist_lock); | 
 | 		set_current_state(TASK_RUNNING); | 
 | 		current->exit_code = nostop_code; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We are back.  Now reacquire the siglock before touching | 
 | 	 * last_siginfo, so that we are sure to have synchronized with | 
 | 	 * any signal-sending on another CPU that wants to examine it. | 
 | 	 */ | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	current->last_siginfo = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Queued signals ignored us while we were stopped for tracing. | 
 | 	 * So check for any that we should take before resuming user mode. | 
 | 	 */ | 
 | 	recalc_sigpending(); | 
 | } | 
 |  | 
 | void ptrace_notify(int exit_code) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
 |  | 
 | 	memset(&info, 0, sizeof info); | 
 | 	info.si_signo = SIGTRAP; | 
 | 	info.si_code = exit_code; | 
 | 	info.si_pid = current->pid; | 
 | 	info.si_uid = current->uid; | 
 |  | 
 | 	/* Let the debugger run.  */ | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	ptrace_stop(exit_code, 0, &info); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | } | 
 |  | 
 | static void | 
 | finish_stop(int stop_count) | 
 | { | 
 | 	int to_self; | 
 |  | 
 | 	/* | 
 | 	 * If there are no other threads in the group, or if there is | 
 | 	 * a group stop in progress and we are the last to stop, | 
 | 	 * report to the parent.  When ptraced, every thread reports itself. | 
 | 	 */ | 
 | 	if (stop_count < 0 || (current->ptrace & PT_PTRACED)) | 
 | 		to_self = 1; | 
 | 	else if (stop_count == 0) | 
 | 		to_self = 0; | 
 | 	else | 
 | 		goto out; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	do_notify_parent_cldstop(current, to_self, CLD_STOPPED); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | out: | 
 | 	schedule(); | 
 | 	/* | 
 | 	 * Now we don't run again until continued. | 
 | 	 */ | 
 | 	current->exit_code = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This performs the stopping for SIGSTOP and other stop signals. | 
 |  * We have to stop all threads in the thread group. | 
 |  * Returns nonzero if we've actually stopped and released the siglock. | 
 |  * Returns zero if we didn't stop and still hold the siglock. | 
 |  */ | 
 | static int | 
 | do_signal_stop(int signr) | 
 | { | 
 | 	struct signal_struct *sig = current->signal; | 
 | 	struct sighand_struct *sighand = current->sighand; | 
 | 	int stop_count = -1; | 
 |  | 
 | 	if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) | 
 | 		return 0; | 
 |  | 
 | 	if (sig->group_stop_count > 0) { | 
 | 		/* | 
 | 		 * There is a group stop in progress.  We don't need to | 
 | 		 * start another one. | 
 | 		 */ | 
 | 		signr = sig->group_exit_code; | 
 | 		stop_count = --sig->group_stop_count; | 
 | 		current->exit_code = signr; | 
 | 		set_current_state(TASK_STOPPED); | 
 | 		if (stop_count == 0) | 
 | 			sig->flags = SIGNAL_STOP_STOPPED; | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 | 	} | 
 | 	else if (thread_group_empty(current)) { | 
 | 		/* | 
 | 		 * Lock must be held through transition to stopped state. | 
 | 		 */ | 
 | 		current->exit_code = current->signal->group_exit_code = signr; | 
 | 		set_current_state(TASK_STOPPED); | 
 | 		sig->flags = SIGNAL_STOP_STOPPED; | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 | 	} | 
 | 	else { | 
 | 		/* | 
 | 		 * There is no group stop already in progress. | 
 | 		 * We must initiate one now, but that requires | 
 | 		 * dropping siglock to get both the tasklist lock | 
 | 		 * and siglock again in the proper order.  Note that | 
 | 		 * this allows an intervening SIGCONT to be posted. | 
 | 		 * We need to check for that and bail out if necessary. | 
 | 		 */ | 
 | 		struct task_struct *t; | 
 |  | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 |  | 
 | 		/* signals can be posted during this window */ | 
 |  | 
 | 		read_lock(&tasklist_lock); | 
 | 		spin_lock_irq(&sighand->siglock); | 
 |  | 
 | 		if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) { | 
 | 			/* | 
 | 			 * Another stop or continue happened while we | 
 | 			 * didn't have the lock.  We can just swallow this | 
 | 			 * signal now.  If we raced with a SIGCONT, that | 
 | 			 * should have just cleared it now.  If we raced | 
 | 			 * with another processor delivering a stop signal, | 
 | 			 * then the SIGCONT that wakes us up should clear it. | 
 | 			 */ | 
 | 			read_unlock(&tasklist_lock); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (sig->group_stop_count == 0) { | 
 | 			sig->group_exit_code = signr; | 
 | 			stop_count = 0; | 
 | 			for (t = next_thread(current); t != current; | 
 | 			     t = next_thread(t)) | 
 | 				/* | 
 | 				 * Setting state to TASK_STOPPED for a group | 
 | 				 * stop is always done with the siglock held, | 
 | 				 * so this check has no races. | 
 | 				 */ | 
 | 				if (!t->exit_state && | 
 | 				    !(t->state & (TASK_STOPPED|TASK_TRACED))) { | 
 | 					stop_count++; | 
 | 					signal_wake_up(t, 0); | 
 | 				} | 
 | 			sig->group_stop_count = stop_count; | 
 | 		} | 
 | 		else { | 
 | 			/* A race with another thread while unlocked.  */ | 
 | 			signr = sig->group_exit_code; | 
 | 			stop_count = --sig->group_stop_count; | 
 | 		} | 
 |  | 
 | 		current->exit_code = signr; | 
 | 		set_current_state(TASK_STOPPED); | 
 | 		if (stop_count == 0) | 
 | 			sig->flags = SIGNAL_STOP_STOPPED; | 
 |  | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 |  | 
 | 	finish_stop(stop_count); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Do appropriate magic when group_stop_count > 0. | 
 |  * We return nonzero if we stopped, after releasing the siglock. | 
 |  * We return zero if we still hold the siglock and should look | 
 |  * for another signal without checking group_stop_count again. | 
 |  */ | 
 | static inline int handle_group_stop(void) | 
 | { | 
 | 	int stop_count; | 
 |  | 
 | 	if (current->signal->group_exit_task == current) { | 
 | 		/* | 
 | 		 * Group stop is so we can do a core dump, | 
 | 		 * We are the initiating thread, so get on with it. | 
 | 		 */ | 
 | 		current->signal->group_exit_task = NULL; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (current->signal->flags & SIGNAL_GROUP_EXIT) | 
 | 		/* | 
 | 		 * Group stop is so another thread can do a core dump, | 
 | 		 * or else we are racing against a death signal. | 
 | 		 * Just punt the stop so we can get the next signal. | 
 | 		 */ | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * There is a group stop in progress.  We stop | 
 | 	 * without any associated signal being in our queue. | 
 | 	 */ | 
 | 	stop_count = --current->signal->group_stop_count; | 
 | 	if (stop_count == 0) | 
 | 		current->signal->flags = SIGNAL_STOP_STOPPED; | 
 | 	current->exit_code = current->signal->group_exit_code; | 
 | 	set_current_state(TASK_STOPPED); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	finish_stop(stop_count); | 
 | 	return 1; | 
 | } | 
 |  | 
 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 
 | 			  struct pt_regs *regs, void *cookie) | 
 | { | 
 | 	sigset_t *mask = ¤t->blocked; | 
 | 	int signr = 0; | 
 |  | 
 | relock: | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	for (;;) { | 
 | 		struct k_sigaction *ka; | 
 |  | 
 | 		if (unlikely(current->signal->group_stop_count > 0) && | 
 | 		    handle_group_stop()) | 
 | 			goto relock; | 
 |  | 
 | 		signr = dequeue_signal(current, mask, info); | 
 |  | 
 | 		if (!signr) | 
 | 			break; /* will return 0 */ | 
 |  | 
 | 		if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) { | 
 | 			ptrace_signal_deliver(regs, cookie); | 
 |  | 
 | 			/* Let the debugger run.  */ | 
 | 			ptrace_stop(signr, signr, info); | 
 |  | 
 | 			/* We're back.  Did the debugger cancel the sig or group_exit? */ | 
 | 			signr = current->exit_code; | 
 | 			if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT) | 
 | 				continue; | 
 |  | 
 | 			current->exit_code = 0; | 
 |  | 
 | 			/* Update the siginfo structure if the signal has | 
 | 			   changed.  If the debugger wanted something | 
 | 			   specific in the siginfo structure then it should | 
 | 			   have updated *info via PTRACE_SETSIGINFO.  */ | 
 | 			if (signr != info->si_signo) { | 
 | 				info->si_signo = signr; | 
 | 				info->si_errno = 0; | 
 | 				info->si_code = SI_USER; | 
 | 				info->si_pid = current->parent->pid; | 
 | 				info->si_uid = current->parent->uid; | 
 | 			} | 
 |  | 
 | 			/* If the (new) signal is now blocked, requeue it.  */ | 
 | 			if (sigismember(¤t->blocked, signr)) { | 
 | 				specific_send_sig_info(signr, info, current); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ka = ¤t->sighand->action[signr-1]; | 
 | 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
 | 			continue; | 
 | 		if (ka->sa.sa_handler != SIG_DFL) { | 
 | 			/* Run the handler.  */ | 
 | 			*return_ka = *ka; | 
 |  | 
 | 			if (ka->sa.sa_flags & SA_ONESHOT) | 
 | 				ka->sa.sa_handler = SIG_DFL; | 
 |  | 
 | 			break; /* will return non-zero "signr" value */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now we are doing the default action for this signal. | 
 | 		 */ | 
 | 		if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
 | 			continue; | 
 |  | 
 | 		/* Init gets no signals it doesn't want.  */ | 
 | 		if (current->pid == 1) | 
 | 			continue; | 
 |  | 
 | 		if (sig_kernel_stop(signr)) { | 
 | 			/* | 
 | 			 * The default action is to stop all threads in | 
 | 			 * the thread group.  The job control signals | 
 | 			 * do nothing in an orphaned pgrp, but SIGSTOP | 
 | 			 * always works.  Note that siglock needs to be | 
 | 			 * dropped during the call to is_orphaned_pgrp() | 
 | 			 * because of lock ordering with tasklist_lock. | 
 | 			 * This allows an intervening SIGCONT to be posted. | 
 | 			 * We need to check for that and bail out if necessary. | 
 | 			 */ | 
 | 			if (signr != SIGSTOP) { | 
 | 				spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 				/* signals can be posted during this window */ | 
 |  | 
 | 				if (is_orphaned_pgrp(process_group(current))) | 
 | 					goto relock; | 
 |  | 
 | 				spin_lock_irq(¤t->sighand->siglock); | 
 | 			} | 
 |  | 
 | 			if (likely(do_signal_stop(signr))) { | 
 | 				/* It released the siglock.  */ | 
 | 				goto relock; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We didn't actually stop, due to a race | 
 | 			 * with SIGCONT or something like that. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 		/* | 
 | 		 * Anything else is fatal, maybe with a core dump. | 
 | 		 */ | 
 | 		current->flags |= PF_SIGNALED; | 
 | 		if (sig_kernel_coredump(signr)) { | 
 | 			/* | 
 | 			 * If it was able to dump core, this kills all | 
 | 			 * other threads in the group and synchronizes with | 
 | 			 * their demise.  If we lost the race with another | 
 | 			 * thread getting here, it set group_exit_code | 
 | 			 * first and our do_group_exit call below will use | 
 | 			 * that value and ignore the one we pass it. | 
 | 			 */ | 
 | 			do_coredump((long)signr, signr, regs); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Death signals, no core dump. | 
 | 		 */ | 
 | 		do_group_exit(signr); | 
 | 		/* NOTREACHED */ | 
 | 	} | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	return signr; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(recalc_sigpending); | 
 | EXPORT_SYMBOL_GPL(dequeue_signal); | 
 | EXPORT_SYMBOL(flush_signals); | 
 | EXPORT_SYMBOL(force_sig); | 
 | EXPORT_SYMBOL(kill_pg); | 
 | EXPORT_SYMBOL(kill_proc); | 
 | EXPORT_SYMBOL(ptrace_notify); | 
 | EXPORT_SYMBOL(send_sig); | 
 | EXPORT_SYMBOL(send_sig_info); | 
 | EXPORT_SYMBOL(sigprocmask); | 
 | EXPORT_SYMBOL(block_all_signals); | 
 | EXPORT_SYMBOL(unblock_all_signals); | 
 |  | 
 |  | 
 | /* | 
 |  * System call entry points. | 
 |  */ | 
 |  | 
 | asmlinkage long sys_restart_syscall(void) | 
 | { | 
 | 	struct restart_block *restart = ¤t_thread_info()->restart_block; | 
 | 	return restart->fn(restart); | 
 | } | 
 |  | 
 | long do_no_restart_syscall(struct restart_block *param) | 
 | { | 
 | 	return -EINTR; | 
 | } | 
 |  | 
 | /* | 
 |  * We don't need to get the kernel lock - this is all local to this | 
 |  * particular thread.. (and that's good, because this is _heavily_ | 
 |  * used by various programs) | 
 |  */ | 
 |  | 
 | /* | 
 |  * This is also useful for kernel threads that want to temporarily | 
 |  * (or permanently) block certain signals. | 
 |  * | 
 |  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
 |  * interface happily blocks "unblockable" signals like SIGKILL | 
 |  * and friends. | 
 |  */ | 
 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
 | { | 
 | 	int error; | 
 | 	sigset_t old_block; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	old_block = current->blocked; | 
 | 	error = 0; | 
 | 	switch (how) { | 
 | 	case SIG_BLOCK: | 
 | 		sigorsets(¤t->blocked, ¤t->blocked, set); | 
 | 		break; | 
 | 	case SIG_UNBLOCK: | 
 | 		signandsets(¤t->blocked, ¤t->blocked, set); | 
 | 		break; | 
 | 	case SIG_SETMASK: | 
 | 		current->blocked = *set; | 
 | 		break; | 
 | 	default: | 
 | 		error = -EINVAL; | 
 | 	} | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	if (oldset) | 
 | 		*oldset = old_block; | 
 | 	return error; | 
 | } | 
 |  | 
 | asmlinkage long | 
 | sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize) | 
 | { | 
 | 	int error = -EINVAL; | 
 | 	sigset_t old_set, new_set; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		goto out; | 
 |  | 
 | 	if (set) { | 
 | 		error = -EFAULT; | 
 | 		if (copy_from_user(&new_set, set, sizeof(*set))) | 
 | 			goto out; | 
 | 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
 |  | 
 | 		error = sigprocmask(how, &new_set, &old_set); | 
 | 		if (error) | 
 | 			goto out; | 
 | 		if (oset) | 
 | 			goto set_old; | 
 | 	} else if (oset) { | 
 | 		spin_lock_irq(¤t->sighand->siglock); | 
 | 		old_set = current->blocked; | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	set_old: | 
 | 		error = -EFAULT; | 
 | 		if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
 | 			goto out; | 
 | 	} | 
 | 	error = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | long do_sigpending(void __user *set, unsigned long sigsetsize) | 
 | { | 
 | 	long error = -EINVAL; | 
 | 	sigset_t pending; | 
 |  | 
 | 	if (sigsetsize > sizeof(sigset_t)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	sigorsets(&pending, ¤t->pending.signal, | 
 | 		  ¤t->signal->shared_pending.signal); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	/* Outside the lock because only this thread touches it.  */ | 
 | 	sigandsets(&pending, ¤t->blocked, &pending); | 
 |  | 
 | 	error = -EFAULT; | 
 | 	if (!copy_to_user(set, &pending, sigsetsize)) | 
 | 		error = 0; | 
 |  | 
 | out: | 
 | 	return error; | 
 | }	 | 
 |  | 
 | asmlinkage long | 
 | sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize) | 
 | { | 
 | 	return do_sigpending(set, sigsetsize); | 
 | } | 
 |  | 
 | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER | 
 |  | 
 | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) | 
 | 		return -EFAULT; | 
 | 	if (from->si_code < 0) | 
 | 		return __copy_to_user(to, from, sizeof(siginfo_t)) | 
 | 			? -EFAULT : 0; | 
 | 	/* | 
 | 	 * If you change siginfo_t structure, please be sure | 
 | 	 * this code is fixed accordingly. | 
 | 	 * It should never copy any pad contained in the structure | 
 | 	 * to avoid security leaks, but must copy the generic | 
 | 	 * 3 ints plus the relevant union member. | 
 | 	 */ | 
 | 	err = __put_user(from->si_signo, &to->si_signo); | 
 | 	err |= __put_user(from->si_errno, &to->si_errno); | 
 | 	err |= __put_user((short)from->si_code, &to->si_code); | 
 | 	switch (from->si_code & __SI_MASK) { | 
 | 	case __SI_KILL: | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		break; | 
 | 	case __SI_TIMER: | 
 | 		 err |= __put_user(from->si_tid, &to->si_tid); | 
 | 		 err |= __put_user(from->si_overrun, &to->si_overrun); | 
 | 		 err |= __put_user(from->si_ptr, &to->si_ptr); | 
 | 		break; | 
 | 	case __SI_POLL: | 
 | 		err |= __put_user(from->si_band, &to->si_band); | 
 | 		err |= __put_user(from->si_fd, &to->si_fd); | 
 | 		break; | 
 | 	case __SI_FAULT: | 
 | 		err |= __put_user(from->si_addr, &to->si_addr); | 
 | #ifdef __ARCH_SI_TRAPNO | 
 | 		err |= __put_user(from->si_trapno, &to->si_trapno); | 
 | #endif | 
 | 		break; | 
 | 	case __SI_CHLD: | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		err |= __put_user(from->si_status, &to->si_status); | 
 | 		err |= __put_user(from->si_utime, &to->si_utime); | 
 | 		err |= __put_user(from->si_stime, &to->si_stime); | 
 | 		break; | 
 | 	case __SI_RT: /* This is not generated by the kernel as of now. */ | 
 | 	case __SI_MESGQ: /* But this is */ | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		err |= __put_user(from->si_ptr, &to->si_ptr); | 
 | 		break; | 
 | 	default: /* this is just in case for now ... */ | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		break; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | asmlinkage long | 
 | sys_rt_sigtimedwait(const sigset_t __user *uthese, | 
 | 		    siginfo_t __user *uinfo, | 
 | 		    const struct timespec __user *uts, | 
 | 		    size_t sigsetsize) | 
 | { | 
 | 	int ret, sig; | 
 | 	sigset_t these; | 
 | 	struct timespec ts; | 
 | 	siginfo_t info; | 
 | 	long timeout = 0; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&these, uthese, sizeof(these))) | 
 | 		return -EFAULT; | 
 | 		 | 
 | 	/* | 
 | 	 * Invert the set of allowed signals to get those we | 
 | 	 * want to block. | 
 | 	 */ | 
 | 	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
 | 	signotset(&these); | 
 |  | 
 | 	if (uts) { | 
 | 		if (copy_from_user(&ts, uts, sizeof(ts))) | 
 | 			return -EFAULT; | 
 | 		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 | 
 | 		    || ts.tv_sec < 0) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	sig = dequeue_signal(current, &these, &info); | 
 | 	if (!sig) { | 
 | 		timeout = MAX_SCHEDULE_TIMEOUT; | 
 | 		if (uts) | 
 | 			timeout = (timespec_to_jiffies(&ts) | 
 | 				   + (ts.tv_sec || ts.tv_nsec)); | 
 |  | 
 | 		if (timeout) { | 
 | 			/* None ready -- temporarily unblock those we're | 
 | 			 * interested while we are sleeping in so that we'll | 
 | 			 * be awakened when they arrive.  */ | 
 | 			current->real_blocked = current->blocked; | 
 | 			sigandsets(¤t->blocked, ¤t->blocked, &these); | 
 | 			recalc_sigpending(); | 
 | 			spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 			timeout = schedule_timeout_interruptible(timeout); | 
 |  | 
 | 			try_to_freeze(); | 
 | 			spin_lock_irq(¤t->sighand->siglock); | 
 | 			sig = dequeue_signal(current, &these, &info); | 
 | 			current->blocked = current->real_blocked; | 
 | 			siginitset(¤t->real_blocked, 0); | 
 | 			recalc_sigpending(); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	if (sig) { | 
 | 		ret = sig; | 
 | 		if (uinfo) { | 
 | 			if (copy_siginfo_to_user(uinfo, &info)) | 
 | 				ret = -EFAULT; | 
 | 		} | 
 | 	} else { | 
 | 		ret = -EAGAIN; | 
 | 		if (timeout) | 
 | 			ret = -EINTR; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | asmlinkage long | 
 | sys_kill(int pid, int sig) | 
 | { | 
 | 	struct siginfo info; | 
 |  | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = SI_USER; | 
 | 	info.si_pid = current->tgid; | 
 | 	info.si_uid = current->uid; | 
 |  | 
 | 	return kill_something_info(sig, &info, pid); | 
 | } | 
 |  | 
 | static int do_tkill(int tgid, int pid, int sig) | 
 | { | 
 | 	int error; | 
 | 	struct siginfo info; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	error = -ESRCH; | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = SI_TKILL; | 
 | 	info.si_pid = current->tgid; | 
 | 	info.si_uid = current->uid; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	p = find_task_by_pid(pid); | 
 | 	if (p && (tgid <= 0 || p->tgid == tgid)) { | 
 | 		error = check_kill_permission(sig, &info, p); | 
 | 		/* | 
 | 		 * The null signal is a permissions and process existence | 
 | 		 * probe.  No signal is actually delivered. | 
 | 		 */ | 
 | 		if (!error && sig && p->sighand) { | 
 | 			spin_lock_irq(&p->sighand->siglock); | 
 | 			handle_stop_signal(sig, p); | 
 | 			error = specific_send_sig_info(sig, &info, p); | 
 | 			spin_unlock_irq(&p->sighand->siglock); | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_tgkill - send signal to one specific thread | 
 |  *  @tgid: the thread group ID of the thread | 
 |  *  @pid: the PID of the thread | 
 |  *  @sig: signal to be sent | 
 |  * | 
 |  *  This syscall also checks the tgid and returns -ESRCH even if the PID | 
 |  *  exists but it's not belonging to the target process anymore. This | 
 |  *  method solves the problem of threads exiting and PIDs getting reused. | 
 |  */ | 
 | asmlinkage long sys_tgkill(int tgid, int pid, int sig) | 
 | { | 
 | 	/* This is only valid for single tasks */ | 
 | 	if (pid <= 0 || tgid <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_tkill(tgid, pid, sig); | 
 | } | 
 |  | 
 | /* | 
 |  *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
 |  */ | 
 | asmlinkage long | 
 | sys_tkill(int pid, int sig) | 
 | { | 
 | 	/* This is only valid for single tasks */ | 
 | 	if (pid <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_tkill(0, pid, sig); | 
 | } | 
 |  | 
 | asmlinkage long | 
 | sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Not even root can pretend to send signals from the kernel. | 
 | 	   Nor can they impersonate a kill(), which adds source info.  */ | 
 | 	if (info.si_code >= 0) | 
 | 		return -EPERM; | 
 | 	info.si_signo = sig; | 
 |  | 
 | 	/* POSIX.1b doesn't mention process groups.  */ | 
 | 	return kill_proc_info(sig, &info, pid); | 
 | } | 
 |  | 
 | int | 
 | do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact) | 
 | { | 
 | 	struct k_sigaction *k; | 
 | 	sigset_t mask; | 
 |  | 
 | 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	k = ¤t->sighand->action[sig-1]; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	if (signal_pending(current)) { | 
 | 		/* | 
 | 		 * If there might be a fatal signal pending on multiple | 
 | 		 * threads, make sure we take it before changing the action. | 
 | 		 */ | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 | 		return -ERESTARTNOINTR; | 
 | 	} | 
 |  | 
 | 	if (oact) | 
 | 		*oact = *k; | 
 |  | 
 | 	if (act) { | 
 | 		/* | 
 | 		 * POSIX 3.3.1.3: | 
 | 		 *  "Setting a signal action to SIG_IGN for a signal that is | 
 | 		 *   pending shall cause the pending signal to be discarded, | 
 | 		 *   whether or not it is blocked." | 
 | 		 * | 
 | 		 *  "Setting a signal action to SIG_DFL for a signal that is | 
 | 		 *   pending and whose default action is to ignore the signal | 
 | 		 *   (for example, SIGCHLD), shall cause the pending signal to | 
 | 		 *   be discarded, whether or not it is blocked" | 
 | 		 */ | 
 | 		if (act->sa.sa_handler == SIG_IGN || | 
 | 		    (act->sa.sa_handler == SIG_DFL && | 
 | 		     sig_kernel_ignore(sig))) { | 
 | 			/* | 
 | 			 * This is a fairly rare case, so we only take the | 
 | 			 * tasklist_lock once we're sure we'll need it. | 
 | 			 * Now we must do this little unlock and relock | 
 | 			 * dance to maintain the lock hierarchy. | 
 | 			 */ | 
 | 			struct task_struct *t = current; | 
 | 			spin_unlock_irq(&t->sighand->siglock); | 
 | 			read_lock(&tasklist_lock); | 
 | 			spin_lock_irq(&t->sighand->siglock); | 
 | 			*k = *act; | 
 | 			sigdelsetmask(&k->sa.sa_mask, | 
 | 				      sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 | 			sigemptyset(&mask); | 
 | 			sigaddset(&mask, sig); | 
 | 			rm_from_queue_full(&mask, &t->signal->shared_pending); | 
 | 			do { | 
 | 				rm_from_queue_full(&mask, &t->pending); | 
 | 				recalc_sigpending_tsk(t); | 
 | 				t = next_thread(t); | 
 | 			} while (t != current); | 
 | 			spin_unlock_irq(¤t->sighand->siglock); | 
 | 			read_unlock(&tasklist_lock); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		*k = *act; | 
 | 		sigdelsetmask(&k->sa.sa_mask, | 
 | 			      sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) | 
 | { | 
 | 	stack_t oss; | 
 | 	int error; | 
 |  | 
 | 	if (uoss) { | 
 | 		oss.ss_sp = (void __user *) current->sas_ss_sp; | 
 | 		oss.ss_size = current->sas_ss_size; | 
 | 		oss.ss_flags = sas_ss_flags(sp); | 
 | 	} | 
 |  | 
 | 	if (uss) { | 
 | 		void __user *ss_sp; | 
 | 		size_t ss_size; | 
 | 		int ss_flags; | 
 |  | 
 | 		error = -EFAULT; | 
 | 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)) | 
 | 		    || __get_user(ss_sp, &uss->ss_sp) | 
 | 		    || __get_user(ss_flags, &uss->ss_flags) | 
 | 		    || __get_user(ss_size, &uss->ss_size)) | 
 | 			goto out; | 
 |  | 
 | 		error = -EPERM; | 
 | 		if (on_sig_stack(sp)) | 
 | 			goto out; | 
 |  | 
 | 		error = -EINVAL; | 
 | 		/* | 
 | 		 * | 
 | 		 * Note - this code used to test ss_flags incorrectly | 
 | 		 *  	  old code may have been written using ss_flags==0 | 
 | 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only | 
 | 		 *	  way that worked) - this fix preserves that older | 
 | 		 *	  mechanism | 
 | 		 */ | 
 | 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) | 
 | 			goto out; | 
 |  | 
 | 		if (ss_flags == SS_DISABLE) { | 
 | 			ss_size = 0; | 
 | 			ss_sp = NULL; | 
 | 		} else { | 
 | 			error = -ENOMEM; | 
 | 			if (ss_size < MINSIGSTKSZ) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		current->sas_ss_sp = (unsigned long) ss_sp; | 
 | 		current->sas_ss_size = ss_size; | 
 | 	} | 
 |  | 
 | 	if (uoss) { | 
 | 		error = -EFAULT; | 
 | 		if (copy_to_user(uoss, &oss, sizeof(oss))) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	error = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
 |  | 
 | asmlinkage long | 
 | sys_sigpending(old_sigset_t __user *set) | 
 | { | 
 | 	return do_sigpending(set, sizeof(*set)); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
 | /* Some platforms have their own version with special arguments others | 
 |    support only sys_rt_sigprocmask.  */ | 
 |  | 
 | asmlinkage long | 
 | sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset) | 
 | { | 
 | 	int error; | 
 | 	old_sigset_t old_set, new_set; | 
 |  | 
 | 	if (set) { | 
 | 		error = -EFAULT; | 
 | 		if (copy_from_user(&new_set, set, sizeof(*set))) | 
 | 			goto out; | 
 | 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 |  | 
 | 		spin_lock_irq(¤t->sighand->siglock); | 
 | 		old_set = current->blocked.sig[0]; | 
 |  | 
 | 		error = 0; | 
 | 		switch (how) { | 
 | 		default: | 
 | 			error = -EINVAL; | 
 | 			break; | 
 | 		case SIG_BLOCK: | 
 | 			sigaddsetmask(¤t->blocked, new_set); | 
 | 			break; | 
 | 		case SIG_UNBLOCK: | 
 | 			sigdelsetmask(¤t->blocked, new_set); | 
 | 			break; | 
 | 		case SIG_SETMASK: | 
 | 			current->blocked.sig[0] = new_set; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		recalc_sigpending(); | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 | 		if (error) | 
 | 			goto out; | 
 | 		if (oset) | 
 | 			goto set_old; | 
 | 	} else if (oset) { | 
 | 		old_set = current->blocked.sig[0]; | 
 | 	set_old: | 
 | 		error = -EFAULT; | 
 | 		if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
 | 			goto out; | 
 | 	} | 
 | 	error = 0; | 
 | out: | 
 | 	return error; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_RT_SIGACTION | 
 | asmlinkage long | 
 | sys_rt_sigaction(int sig, | 
 | 		 const struct sigaction __user *act, | 
 | 		 struct sigaction __user *oact, | 
 | 		 size_t sigsetsize) | 
 | { | 
 | 	struct k_sigaction new_sa, old_sa; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		goto out; | 
 |  | 
 | 	if (act) { | 
 | 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
 |  | 
 | 	if (!ret && oact) { | 
 | 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
 | 			return -EFAULT; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SGETMASK | 
 |  | 
 | /* | 
 |  * For backwards compatibility.  Functionality superseded by sigprocmask. | 
 |  */ | 
 | asmlinkage long | 
 | sys_sgetmask(void) | 
 | { | 
 | 	/* SMP safe */ | 
 | 	return current->blocked.sig[0]; | 
 | } | 
 |  | 
 | asmlinkage long | 
 | sys_ssetmask(int newmask) | 
 | { | 
 | 	int old; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	old = current->blocked.sig[0]; | 
 |  | 
 | 	siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| | 
 | 						  sigmask(SIGSTOP))); | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	return old; | 
 | } | 
 | #endif /* __ARCH_WANT_SGETMASK */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGNAL | 
 | /* | 
 |  * For backwards compatibility.  Functionality superseded by sigaction. | 
 |  */ | 
 | asmlinkage unsigned long | 
 | sys_signal(int sig, __sighandler_t handler) | 
 | { | 
 | 	struct k_sigaction new_sa, old_sa; | 
 | 	int ret; | 
 |  | 
 | 	new_sa.sa.sa_handler = handler; | 
 | 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
 |  | 
 | 	ret = do_sigaction(sig, &new_sa, &old_sa); | 
 |  | 
 | 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_PAUSE | 
 |  | 
 | asmlinkage long | 
 | sys_pause(void) | 
 | { | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 | 	schedule(); | 
 | 	return -ERESTARTNOHAND; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | void __init signals_init(void) | 
 | { | 
 | 	sigqueue_cachep = | 
 | 		kmem_cache_create("sigqueue", | 
 | 				  sizeof(struct sigqueue), | 
 | 				  __alignof__(struct sigqueue), | 
 | 				  SLAB_PANIC, NULL, NULL); | 
 | } |