| /******************************************************************************* | 
 |  | 
 |   Intel PRO/1000 Linux driver | 
 |   Copyright(c) 1999 - 2008 Intel Corporation. | 
 |  | 
 |   This program is free software; you can redistribute it and/or modify it | 
 |   under the terms and conditions of the GNU General Public License, | 
 |   version 2, as published by the Free Software Foundation. | 
 |  | 
 |   This program is distributed in the hope it will be useful, but WITHOUT | 
 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |   more details. | 
 |  | 
 |   You should have received a copy of the GNU General Public License along with | 
 |   this program; if not, write to the Free Software Foundation, Inc., | 
 |   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  | 
 |   The full GNU General Public License is included in this distribution in | 
 |   the file called "COPYING". | 
 |  | 
 |   Contact Information: | 
 |   Linux NICS <linux.nics@intel.com> | 
 |   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
 |   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 |  | 
 | *******************************************************************************/ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/ipv6.h> | 
 | #include <net/checksum.h> | 
 | #include <net/ip6_checksum.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 |  | 
 | #include "e1000.h" | 
 |  | 
 | #define DRV_VERSION "0.2.0" | 
 | char e1000e_driver_name[] = "e1000e"; | 
 | const char e1000e_driver_version[] = DRV_VERSION; | 
 |  | 
 | static const struct e1000_info *e1000_info_tbl[] = { | 
 | 	[board_82571]		= &e1000_82571_info, | 
 | 	[board_82572]		= &e1000_82572_info, | 
 | 	[board_82573]		= &e1000_82573_info, | 
 | 	[board_80003es2lan]	= &e1000_es2_info, | 
 | 	[board_ich8lan]		= &e1000_ich8_info, | 
 | 	[board_ich9lan]		= &e1000_ich9_info, | 
 | }; | 
 |  | 
 | #ifdef DEBUG | 
 | /** | 
 |  * e1000_get_hw_dev_name - return device name string | 
 |  * used by hardware layer to print debugging information | 
 |  **/ | 
 | char *e1000e_get_hw_dev_name(struct e1000_hw *hw) | 
 | { | 
 | 	return hw->adapter->netdev->name; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * e1000_desc_unused - calculate if we have unused descriptors | 
 |  **/ | 
 | static int e1000_desc_unused(struct e1000_ring *ring) | 
 | { | 
 | 	if (ring->next_to_clean > ring->next_to_use) | 
 | 		return ring->next_to_clean - ring->next_to_use - 1; | 
 |  | 
 | 	return ring->count + ring->next_to_clean - ring->next_to_use - 1; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_receive_skb - helper function to handle Rx indications | 
 |  * @adapter: board private structure | 
 |  * @status: descriptor status field as written by hardware | 
 |  * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | 
 |  * @skb: pointer to sk_buff to be indicated to stack | 
 |  **/ | 
 | static void e1000_receive_skb(struct e1000_adapter *adapter, | 
 | 			      struct net_device *netdev, | 
 | 			      struct sk_buff *skb, | 
 | 			      u8 status, __le16 vlan) | 
 | { | 
 | 	skb->protocol = eth_type_trans(skb, netdev); | 
 |  | 
 | 	if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | 
 | 		vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 
 | 					 le16_to_cpu(vlan) & | 
 | 					 E1000_RXD_SPC_VLAN_MASK); | 
 | 	else | 
 | 		netif_receive_skb(skb); | 
 |  | 
 | 	netdev->last_rx = jiffies; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
 |  * @adapter:     board private structure | 
 |  * @status_err:  receive descriptor status and error fields | 
 |  * @csum:	receive descriptor csum field | 
 |  * @sk_buff:     socket buffer with received data | 
 |  **/ | 
 | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
 | 			      u32 csum, struct sk_buff *skb) | 
 | { | 
 | 	u16 status = (u16)status_err; | 
 | 	u8 errors = (u8)(status_err >> 24); | 
 | 	skb->ip_summed = CHECKSUM_NONE; | 
 |  | 
 | 	/* Ignore Checksum bit is set */ | 
 | 	if (status & E1000_RXD_STAT_IXSM) | 
 | 		return; | 
 | 	/* TCP/UDP checksum error bit is set */ | 
 | 	if (errors & E1000_RXD_ERR_TCPE) { | 
 | 		/* let the stack verify checksum errors */ | 
 | 		adapter->hw_csum_err++; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* TCP/UDP Checksum has not been calculated */ | 
 | 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
 | 		return; | 
 |  | 
 | 	/* It must be a TCP or UDP packet with a valid checksum */ | 
 | 	if (status & E1000_RXD_STAT_TCPCS) { | 
 | 		/* TCP checksum is good */ | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	} else { | 
 | 		/* | 
 | 		 * IP fragment with UDP payload | 
 | 		 * Hardware complements the payload checksum, so we undo it | 
 | 		 * and then put the value in host order for further stack use. | 
 | 		 */ | 
 | 		__sum16 sum = (__force __sum16)htons(csum); | 
 | 		skb->csum = csum_unfold(~sum); | 
 | 		skb->ip_summed = CHECKSUM_COMPLETE; | 
 | 	} | 
 | 	adapter->hw_csum_good++; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
 |  * @adapter: address of board private structure | 
 |  **/ | 
 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
 | 				   int cleaned_count) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_rx_desc *rx_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int i; | 
 | 	unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | 
 |  | 
 | 	i = rx_ring->next_to_use; | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (cleaned_count--) { | 
 | 		skb = buffer_info->skb; | 
 | 		if (skb) { | 
 | 			skb_trim(skb, 0); | 
 | 			goto map_skb; | 
 | 		} | 
 |  | 
 | 		skb = netdev_alloc_skb(netdev, bufsz); | 
 | 		if (!skb) { | 
 | 			/* Better luck next round */ | 
 | 			adapter->alloc_rx_buff_failed++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make buffer alignment 2 beyond a 16 byte boundary | 
 | 		 * this will result in a 16 byte aligned IP header after | 
 | 		 * the 14 byte MAC header is removed | 
 | 		 */ | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 |  | 
 | 		buffer_info->skb = skb; | 
 | map_skb: | 
 | 		buffer_info->dma = pci_map_single(pdev, skb->data, | 
 | 						  adapter->rx_buffer_len, | 
 | 						  PCI_DMA_FROMDEVICE); | 
 | 		if (pci_dma_mapping_error(buffer_info->dma)) { | 
 | 			dev_err(&pdev->dev, "RX DMA map failed\n"); | 
 | 			adapter->rx_dma_failed++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		rx_desc = E1000_RX_DESC(*rx_ring, i); | 
 | 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
 |  | 
 | 		i++; | 
 | 		if (i == rx_ring->count) | 
 | 			i = 0; | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 	} | 
 |  | 
 | 	if (rx_ring->next_to_use != i) { | 
 | 		rx_ring->next_to_use = i; | 
 | 		if (i-- == 0) | 
 | 			i = (rx_ring->count - 1); | 
 |  | 
 | 		/* | 
 | 		 * Force memory writes to complete before letting h/w | 
 | 		 * know there are new descriptors to fetch.  (Only | 
 | 		 * applicable for weak-ordered memory model archs, | 
 | 		 * such as IA-64). | 
 | 		 */ | 
 | 		wmb(); | 
 | 		writel(i, adapter->hw.hw_addr + rx_ring->tail); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | 
 |  * @adapter: address of board private structure | 
 |  **/ | 
 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | 
 | 				      int cleaned_count) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	union e1000_rx_desc_packet_split *rx_desc; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	struct e1000_ps_page *ps_page; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int i, j; | 
 |  | 
 | 	i = rx_ring->next_to_use; | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (cleaned_count--) { | 
 | 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
 |  | 
 | 		for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
 | 			ps_page = &buffer_info->ps_pages[j]; | 
 | 			if (j >= adapter->rx_ps_pages) { | 
 | 				/* all unused desc entries get hw null ptr */ | 
 | 				rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); | 
 | 				continue; | 
 | 			} | 
 | 			if (!ps_page->page) { | 
 | 				ps_page->page = alloc_page(GFP_ATOMIC); | 
 | 				if (!ps_page->page) { | 
 | 					adapter->alloc_rx_buff_failed++; | 
 | 					goto no_buffers; | 
 | 				} | 
 | 				ps_page->dma = pci_map_page(pdev, | 
 | 						   ps_page->page, | 
 | 						   0, PAGE_SIZE, | 
 | 						   PCI_DMA_FROMDEVICE); | 
 | 				if (pci_dma_mapping_error(ps_page->dma)) { | 
 | 					dev_err(&adapter->pdev->dev, | 
 | 					  "RX DMA page map failed\n"); | 
 | 					adapter->rx_dma_failed++; | 
 | 					goto no_buffers; | 
 | 				} | 
 | 			} | 
 | 			/* | 
 | 			 * Refresh the desc even if buffer_addrs | 
 | 			 * didn't change because each write-back | 
 | 			 * erases this info. | 
 | 			 */ | 
 | 			rx_desc->read.buffer_addr[j+1] = | 
 | 			     cpu_to_le64(ps_page->dma); | 
 | 		} | 
 |  | 
 | 		skb = netdev_alloc_skb(netdev, | 
 | 				       adapter->rx_ps_bsize0 + NET_IP_ALIGN); | 
 |  | 
 | 		if (!skb) { | 
 | 			adapter->alloc_rx_buff_failed++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Make buffer alignment 2 beyond a 16 byte boundary | 
 | 		 * this will result in a 16 byte aligned IP header after | 
 | 		 * the 14 byte MAC header is removed | 
 | 		 */ | 
 | 		skb_reserve(skb, NET_IP_ALIGN); | 
 |  | 
 | 		buffer_info->skb = skb; | 
 | 		buffer_info->dma = pci_map_single(pdev, skb->data, | 
 | 						  adapter->rx_ps_bsize0, | 
 | 						  PCI_DMA_FROMDEVICE); | 
 | 		if (pci_dma_mapping_error(buffer_info->dma)) { | 
 | 			dev_err(&pdev->dev, "RX DMA map failed\n"); | 
 | 			adapter->rx_dma_failed++; | 
 | 			/* cleanup skb */ | 
 | 			dev_kfree_skb_any(skb); | 
 | 			buffer_info->skb = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | 
 |  | 
 | 		i++; | 
 | 		if (i == rx_ring->count) | 
 | 			i = 0; | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 	} | 
 |  | 
 | no_buffers: | 
 | 	if (rx_ring->next_to_use != i) { | 
 | 		rx_ring->next_to_use = i; | 
 |  | 
 | 		if (!(i--)) | 
 | 			i = (rx_ring->count - 1); | 
 |  | 
 | 		/* | 
 | 		 * Force memory writes to complete before letting h/w | 
 | 		 * know there are new descriptors to fetch.  (Only | 
 | 		 * applicable for weak-ordered memory model archs, | 
 | 		 * such as IA-64). | 
 | 		 */ | 
 | 		wmb(); | 
 | 		/* | 
 | 		 * Hardware increments by 16 bytes, but packet split | 
 | 		 * descriptors are 32 bytes...so we increment tail | 
 | 		 * twice as much. | 
 | 		 */ | 
 | 		writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * the return value indicates whether actual cleaning was done, there | 
 |  * is no guarantee that everything was cleaned | 
 |  **/ | 
 | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
 | 			       int *work_done, int work_to_do) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_rx_desc *rx_desc, *next_rxd; | 
 | 	struct e1000_buffer *buffer_info, *next_buffer; | 
 | 	u32 length; | 
 | 	unsigned int i; | 
 | 	int cleaned_count = 0; | 
 | 	bool cleaned = 0; | 
 | 	unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
 |  | 
 | 	i = rx_ring->next_to_clean; | 
 | 	rx_desc = E1000_RX_DESC(*rx_ring, i); | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (rx_desc->status & E1000_RXD_STAT_DD) { | 
 | 		struct sk_buff *skb; | 
 | 		u8 status; | 
 |  | 
 | 		if (*work_done >= work_to_do) | 
 | 			break; | 
 | 		(*work_done)++; | 
 |  | 
 | 		status = rx_desc->status; | 
 | 		skb = buffer_info->skb; | 
 | 		buffer_info->skb = NULL; | 
 |  | 
 | 		prefetch(skb->data - NET_IP_ALIGN); | 
 |  | 
 | 		i++; | 
 | 		if (i == rx_ring->count) | 
 | 			i = 0; | 
 | 		next_rxd = E1000_RX_DESC(*rx_ring, i); | 
 | 		prefetch(next_rxd); | 
 |  | 
 | 		next_buffer = &rx_ring->buffer_info[i]; | 
 |  | 
 | 		cleaned = 1; | 
 | 		cleaned_count++; | 
 | 		pci_unmap_single(pdev, | 
 | 				 buffer_info->dma, | 
 | 				 adapter->rx_buffer_len, | 
 | 				 PCI_DMA_FROMDEVICE); | 
 | 		buffer_info->dma = 0; | 
 |  | 
 | 		length = le16_to_cpu(rx_desc->length); | 
 |  | 
 | 		/* !EOP means multiple descriptors were used to store a single | 
 | 		 * packet, also make sure the frame isn't just CRC only */ | 
 | 		if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | 
 | 			/* All receives must fit into a single buffer */ | 
 | 			ndev_dbg(netdev, "%s: Receive packet consumed " | 
 | 				 "multiple buffers\n", netdev->name); | 
 | 			/* recycle */ | 
 | 			buffer_info->skb = skb; | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | 
 | 			/* recycle */ | 
 | 			buffer_info->skb = skb; | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		total_rx_bytes += length; | 
 | 		total_rx_packets++; | 
 |  | 
 | 		/* | 
 | 		 * code added for copybreak, this should improve | 
 | 		 * performance for small packets with large amounts | 
 | 		 * of reassembly being done in the stack | 
 | 		 */ | 
 | 		if (length < copybreak) { | 
 | 			struct sk_buff *new_skb = | 
 | 			    netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | 
 | 			if (new_skb) { | 
 | 				skb_reserve(new_skb, NET_IP_ALIGN); | 
 | 				memcpy(new_skb->data - NET_IP_ALIGN, | 
 | 				       skb->data - NET_IP_ALIGN, | 
 | 				       length + NET_IP_ALIGN); | 
 | 				/* save the skb in buffer_info as good */ | 
 | 				buffer_info->skb = skb; | 
 | 				skb = new_skb; | 
 | 			} | 
 | 			/* else just continue with the old one */ | 
 | 		} | 
 | 		/* end copybreak code */ | 
 | 		skb_put(skb, length); | 
 |  | 
 | 		/* Receive Checksum Offload */ | 
 | 		e1000_rx_checksum(adapter, | 
 | 				  (u32)(status) | | 
 | 				  ((u32)(rx_desc->errors) << 24), | 
 | 				  le16_to_cpu(rx_desc->csum), skb); | 
 |  | 
 | 		e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | 
 |  | 
 | next_desc: | 
 | 		rx_desc->status = 0; | 
 |  | 
 | 		/* return some buffers to hardware, one at a time is too slow */ | 
 | 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
 | 			adapter->alloc_rx_buf(adapter, cleaned_count); | 
 | 			cleaned_count = 0; | 
 | 		} | 
 |  | 
 | 		/* use prefetched values */ | 
 | 		rx_desc = next_rxd; | 
 | 		buffer_info = next_buffer; | 
 | 	} | 
 | 	rx_ring->next_to_clean = i; | 
 |  | 
 | 	cleaned_count = e1000_desc_unused(rx_ring); | 
 | 	if (cleaned_count) | 
 | 		adapter->alloc_rx_buf(adapter, cleaned_count); | 
 |  | 
 | 	adapter->total_rx_packets += total_rx_packets; | 
 | 	adapter->total_rx_bytes += total_rx_bytes; | 
 | 	adapter->net_stats.rx_packets += total_rx_packets; | 
 | 	adapter->net_stats.rx_bytes += total_rx_bytes; | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | static void e1000_put_txbuf(struct e1000_adapter *adapter, | 
 | 			     struct e1000_buffer *buffer_info) | 
 | { | 
 | 	if (buffer_info->dma) { | 
 | 		pci_unmap_page(adapter->pdev, buffer_info->dma, | 
 | 			       buffer_info->length, PCI_DMA_TODEVICE); | 
 | 		buffer_info->dma = 0; | 
 | 	} | 
 | 	if (buffer_info->skb) { | 
 | 		dev_kfree_skb_any(buffer_info->skb); | 
 | 		buffer_info->skb = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void e1000_print_tx_hang(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	unsigned int i = tx_ring->next_to_clean; | 
 | 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | 
 | 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
 | 	struct net_device *netdev = adapter->netdev; | 
 |  | 
 | 	/* detected Tx unit hang */ | 
 | 	ndev_err(netdev, | 
 | 		 "Detected Tx Unit Hang:\n" | 
 | 		 "  TDH                  <%x>\n" | 
 | 		 "  TDT                  <%x>\n" | 
 | 		 "  next_to_use          <%x>\n" | 
 | 		 "  next_to_clean        <%x>\n" | 
 | 		 "buffer_info[next_to_clean]:\n" | 
 | 		 "  time_stamp           <%lx>\n" | 
 | 		 "  next_to_watch        <%x>\n" | 
 | 		 "  jiffies              <%lx>\n" | 
 | 		 "  next_to_watch.status <%x>\n", | 
 | 		 readl(adapter->hw.hw_addr + tx_ring->head), | 
 | 		 readl(adapter->hw.hw_addr + tx_ring->tail), | 
 | 		 tx_ring->next_to_use, | 
 | 		 tx_ring->next_to_clean, | 
 | 		 tx_ring->buffer_info[eop].time_stamp, | 
 | 		 eop, | 
 | 		 jiffies, | 
 | 		 eop_desc->upper.fields.status); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * the return value indicates whether actual cleaning was done, there | 
 |  * is no guarantee that everything was cleaned | 
 |  **/ | 
 | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_tx_desc *tx_desc, *eop_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i, eop; | 
 | 	unsigned int count = 0; | 
 | 	bool cleaned = 0; | 
 | 	unsigned int total_tx_bytes = 0, total_tx_packets = 0; | 
 |  | 
 | 	i = tx_ring->next_to_clean; | 
 | 	eop = tx_ring->buffer_info[i].next_to_watch; | 
 | 	eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
 |  | 
 | 	while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) { | 
 | 		for (cleaned = 0; !cleaned; ) { | 
 | 			tx_desc = E1000_TX_DESC(*tx_ring, i); | 
 | 			buffer_info = &tx_ring->buffer_info[i]; | 
 | 			cleaned = (i == eop); | 
 |  | 
 | 			if (cleaned) { | 
 | 				struct sk_buff *skb = buffer_info->skb; | 
 | 				unsigned int segs, bytecount; | 
 | 				segs = skb_shinfo(skb)->gso_segs ?: 1; | 
 | 				/* multiply data chunks by size of headers */ | 
 | 				bytecount = ((segs - 1) * skb_headlen(skb)) + | 
 | 					    skb->len; | 
 | 				total_tx_packets += segs; | 
 | 				total_tx_bytes += bytecount; | 
 | 			} | 
 |  | 
 | 			e1000_put_txbuf(adapter, buffer_info); | 
 | 			tx_desc->upper.data = 0; | 
 |  | 
 | 			i++; | 
 | 			if (i == tx_ring->count) | 
 | 				i = 0; | 
 | 		} | 
 |  | 
 | 		eop = tx_ring->buffer_info[i].next_to_watch; | 
 | 		eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
 | #define E1000_TX_WEIGHT 64 | 
 | 		/* weight of a sort for tx, to avoid endless transmit cleanup */ | 
 | 		if (count++ == E1000_TX_WEIGHT) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	tx_ring->next_to_clean = i; | 
 |  | 
 | #define TX_WAKE_THRESHOLD 32 | 
 | 	if (cleaned && netif_carrier_ok(netdev) && | 
 | 		     e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | 
 | 		/* Make sure that anybody stopping the queue after this | 
 | 		 * sees the new next_to_clean. | 
 | 		 */ | 
 | 		smp_mb(); | 
 |  | 
 | 		if (netif_queue_stopped(netdev) && | 
 | 		    !(test_bit(__E1000_DOWN, &adapter->state))) { | 
 | 			netif_wake_queue(netdev); | 
 | 			++adapter->restart_queue; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (adapter->detect_tx_hung) { | 
 | 		/* | 
 | 		 * Detect a transmit hang in hardware, this serializes the | 
 | 		 * check with the clearing of time_stamp and movement of i | 
 | 		 */ | 
 | 		adapter->detect_tx_hung = 0; | 
 | 		if (tx_ring->buffer_info[eop].dma && | 
 | 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp | 
 | 			       + (adapter->tx_timeout_factor * HZ)) | 
 | 		    && !(er32(STATUS) & E1000_STATUS_TXOFF)) { | 
 | 			e1000_print_tx_hang(adapter); | 
 | 			netif_stop_queue(netdev); | 
 | 		} | 
 | 	} | 
 | 	adapter->total_tx_bytes += total_tx_bytes; | 
 | 	adapter->total_tx_packets += total_tx_packets; | 
 | 	adapter->net_stats.tx_packets += total_tx_packets; | 
 | 	adapter->net_stats.tx_bytes += total_tx_bytes; | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * the return value indicates whether actual cleaning was done, there | 
 |  * is no guarantee that everything was cleaned | 
 |  **/ | 
 | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
 | 				  int *work_done, int work_to_do) | 
 | { | 
 | 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_buffer *buffer_info, *next_buffer; | 
 | 	struct e1000_ps_page *ps_page; | 
 | 	struct sk_buff *skb; | 
 | 	unsigned int i, j; | 
 | 	u32 length, staterr; | 
 | 	int cleaned_count = 0; | 
 | 	bool cleaned = 0; | 
 | 	unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
 |  | 
 | 	i = rx_ring->next_to_clean; | 
 | 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
 | 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
 | 	buffer_info = &rx_ring->buffer_info[i]; | 
 |  | 
 | 	while (staterr & E1000_RXD_STAT_DD) { | 
 | 		if (*work_done >= work_to_do) | 
 | 			break; | 
 | 		(*work_done)++; | 
 | 		skb = buffer_info->skb; | 
 |  | 
 | 		/* in the packet split case this is header only */ | 
 | 		prefetch(skb->data - NET_IP_ALIGN); | 
 |  | 
 | 		i++; | 
 | 		if (i == rx_ring->count) | 
 | 			i = 0; | 
 | 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | 
 | 		prefetch(next_rxd); | 
 |  | 
 | 		next_buffer = &rx_ring->buffer_info[i]; | 
 |  | 
 | 		cleaned = 1; | 
 | 		cleaned_count++; | 
 | 		pci_unmap_single(pdev, buffer_info->dma, | 
 | 				 adapter->rx_ps_bsize0, | 
 | 				 PCI_DMA_FROMDEVICE); | 
 | 		buffer_info->dma = 0; | 
 |  | 
 | 		if (!(staterr & E1000_RXD_STAT_EOP)) { | 
 | 			ndev_dbg(netdev, "%s: Packet Split buffers didn't pick " | 
 | 				 "up the full packet\n", netdev->name); | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		length = le16_to_cpu(rx_desc->wb.middle.length0); | 
 |  | 
 | 		if (!length) { | 
 | 			ndev_dbg(netdev, "%s: Last part of the packet spanning" | 
 | 				 " multiple descriptors\n", netdev->name); | 
 | 			dev_kfree_skb_irq(skb); | 
 | 			goto next_desc; | 
 | 		} | 
 |  | 
 | 		/* Good Receive */ | 
 | 		skb_put(skb, length); | 
 |  | 
 | 		{ | 
 | 		/* | 
 | 		 * this looks ugly, but it seems compiler issues make it | 
 | 		 * more efficient than reusing j | 
 | 		 */ | 
 | 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | 
 |  | 
 | 		/* | 
 | 		 * page alloc/put takes too long and effects small packet | 
 | 		 * throughput, so unsplit small packets and save the alloc/put | 
 | 		 * only valid in softirq (napi) context to call kmap_* | 
 | 		 */ | 
 | 		if (l1 && (l1 <= copybreak) && | 
 | 		    ((length + l1) <= adapter->rx_ps_bsize0)) { | 
 | 			u8 *vaddr; | 
 |  | 
 | 			ps_page = &buffer_info->ps_pages[0]; | 
 |  | 
 | 			/* | 
 | 			 * there is no documentation about how to call | 
 | 			 * kmap_atomic, so we can't hold the mapping | 
 | 			 * very long | 
 | 			 */ | 
 | 			pci_dma_sync_single_for_cpu(pdev, ps_page->dma, | 
 | 				PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
 | 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | 
 | 			memcpy(skb_tail_pointer(skb), vaddr, l1); | 
 | 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | 
 | 			pci_dma_sync_single_for_device(pdev, ps_page->dma, | 
 | 				PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
 |  | 
 | 			skb_put(skb, l1); | 
 | 			goto copydone; | 
 | 		} /* if */ | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
 | 			length = le16_to_cpu(rx_desc->wb.upper.length[j]); | 
 | 			if (!length) | 
 | 				break; | 
 |  | 
 | 			ps_page = &buffer_info->ps_pages[j]; | 
 | 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 			ps_page->dma = 0; | 
 | 			skb_fill_page_desc(skb, j, ps_page->page, 0, length); | 
 | 			ps_page->page = NULL; | 
 | 			skb->len += length; | 
 | 			skb->data_len += length; | 
 | 			skb->truesize += length; | 
 | 		} | 
 |  | 
 | copydone: | 
 | 		total_rx_bytes += skb->len; | 
 | 		total_rx_packets++; | 
 |  | 
 | 		e1000_rx_checksum(adapter, staterr, le16_to_cpu( | 
 | 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | 
 |  | 
 | 		if (rx_desc->wb.upper.header_status & | 
 | 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | 
 | 			adapter->rx_hdr_split++; | 
 |  | 
 | 		e1000_receive_skb(adapter, netdev, skb, | 
 | 				  staterr, rx_desc->wb.middle.vlan); | 
 |  | 
 | next_desc: | 
 | 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | 
 | 		buffer_info->skb = NULL; | 
 |  | 
 | 		/* return some buffers to hardware, one at a time is too slow */ | 
 | 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
 | 			adapter->alloc_rx_buf(adapter, cleaned_count); | 
 | 			cleaned_count = 0; | 
 | 		} | 
 |  | 
 | 		/* use prefetched values */ | 
 | 		rx_desc = next_rxd; | 
 | 		buffer_info = next_buffer; | 
 |  | 
 | 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
 | 	} | 
 | 	rx_ring->next_to_clean = i; | 
 |  | 
 | 	cleaned_count = e1000_desc_unused(rx_ring); | 
 | 	if (cleaned_count) | 
 | 		adapter->alloc_rx_buf(adapter, cleaned_count); | 
 |  | 
 | 	adapter->total_rx_packets += total_rx_packets; | 
 | 	adapter->total_rx_bytes += total_rx_bytes; | 
 | 	adapter->net_stats.rx_packets += total_rx_packets; | 
 | 	adapter->net_stats.rx_bytes += total_rx_bytes; | 
 | 	return cleaned; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	struct e1000_ps_page *ps_page; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	unsigned int i, j; | 
 |  | 
 | 	/* Free all the Rx ring sk_buffs */ | 
 | 	for (i = 0; i < rx_ring->count; i++) { | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 		if (buffer_info->dma) { | 
 | 			if (adapter->clean_rx == e1000_clean_rx_irq) | 
 | 				pci_unmap_single(pdev, buffer_info->dma, | 
 | 						 adapter->rx_buffer_len, | 
 | 						 PCI_DMA_FROMDEVICE); | 
 | 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | 
 | 				pci_unmap_single(pdev, buffer_info->dma, | 
 | 						 adapter->rx_ps_bsize0, | 
 | 						 PCI_DMA_FROMDEVICE); | 
 | 			buffer_info->dma = 0; | 
 | 		} | 
 |  | 
 | 		if (buffer_info->skb) { | 
 | 			dev_kfree_skb(buffer_info->skb); | 
 | 			buffer_info->skb = NULL; | 
 | 		} | 
 |  | 
 | 		for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
 | 			ps_page = &buffer_info->ps_pages[j]; | 
 | 			if (!ps_page->page) | 
 | 				break; | 
 | 			pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 			ps_page->dma = 0; | 
 | 			put_page(ps_page->page); | 
 | 			ps_page->page = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* there also may be some cached data from a chained receive */ | 
 | 	if (rx_ring->rx_skb_top) { | 
 | 		dev_kfree_skb(rx_ring->rx_skb_top); | 
 | 		rx_ring->rx_skb_top = NULL; | 
 | 	} | 
 |  | 
 | 	/* Zero out the descriptor ring */ | 
 | 	memset(rx_ring->desc, 0, rx_ring->size); | 
 |  | 
 | 	rx_ring->next_to_clean = 0; | 
 | 	rx_ring->next_to_use = 0; | 
 |  | 
 | 	writel(0, adapter->hw.hw_addr + rx_ring->head); | 
 | 	writel(0, adapter->hw.hw_addr + rx_ring->tail); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_intr_msi - Interrupt Handler | 
 |  * @irq: interrupt number | 
 |  * @data: pointer to a network interface device structure | 
 |  **/ | 
 | static irqreturn_t e1000_intr_msi(int irq, void *data) | 
 | { | 
 | 	struct net_device *netdev = data; | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 icr = er32(ICR); | 
 |  | 
 | 	/* | 
 | 	 * read ICR disables interrupts using IAM | 
 | 	 */ | 
 |  | 
 | 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
 | 		hw->mac.get_link_status = 1; | 
 | 		/* | 
 | 		 * ICH8 workaround-- Call gig speed drop workaround on cable | 
 | 		 * disconnect (LSC) before accessing any PHY registers | 
 | 		 */ | 
 | 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
 | 		    (!(er32(STATUS) & E1000_STATUS_LU))) | 
 | 			e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 		/* | 
 | 		 * 80003ES2LAN workaround-- For packet buffer work-around on | 
 | 		 * link down event; disable receives here in the ISR and reset | 
 | 		 * adapter in watchdog | 
 | 		 */ | 
 | 		if (netif_carrier_ok(netdev) && | 
 | 		    adapter->flags & FLAG_RX_NEEDS_RESTART) { | 
 | 			/* disable receives */ | 
 | 			u32 rctl = er32(RCTL); | 
 | 			ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 			adapter->flags |= FLAG_RX_RESTART_NOW; | 
 | 		} | 
 | 		/* guard against interrupt when we're going down */ | 
 | 		if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 			mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
 | 	} | 
 |  | 
 | 	if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | 
 | 		adapter->total_tx_bytes = 0; | 
 | 		adapter->total_tx_packets = 0; | 
 | 		adapter->total_rx_bytes = 0; | 
 | 		adapter->total_rx_packets = 0; | 
 | 		__netif_rx_schedule(netdev, &adapter->napi); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_intr - Interrupt Handler | 
 |  * @irq: interrupt number | 
 |  * @data: pointer to a network interface device structure | 
 |  **/ | 
 | static irqreturn_t e1000_intr(int irq, void *data) | 
 | { | 
 | 	struct net_device *netdev = data; | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	u32 rctl, icr = er32(ICR); | 
 | 	if (!icr) | 
 | 		return IRQ_NONE;  /* Not our interrupt */ | 
 |  | 
 | 	/* | 
 | 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
 | 	 * not set, then the adapter didn't send an interrupt | 
 | 	 */ | 
 | 	if (!(icr & E1000_ICR_INT_ASSERTED)) | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	/* | 
 | 	 * Interrupt Auto-Mask...upon reading ICR, | 
 | 	 * interrupts are masked.  No need for the | 
 | 	 * IMC write | 
 | 	 */ | 
 |  | 
 | 	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { | 
 | 		hw->mac.get_link_status = 1; | 
 | 		/* | 
 | 		 * ICH8 workaround-- Call gig speed drop workaround on cable | 
 | 		 * disconnect (LSC) before accessing any PHY registers | 
 | 		 */ | 
 | 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
 | 		    (!(er32(STATUS) & E1000_STATUS_LU))) | 
 | 			e1000e_gig_downshift_workaround_ich8lan(hw); | 
 |  | 
 | 		/* | 
 | 		 * 80003ES2LAN workaround-- | 
 | 		 * For packet buffer work-around on link down event; | 
 | 		 * disable receives here in the ISR and | 
 | 		 * reset adapter in watchdog | 
 | 		 */ | 
 | 		if (netif_carrier_ok(netdev) && | 
 | 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | 
 | 			/* disable receives */ | 
 | 			rctl = er32(RCTL); | 
 | 			ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 			adapter->flags |= FLAG_RX_RESTART_NOW; | 
 | 		} | 
 | 		/* guard against interrupt when we're going down */ | 
 | 		if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 			mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
 | 	} | 
 |  | 
 | 	if (netif_rx_schedule_prep(netdev, &adapter->napi)) { | 
 | 		adapter->total_tx_bytes = 0; | 
 | 		adapter->total_tx_packets = 0; | 
 | 		adapter->total_rx_bytes = 0; | 
 | 		adapter->total_rx_packets = 0; | 
 | 		__netif_rx_schedule(netdev, &adapter->napi); | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int e1000_request_irq(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	irq_handler_t handler = e1000_intr; | 
 | 	int irq_flags = IRQF_SHARED; | 
 | 	int err; | 
 |  | 
 | 	if (!pci_enable_msi(adapter->pdev)) { | 
 | 		adapter->flags |= FLAG_MSI_ENABLED; | 
 | 		handler = e1000_intr_msi; | 
 | 		irq_flags = 0; | 
 | 	} | 
 |  | 
 | 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | 
 | 			  netdev); | 
 | 	if (err) { | 
 | 		ndev_err(netdev, | 
 | 		       "Unable to allocate %s interrupt (return: %d)\n", | 
 | 			adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx", | 
 | 			err); | 
 | 		if (adapter->flags & FLAG_MSI_ENABLED) | 
 | 			pci_disable_msi(adapter->pdev); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void e1000_free_irq(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 |  | 
 | 	free_irq(adapter->pdev->irq, netdev); | 
 | 	if (adapter->flags & FLAG_MSI_ENABLED) { | 
 | 		pci_disable_msi(adapter->pdev); | 
 | 		adapter->flags &= ~FLAG_MSI_ENABLED; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_irq_disable - Mask off interrupt generation on the NIC | 
 |  **/ | 
 | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	ew32(IMC, ~0); | 
 | 	e1e_flush(); | 
 | 	synchronize_irq(adapter->pdev->irq); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_irq_enable - Enable default interrupt generation settings | 
 |  **/ | 
 | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	ew32(IMS, IMS_ENABLE_MASK); | 
 | 	e1e_flush(); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_get_hw_control - get control of the h/w from f/w | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
 |  * For ASF and Pass Through versions of f/w this means that | 
 |  * the driver is loaded. For AMT version (only with 82573) | 
 |  * of the f/w this means that the network i/f is open. | 
 |  **/ | 
 | static void e1000_get_hw_control(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl_ext; | 
 | 	u32 swsm; | 
 |  | 
 | 	/* Let firmware know the driver has taken over */ | 
 | 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
 | 		swsm = er32(SWSM); | 
 | 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | 
 | 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
 | 		ctrl_ext = er32(CTRL_EXT); | 
 | 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_release_hw_control - release control of the h/w to f/w | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
 |  * For ASF and Pass Through versions of f/w this means that the | 
 |  * driver is no longer loaded. For AMT version (only with 82573) i | 
 |  * of the f/w this means that the network i/f is closed. | 
 |  * | 
 |  **/ | 
 | static void e1000_release_hw_control(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl_ext; | 
 | 	u32 swsm; | 
 |  | 
 | 	/* Let firmware taken over control of h/w */ | 
 | 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
 | 		swsm = er32(SWSM); | 
 | 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | 
 | 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
 | 		ctrl_ext = er32(CTRL_EXT); | 
 | 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * @e1000_alloc_ring - allocate memory for a ring structure | 
 |  **/ | 
 | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | 
 | 				struct e1000_ring *ring) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 |  | 
 | 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | 
 | 					GFP_KERNEL); | 
 | 	if (!ring->desc) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Return 0 on success, negative on failure | 
 |  **/ | 
 | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	int err = -ENOMEM, size; | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * tx_ring->count; | 
 | 	tx_ring->buffer_info = vmalloc(size); | 
 | 	if (!tx_ring->buffer_info) | 
 | 		goto err; | 
 | 	memset(tx_ring->buffer_info, 0, size); | 
 |  | 
 | 	/* round up to nearest 4K */ | 
 | 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | 
 | 	tx_ring->size = ALIGN(tx_ring->size, 4096); | 
 |  | 
 | 	err = e1000_alloc_ring_dma(adapter, tx_ring); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	tx_ring->next_to_use = 0; | 
 | 	tx_ring->next_to_clean = 0; | 
 | 	spin_lock_init(&adapter->tx_queue_lock); | 
 |  | 
 | 	return 0; | 
 | err: | 
 | 	vfree(tx_ring->buffer_info); | 
 | 	ndev_err(adapter->netdev, | 
 | 	"Unable to allocate memory for the transmit descriptor ring\n"); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	int i, size, desc_len, err = -ENOMEM; | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * rx_ring->count; | 
 | 	rx_ring->buffer_info = vmalloc(size); | 
 | 	if (!rx_ring->buffer_info) | 
 | 		goto err; | 
 | 	memset(rx_ring->buffer_info, 0, size); | 
 |  | 
 | 	for (i = 0; i < rx_ring->count; i++) { | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | 
 | 						sizeof(struct e1000_ps_page), | 
 | 						GFP_KERNEL); | 
 | 		if (!buffer_info->ps_pages) | 
 | 			goto err_pages; | 
 | 	} | 
 |  | 
 | 	desc_len = sizeof(union e1000_rx_desc_packet_split); | 
 |  | 
 | 	/* Round up to nearest 4K */ | 
 | 	rx_ring->size = rx_ring->count * desc_len; | 
 | 	rx_ring->size = ALIGN(rx_ring->size, 4096); | 
 |  | 
 | 	err = e1000_alloc_ring_dma(adapter, rx_ring); | 
 | 	if (err) | 
 | 		goto err_pages; | 
 |  | 
 | 	rx_ring->next_to_clean = 0; | 
 | 	rx_ring->next_to_use = 0; | 
 | 	rx_ring->rx_skb_top = NULL; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_pages: | 
 | 	for (i = 0; i < rx_ring->count; i++) { | 
 | 		buffer_info = &rx_ring->buffer_info[i]; | 
 | 		kfree(buffer_info->ps_pages); | 
 | 	} | 
 | err: | 
 | 	vfree(rx_ring->buffer_info); | 
 | 	ndev_err(adapter->netdev, | 
 | 	"Unable to allocate memory for the transmit descriptor ring\n"); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean_tx_ring - Free Tx Buffers | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned long size; | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < tx_ring->count; i++) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		e1000_put_txbuf(adapter, buffer_info); | 
 | 	} | 
 |  | 
 | 	size = sizeof(struct e1000_buffer) * tx_ring->count; | 
 | 	memset(tx_ring->buffer_info, 0, size); | 
 |  | 
 | 	memset(tx_ring->desc, 0, tx_ring->size); | 
 |  | 
 | 	tx_ring->next_to_use = 0; | 
 | 	tx_ring->next_to_clean = 0; | 
 |  | 
 | 	writel(0, adapter->hw.hw_addr + tx_ring->head); | 
 | 	writel(0, adapter->hw.hw_addr + tx_ring->tail); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_free_tx_resources - Free Tx Resources per Queue | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Free all transmit software resources | 
 |  **/ | 
 | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 |  | 
 | 	e1000_clean_tx_ring(adapter); | 
 |  | 
 | 	vfree(tx_ring->buffer_info); | 
 | 	tx_ring->buffer_info = NULL; | 
 |  | 
 | 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | 
 | 			  tx_ring->dma); | 
 | 	tx_ring->desc = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_free_rx_resources - Free Rx Resources | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Free all receive software resources | 
 |  **/ | 
 |  | 
 | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	int i; | 
 |  | 
 | 	e1000_clean_rx_ring(adapter); | 
 |  | 
 | 	for (i = 0; i < rx_ring->count; i++) { | 
 | 		kfree(rx_ring->buffer_info[i].ps_pages); | 
 | 	} | 
 |  | 
 | 	vfree(rx_ring->buffer_info); | 
 | 	rx_ring->buffer_info = NULL; | 
 |  | 
 | 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | 
 | 			  rx_ring->dma); | 
 | 	rx_ring->desc = NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_update_itr - update the dynamic ITR value based on statistics | 
 |  * @adapter: pointer to adapter | 
 |  * @itr_setting: current adapter->itr | 
 |  * @packets: the number of packets during this measurement interval | 
 |  * @bytes: the number of bytes during this measurement interval | 
 |  * | 
 |  *      Stores a new ITR value based on packets and byte | 
 |  *      counts during the last interrupt.  The advantage of per interrupt | 
 |  *      computation is faster updates and more accurate ITR for the current | 
 |  *      traffic pattern.  Constants in this function were computed | 
 |  *      based on theoretical maximum wire speed and thresholds were set based | 
 |  *      on testing data as well as attempting to minimize response time | 
 |  *      while increasing bulk throughput. | 
 |  *      this functionality is controlled by the InterruptThrottleRate module | 
 |  *      parameter (see e1000_param.c) | 
 |  **/ | 
 | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
 | 				     u16 itr_setting, int packets, | 
 | 				     int bytes) | 
 | { | 
 | 	unsigned int retval = itr_setting; | 
 |  | 
 | 	if (packets == 0) | 
 | 		goto update_itr_done; | 
 |  | 
 | 	switch (itr_setting) { | 
 | 	case lowest_latency: | 
 | 		/* handle TSO and jumbo frames */ | 
 | 		if (bytes/packets > 8000) | 
 | 			retval = bulk_latency; | 
 | 		else if ((packets < 5) && (bytes > 512)) { | 
 | 			retval = low_latency; | 
 | 		} | 
 | 		break; | 
 | 	case low_latency:  /* 50 usec aka 20000 ints/s */ | 
 | 		if (bytes > 10000) { | 
 | 			/* this if handles the TSO accounting */ | 
 | 			if (bytes/packets > 8000) { | 
 | 				retval = bulk_latency; | 
 | 			} else if ((packets < 10) || ((bytes/packets) > 1200)) { | 
 | 				retval = bulk_latency; | 
 | 			} else if ((packets > 35)) { | 
 | 				retval = lowest_latency; | 
 | 			} | 
 | 		} else if (bytes/packets > 2000) { | 
 | 			retval = bulk_latency; | 
 | 		} else if (packets <= 2 && bytes < 512) { | 
 | 			retval = lowest_latency; | 
 | 		} | 
 | 		break; | 
 | 	case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
 | 		if (bytes > 25000) { | 
 | 			if (packets > 35) { | 
 | 				retval = low_latency; | 
 | 			} | 
 | 		} else if (bytes < 6000) { | 
 | 			retval = low_latency; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | update_itr_done: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void e1000_set_itr(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 current_itr; | 
 | 	u32 new_itr = adapter->itr; | 
 |  | 
 | 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
 | 	if (adapter->link_speed != SPEED_1000) { | 
 | 		current_itr = 0; | 
 | 		new_itr = 4000; | 
 | 		goto set_itr_now; | 
 | 	} | 
 |  | 
 | 	adapter->tx_itr = e1000_update_itr(adapter, | 
 | 				    adapter->tx_itr, | 
 | 				    adapter->total_tx_packets, | 
 | 				    adapter->total_tx_bytes); | 
 | 	/* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
 | 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
 | 		adapter->tx_itr = low_latency; | 
 |  | 
 | 	adapter->rx_itr = e1000_update_itr(adapter, | 
 | 				    adapter->rx_itr, | 
 | 				    adapter->total_rx_packets, | 
 | 				    adapter->total_rx_bytes); | 
 | 	/* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
 | 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
 | 		adapter->rx_itr = low_latency; | 
 |  | 
 | 	current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
 |  | 
 | 	switch (current_itr) { | 
 | 	/* counts and packets in update_itr are dependent on these numbers */ | 
 | 	case lowest_latency: | 
 | 		new_itr = 70000; | 
 | 		break; | 
 | 	case low_latency: | 
 | 		new_itr = 20000; /* aka hwitr = ~200 */ | 
 | 		break; | 
 | 	case bulk_latency: | 
 | 		new_itr = 4000; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | set_itr_now: | 
 | 	if (new_itr != adapter->itr) { | 
 | 		/* | 
 | 		 * this attempts to bias the interrupt rate towards Bulk | 
 | 		 * by adding intermediate steps when interrupt rate is | 
 | 		 * increasing | 
 | 		 */ | 
 | 		new_itr = new_itr > adapter->itr ? | 
 | 			     min(adapter->itr + (new_itr >> 2), new_itr) : | 
 | 			     new_itr; | 
 | 		adapter->itr = new_itr; | 
 | 		ew32(ITR, 1000000000 / (new_itr * 256)); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_clean - NAPI Rx polling callback | 
 |  * @napi: struct associated with this polling callback | 
 |  * @budget: amount of packets driver is allowed to process this poll | 
 |  **/ | 
 | static int e1000_clean(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | 
 | 	struct net_device *poll_dev = adapter->netdev; | 
 | 	int tx_cleaned = 0, work_done = 0; | 
 |  | 
 | 	/* Must NOT use netdev_priv macro here. */ | 
 | 	adapter = poll_dev->priv; | 
 |  | 
 | 	/* | 
 | 	 * e1000_clean is called per-cpu.  This lock protects | 
 | 	 * tx_ring from being cleaned by multiple cpus | 
 | 	 * simultaneously.  A failure obtaining the lock means | 
 | 	 * tx_ring is currently being cleaned anyway. | 
 | 	 */ | 
 | 	if (spin_trylock(&adapter->tx_queue_lock)) { | 
 | 		tx_cleaned = e1000_clean_tx_irq(adapter); | 
 | 		spin_unlock(&adapter->tx_queue_lock); | 
 | 	} | 
 |  | 
 | 	adapter->clean_rx(adapter, &work_done, budget); | 
 |  | 
 | 	if (tx_cleaned) | 
 | 		work_done = budget; | 
 |  | 
 | 	/* If budget not fully consumed, exit the polling mode */ | 
 | 	if (work_done < budget) { | 
 | 		if (adapter->itr_setting & 3) | 
 | 			e1000_set_itr(adapter); | 
 | 		netif_rx_complete(poll_dev, napi); | 
 | 		e1000_irq_enable(adapter); | 
 | 	} | 
 |  | 
 | 	return work_done; | 
 | } | 
 |  | 
 | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 vfta, index; | 
 |  | 
 | 	/* don't update vlan cookie if already programmed */ | 
 | 	if ((adapter->hw.mng_cookie.status & | 
 | 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
 | 	    (vid == adapter->mng_vlan_id)) | 
 | 		return; | 
 | 	/* add VID to filter table */ | 
 | 	index = (vid >> 5) & 0x7F; | 
 | 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
 | 	vfta |= (1 << (vid & 0x1F)); | 
 | 	e1000e_write_vfta(hw, index, vfta); | 
 | } | 
 |  | 
 | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 vfta, index; | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 		e1000_irq_disable(adapter); | 
 | 	vlan_group_set_device(adapter->vlgrp, vid, NULL); | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 		e1000_irq_enable(adapter); | 
 |  | 
 | 	if ((adapter->hw.mng_cookie.status & | 
 | 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
 | 	    (vid == adapter->mng_vlan_id)) { | 
 | 		/* release control to f/w */ | 
 | 		e1000_release_hw_control(adapter); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* remove VID from filter table */ | 
 | 	index = (vid >> 5) & 0x7F; | 
 | 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
 | 	vfta &= ~(1 << (vid & 0x1F)); | 
 | 	e1000e_write_vfta(hw, index, vfta); | 
 | } | 
 |  | 
 | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u16 vid = adapter->hw.mng_cookie.vlan_id; | 
 | 	u16 old_vid = adapter->mng_vlan_id; | 
 |  | 
 | 	if (!adapter->vlgrp) | 
 | 		return; | 
 |  | 
 | 	if (!vlan_group_get_device(adapter->vlgrp, vid)) { | 
 | 		adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 | 		if (adapter->hw.mng_cookie.status & | 
 | 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | 
 | 			e1000_vlan_rx_add_vid(netdev, vid); | 
 | 			adapter->mng_vlan_id = vid; | 
 | 		} | 
 |  | 
 | 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | 
 | 				(vid != old_vid) && | 
 | 		    !vlan_group_get_device(adapter->vlgrp, old_vid)) | 
 | 			e1000_vlan_rx_kill_vid(netdev, old_vid); | 
 | 	} else { | 
 | 		adapter->mng_vlan_id = vid; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void e1000_vlan_rx_register(struct net_device *netdev, | 
 | 				   struct vlan_group *grp) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl, rctl; | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 		e1000_irq_disable(adapter); | 
 | 	adapter->vlgrp = grp; | 
 |  | 
 | 	if (grp) { | 
 | 		/* enable VLAN tag insert/strip */ | 
 | 		ctrl = er32(CTRL); | 
 | 		ctrl |= E1000_CTRL_VME; | 
 | 		ew32(CTRL, ctrl); | 
 |  | 
 | 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
 | 			/* enable VLAN receive filtering */ | 
 | 			rctl = er32(RCTL); | 
 | 			rctl |= E1000_RCTL_VFE; | 
 | 			rctl &= ~E1000_RCTL_CFIEN; | 
 | 			ew32(RCTL, rctl); | 
 | 			e1000_update_mng_vlan(adapter); | 
 | 		} | 
 | 	} else { | 
 | 		/* disable VLAN tag insert/strip */ | 
 | 		ctrl = er32(CTRL); | 
 | 		ctrl &= ~E1000_CTRL_VME; | 
 | 		ew32(CTRL, ctrl); | 
 |  | 
 | 		if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
 | 			/* disable VLAN filtering */ | 
 | 			rctl = er32(RCTL); | 
 | 			rctl &= ~E1000_RCTL_VFE; | 
 | 			ew32(RCTL, rctl); | 
 | 			if (adapter->mng_vlan_id != | 
 | 			    (u16)E1000_MNG_VLAN_NONE) { | 
 | 				e1000_vlan_rx_kill_vid(netdev, | 
 | 						       adapter->mng_vlan_id); | 
 | 				adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 		e1000_irq_enable(adapter); | 
 | } | 
 |  | 
 | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
 | { | 
 | 	u16 vid; | 
 |  | 
 | 	e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
 |  | 
 | 	if (!adapter->vlgrp) | 
 | 		return; | 
 |  | 
 | 	for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | 
 | 		if (!vlan_group_get_device(adapter->vlgrp, vid)) | 
 | 			continue; | 
 | 		e1000_vlan_rx_add_vid(adapter->netdev, vid); | 
 | 	} | 
 | } | 
 |  | 
 | static void e1000_init_manageability(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 manc, manc2h; | 
 |  | 
 | 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	manc = er32(MANC); | 
 |  | 
 | 	/* | 
 | 	 * enable receiving management packets to the host. this will probably | 
 | 	 * generate destination unreachable messages from the host OS, but | 
 | 	 * the packets will be handled on SMBUS | 
 | 	 */ | 
 | 	manc |= E1000_MANC_EN_MNG2HOST; | 
 | 	manc2h = er32(MANC2H); | 
 | #define E1000_MNG2HOST_PORT_623 (1 << 5) | 
 | #define E1000_MNG2HOST_PORT_664 (1 << 6) | 
 | 	manc2h |= E1000_MNG2HOST_PORT_623; | 
 | 	manc2h |= E1000_MNG2HOST_PORT_664; | 
 | 	ew32(MANC2H, manc2h); | 
 | 	ew32(MANC, manc); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Configure the Tx unit of the MAC after a reset. | 
 |  **/ | 
 | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	u64 tdba; | 
 | 	u32 tdlen, tctl, tipg, tarc; | 
 | 	u32 ipgr1, ipgr2; | 
 |  | 
 | 	/* Setup the HW Tx Head and Tail descriptor pointers */ | 
 | 	tdba = tx_ring->dma; | 
 | 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | 
 | 	ew32(TDBAL, (tdba & DMA_32BIT_MASK)); | 
 | 	ew32(TDBAH, (tdba >> 32)); | 
 | 	ew32(TDLEN, tdlen); | 
 | 	ew32(TDH, 0); | 
 | 	ew32(TDT, 0); | 
 | 	tx_ring->head = E1000_TDH; | 
 | 	tx_ring->tail = E1000_TDT; | 
 |  | 
 | 	/* Set the default values for the Tx Inter Packet Gap timer */ | 
 | 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */ | 
 | 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */ | 
 | 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */ | 
 |  | 
 | 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | 
 | 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */ | 
 |  | 
 | 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
 | 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
 | 	ew32(TIPG, tipg); | 
 |  | 
 | 	/* Set the Tx Interrupt Delay register */ | 
 | 	ew32(TIDV, adapter->tx_int_delay); | 
 | 	/* Tx irq moderation */ | 
 | 	ew32(TADV, adapter->tx_abs_int_delay); | 
 |  | 
 | 	/* Program the Transmit Control Register */ | 
 | 	tctl = er32(TCTL); | 
 | 	tctl &= ~E1000_TCTL_CT; | 
 | 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
 | 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
 |  | 
 | 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | 
 | 		tarc = er32(TARC(0)); | 
 | 		/* | 
 | 		 * set the speed mode bit, we'll clear it if we're not at | 
 | 		 * gigabit link later | 
 | 		 */ | 
 | #define SPEED_MODE_BIT (1 << 21) | 
 | 		tarc |= SPEED_MODE_BIT; | 
 | 		ew32(TARC(0), tarc); | 
 | 	} | 
 |  | 
 | 	/* errata: program both queues to unweighted RR */ | 
 | 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | 
 | 		tarc = er32(TARC(0)); | 
 | 		tarc |= 1; | 
 | 		ew32(TARC(0), tarc); | 
 | 		tarc = er32(TARC(1)); | 
 | 		tarc |= 1; | 
 | 		ew32(TARC(1), tarc); | 
 | 	} | 
 |  | 
 | 	e1000e_config_collision_dist(hw); | 
 |  | 
 | 	/* Setup Transmit Descriptor Settings for eop descriptor */ | 
 | 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
 |  | 
 | 	/* only set IDE if we are delaying interrupts using the timers */ | 
 | 	if (adapter->tx_int_delay) | 
 | 		adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
 |  | 
 | 	/* enable Report Status bit */ | 
 | 	adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
 |  | 
 | 	ew32(TCTL, tctl); | 
 |  | 
 | 	adapter->tx_queue_len = adapter->netdev->tx_queue_len; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_setup_rctl - configure the receive control registers | 
 |  * @adapter: Board private structure | 
 |  **/ | 
 | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
 | 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
 | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 rctl, rfctl; | 
 | 	u32 psrctl = 0; | 
 | 	u32 pages = 0; | 
 |  | 
 | 	/* Program MC offset vector base */ | 
 | 	rctl = er32(RCTL); | 
 | 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
 | 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
 | 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
 | 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
 |  | 
 | 	/* Do not Store bad packets */ | 
 | 	rctl &= ~E1000_RCTL_SBP; | 
 |  | 
 | 	/* Enable Long Packet receive */ | 
 | 	if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
 | 		rctl &= ~E1000_RCTL_LPE; | 
 | 	else | 
 | 		rctl |= E1000_RCTL_LPE; | 
 |  | 
 | 	/* Enable hardware CRC frame stripping */ | 
 | 	rctl |= E1000_RCTL_SECRC; | 
 |  | 
 | 	/* Setup buffer sizes */ | 
 | 	rctl &= ~E1000_RCTL_SZ_4096; | 
 | 	rctl |= E1000_RCTL_BSEX; | 
 | 	switch (adapter->rx_buffer_len) { | 
 | 	case 256: | 
 | 		rctl |= E1000_RCTL_SZ_256; | 
 | 		rctl &= ~E1000_RCTL_BSEX; | 
 | 		break; | 
 | 	case 512: | 
 | 		rctl |= E1000_RCTL_SZ_512; | 
 | 		rctl &= ~E1000_RCTL_BSEX; | 
 | 		break; | 
 | 	case 1024: | 
 | 		rctl |= E1000_RCTL_SZ_1024; | 
 | 		rctl &= ~E1000_RCTL_BSEX; | 
 | 		break; | 
 | 	case 2048: | 
 | 	default: | 
 | 		rctl |= E1000_RCTL_SZ_2048; | 
 | 		rctl &= ~E1000_RCTL_BSEX; | 
 | 		break; | 
 | 	case 4096: | 
 | 		rctl |= E1000_RCTL_SZ_4096; | 
 | 		break; | 
 | 	case 8192: | 
 | 		rctl |= E1000_RCTL_SZ_8192; | 
 | 		break; | 
 | 	case 16384: | 
 | 		rctl |= E1000_RCTL_SZ_16384; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 82571 and greater support packet-split where the protocol | 
 | 	 * header is placed in skb->data and the packet data is | 
 | 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | 
 | 	 * In the case of a non-split, skb->data is linearly filled, | 
 | 	 * followed by the page buffers.  Therefore, skb->data is | 
 | 	 * sized to hold the largest protocol header. | 
 | 	 * | 
 | 	 * allocations using alloc_page take too long for regular MTU | 
 | 	 * so only enable packet split for jumbo frames | 
 | 	 * | 
 | 	 * Using pages when the page size is greater than 16k wastes | 
 | 	 * a lot of memory, since we allocate 3 pages at all times | 
 | 	 * per packet. | 
 | 	 */ | 
 | 	adapter->rx_ps_pages = 0; | 
 | 	pages = PAGE_USE_COUNT(adapter->netdev->mtu); | 
 | 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | 
 | 		adapter->rx_ps_pages = pages; | 
 |  | 
 | 	if (adapter->rx_ps_pages) { | 
 | 		/* Configure extra packet-split registers */ | 
 | 		rfctl = er32(RFCTL); | 
 | 		rfctl |= E1000_RFCTL_EXTEN; | 
 | 		/* | 
 | 		 * disable packet split support for IPv6 extension headers, | 
 | 		 * because some malformed IPv6 headers can hang the Rx | 
 | 		 */ | 
 | 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | 
 | 			  E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
 |  | 
 | 		ew32(RFCTL, rfctl); | 
 |  | 
 | 		/* Enable Packet split descriptors */ | 
 | 		rctl |= E1000_RCTL_DTYP_PS; | 
 |  | 
 | 		psrctl |= adapter->rx_ps_bsize0 >> | 
 | 			E1000_PSRCTL_BSIZE0_SHIFT; | 
 |  | 
 | 		switch (adapter->rx_ps_pages) { | 
 | 		case 3: | 
 | 			psrctl |= PAGE_SIZE << | 
 | 				E1000_PSRCTL_BSIZE3_SHIFT; | 
 | 		case 2: | 
 | 			psrctl |= PAGE_SIZE << | 
 | 				E1000_PSRCTL_BSIZE2_SHIFT; | 
 | 		case 1: | 
 | 			psrctl |= PAGE_SIZE >> | 
 | 				E1000_PSRCTL_BSIZE1_SHIFT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		ew32(PSRCTL, psrctl); | 
 | 	} | 
 |  | 
 | 	ew32(RCTL, rctl); | 
 | 	/* just started the receive unit, no need to restart */ | 
 | 	adapter->flags &= ~FLAG_RX_RESTART_NOW; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure_rx - Configure Receive Unit after Reset | 
 |  * @adapter: board private structure | 
 |  * | 
 |  * Configure the Rx unit of the MAC after a reset. | 
 |  **/ | 
 | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_ring *rx_ring = adapter->rx_ring; | 
 | 	u64 rdba; | 
 | 	u32 rdlen, rctl, rxcsum, ctrl_ext; | 
 |  | 
 | 	if (adapter->rx_ps_pages) { | 
 | 		/* this is a 32 byte descriptor */ | 
 | 		rdlen = rx_ring->count * | 
 | 			sizeof(union e1000_rx_desc_packet_split); | 
 | 		adapter->clean_rx = e1000_clean_rx_irq_ps; | 
 | 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | 
 | 	} else { | 
 | 		rdlen = rx_ring->count * | 
 | 			sizeof(struct e1000_rx_desc); | 
 | 		adapter->clean_rx = e1000_clean_rx_irq; | 
 | 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
 | 	} | 
 |  | 
 | 	/* disable receives while setting up the descriptors */ | 
 | 	rctl = er32(RCTL); | 
 | 	ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 	e1e_flush(); | 
 | 	msleep(10); | 
 |  | 
 | 	/* set the Receive Delay Timer Register */ | 
 | 	ew32(RDTR, adapter->rx_int_delay); | 
 |  | 
 | 	/* irq moderation */ | 
 | 	ew32(RADV, adapter->rx_abs_int_delay); | 
 | 	if (adapter->itr_setting != 0) | 
 | 		ew32(ITR, 1000000000 / (adapter->itr * 256)); | 
 |  | 
 | 	ctrl_ext = er32(CTRL_EXT); | 
 | 	/* Reset delay timers after every interrupt */ | 
 | 	ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | 
 | 	/* Auto-Mask interrupts upon ICR access */ | 
 | 	ctrl_ext |= E1000_CTRL_EXT_IAME; | 
 | 	ew32(IAM, 0xffffffff); | 
 | 	ew32(CTRL_EXT, ctrl_ext); | 
 | 	e1e_flush(); | 
 |  | 
 | 	/* | 
 | 	 * Setup the HW Rx Head and Tail Descriptor Pointers and | 
 | 	 * the Base and Length of the Rx Descriptor Ring | 
 | 	 */ | 
 | 	rdba = rx_ring->dma; | 
 | 	ew32(RDBAL, (rdba & DMA_32BIT_MASK)); | 
 | 	ew32(RDBAH, (rdba >> 32)); | 
 | 	ew32(RDLEN, rdlen); | 
 | 	ew32(RDH, 0); | 
 | 	ew32(RDT, 0); | 
 | 	rx_ring->head = E1000_RDH; | 
 | 	rx_ring->tail = E1000_RDT; | 
 |  | 
 | 	/* Enable Receive Checksum Offload for TCP and UDP */ | 
 | 	rxcsum = er32(RXCSUM); | 
 | 	if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | 
 | 		rxcsum |= E1000_RXCSUM_TUOFL; | 
 |  | 
 | 		/* | 
 | 		 * IPv4 payload checksum for UDP fragments must be | 
 | 		 * used in conjunction with packet-split. | 
 | 		 */ | 
 | 		if (adapter->rx_ps_pages) | 
 | 			rxcsum |= E1000_RXCSUM_IPPCSE; | 
 | 	} else { | 
 | 		rxcsum &= ~E1000_RXCSUM_TUOFL; | 
 | 		/* no need to clear IPPCSE as it defaults to 0 */ | 
 | 	} | 
 | 	ew32(RXCSUM, rxcsum); | 
 |  | 
 | 	/* | 
 | 	 * Enable early receives on supported devices, only takes effect when | 
 | 	 * packet size is equal or larger than the specified value (in 8 byte | 
 | 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 | 
 | 	 */ | 
 | 	if ((adapter->flags & FLAG_HAS_ERT) && | 
 | 	    (adapter->netdev->mtu > ETH_DATA_LEN)) | 
 | 		ew32(ERT, E1000_ERT_2048); | 
 |  | 
 | 	/* Enable Receives */ | 
 | 	ew32(RCTL, rctl); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_update_mc_addr_list - Update Multicast addresses | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mc_addr_list: array of multicast addresses to program | 
 |  *  @mc_addr_count: number of multicast addresses to program | 
 |  *  @rar_used_count: the first RAR register free to program | 
 |  *  @rar_count: total number of supported Receive Address Registers | 
 |  * | 
 |  *  Updates the Receive Address Registers and Multicast Table Array. | 
 |  *  The caller must have a packed mc_addr_list of multicast addresses. | 
 |  *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
 |  *  unless there are workarounds that change this.  Currently no func pointer | 
 |  *  exists and all implementations are handled in the generic version of this | 
 |  *  function. | 
 |  **/ | 
 | static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, | 
 | 				      u32 mc_addr_count, u32 rar_used_count, | 
 | 				      u32 rar_count) | 
 | { | 
 | 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, | 
 | 				        rar_used_count, rar_count); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_set_multi - Multicast and Promiscuous mode set | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * The set_multi entry point is called whenever the multicast address | 
 |  * list or the network interface flags are updated.  This routine is | 
 |  * responsible for configuring the hardware for proper multicast, | 
 |  * promiscuous mode, and all-multi behavior. | 
 |  **/ | 
 | static void e1000_set_multi(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	struct dev_mc_list *mc_ptr; | 
 | 	u8  *mta_list; | 
 | 	u32 rctl; | 
 | 	int i; | 
 |  | 
 | 	/* Check for Promiscuous and All Multicast modes */ | 
 |  | 
 | 	rctl = er32(RCTL); | 
 |  | 
 | 	if (netdev->flags & IFF_PROMISC) { | 
 | 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
 | 	} else if (netdev->flags & IFF_ALLMULTI) { | 
 | 		rctl |= E1000_RCTL_MPE; | 
 | 		rctl &= ~E1000_RCTL_UPE; | 
 | 	} else { | 
 | 		rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | 
 | 	} | 
 |  | 
 | 	ew32(RCTL, rctl); | 
 |  | 
 | 	if (netdev->mc_count) { | 
 | 		mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | 
 | 		if (!mta_list) | 
 | 			return; | 
 |  | 
 | 		/* prepare a packed array of only addresses. */ | 
 | 		mc_ptr = netdev->mc_list; | 
 |  | 
 | 		for (i = 0; i < netdev->mc_count; i++) { | 
 | 			if (!mc_ptr) | 
 | 				break; | 
 | 			memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | 
 | 			       ETH_ALEN); | 
 | 			mc_ptr = mc_ptr->next; | 
 | 		} | 
 |  | 
 | 		e1000_update_mc_addr_list(hw, mta_list, i, 1, | 
 | 					  mac->rar_entry_count); | 
 | 		kfree(mta_list); | 
 | 	} else { | 
 | 		/* | 
 | 		 * if we're called from probe, we might not have | 
 | 		 * anything to do here, so clear out the list | 
 | 		 */ | 
 | 		e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_configure - configure the hardware for Rx and Tx | 
 |  * @adapter: private board structure | 
 |  **/ | 
 | static void e1000_configure(struct e1000_adapter *adapter) | 
 | { | 
 | 	e1000_set_multi(adapter->netdev); | 
 |  | 
 | 	e1000_restore_vlan(adapter); | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	e1000_configure_tx(adapter); | 
 | 	e1000_setup_rctl(adapter); | 
 | 	e1000_configure_rx(adapter); | 
 | 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_power_up_phy - restore link in case the phy was powered down | 
 |  * @adapter: address of board private structure | 
 |  * | 
 |  * The phy may be powered down to save power and turn off link when the | 
 |  * driver is unloaded and wake on lan is not enabled (among others) | 
 |  * *** this routine MUST be followed by a call to e1000e_reset *** | 
 |  **/ | 
 | void e1000e_power_up_phy(struct e1000_adapter *adapter) | 
 | { | 
 | 	u16 mii_reg = 0; | 
 |  | 
 | 	/* Just clear the power down bit to wake the phy back up */ | 
 | 	if (adapter->hw.phy.media_type == e1000_media_type_copper) { | 
 | 		/* | 
 | 		 * According to the manual, the phy will retain its | 
 | 		 * settings across a power-down/up cycle | 
 | 		 */ | 
 | 		e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); | 
 | 		mii_reg &= ~MII_CR_POWER_DOWN; | 
 | 		e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); | 
 | 	} | 
 |  | 
 | 	adapter->hw.mac.ops.setup_link(&adapter->hw); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_power_down_phy - Power down the PHY | 
 |  * | 
 |  * Power down the PHY so no link is implied when interface is down | 
 |  * The PHY cannot be powered down is management or WoL is active | 
 |  */ | 
 | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u16 mii_reg; | 
 |  | 
 | 	/* WoL is enabled */ | 
 | 	if (adapter->wol) | 
 | 		return; | 
 |  | 
 | 	/* non-copper PHY? */ | 
 | 	if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
 | 		return; | 
 |  | 
 | 	/* reset is blocked because of a SoL/IDER session */ | 
 | 	if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) | 
 | 		return; | 
 |  | 
 | 	/* manageability (AMT) is enabled */ | 
 | 	if (er32(MANC) & E1000_MANC_SMBUS_EN) | 
 | 		return; | 
 |  | 
 | 	/* power down the PHY */ | 
 | 	e1e_rphy(hw, PHY_CONTROL, &mii_reg); | 
 | 	mii_reg |= MII_CR_POWER_DOWN; | 
 | 	e1e_wphy(hw, PHY_CONTROL, mii_reg); | 
 | 	mdelay(1); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_reset - bring the hardware into a known good state | 
 |  * | 
 |  * This function boots the hardware and enables some settings that | 
 |  * require a configuration cycle of the hardware - those cannot be | 
 |  * set/changed during runtime. After reset the device needs to be | 
 |  * properly configured for Rx, Tx etc. | 
 |  */ | 
 | void e1000e_reset(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_mac_info *mac = &adapter->hw.mac; | 
 | 	struct e1000_fc_info *fc = &adapter->hw.fc; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 tx_space, min_tx_space, min_rx_space; | 
 | 	u32 pba = adapter->pba; | 
 | 	u16 hwm; | 
 |  | 
 | 	/* reset Packet Buffer Allocation to default */ | 
 | 	ew32(PBA, pba); | 
 |  | 
 | 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
 | 		/* | 
 | 		 * To maintain wire speed transmits, the Tx FIFO should be | 
 | 		 * large enough to accommodate two full transmit packets, | 
 | 		 * rounded up to the next 1KB and expressed in KB.  Likewise, | 
 | 		 * the Rx FIFO should be large enough to accommodate at least | 
 | 		 * one full receive packet and is similarly rounded up and | 
 | 		 * expressed in KB. | 
 | 		 */ | 
 | 		pba = er32(PBA); | 
 | 		/* upper 16 bits has Tx packet buffer allocation size in KB */ | 
 | 		tx_space = pba >> 16; | 
 | 		/* lower 16 bits has Rx packet buffer allocation size in KB */ | 
 | 		pba &= 0xffff; | 
 | 		/* | 
 | 		 * the Tx fifo also stores 16 bytes of information about the tx | 
 | 		 * but don't include ethernet FCS because hardware appends it | 
 | 		 */ | 
 | 		min_tx_space = (adapter->max_frame_size + | 
 | 				sizeof(struct e1000_tx_desc) - | 
 | 				ETH_FCS_LEN) * 2; | 
 | 		min_tx_space = ALIGN(min_tx_space, 1024); | 
 | 		min_tx_space >>= 10; | 
 | 		/* software strips receive CRC, so leave room for it */ | 
 | 		min_rx_space = adapter->max_frame_size; | 
 | 		min_rx_space = ALIGN(min_rx_space, 1024); | 
 | 		min_rx_space >>= 10; | 
 |  | 
 | 		/* | 
 | 		 * If current Tx allocation is less than the min Tx FIFO size, | 
 | 		 * and the min Tx FIFO size is less than the current Rx FIFO | 
 | 		 * allocation, take space away from current Rx allocation | 
 | 		 */ | 
 | 		if ((tx_space < min_tx_space) && | 
 | 		    ((min_tx_space - tx_space) < pba)) { | 
 | 			pba -= min_tx_space - tx_space; | 
 |  | 
 | 			/* | 
 | 			 * if short on Rx space, Rx wins and must trump tx | 
 | 			 * adjustment or use Early Receive if available | 
 | 			 */ | 
 | 			if ((pba < min_rx_space) && | 
 | 			    (!(adapter->flags & FLAG_HAS_ERT))) | 
 | 				/* ERT enabled in e1000_configure_rx */ | 
 | 				pba = min_rx_space; | 
 | 		} | 
 |  | 
 | 		ew32(PBA, pba); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * flow control settings | 
 | 	 * | 
 | 	 * The high water mark must be low enough to fit one full frame | 
 | 	 * (or the size used for early receive) above it in the Rx FIFO. | 
 | 	 * Set it to the lower of: | 
 | 	 * - 90% of the Rx FIFO size, and | 
 | 	 * - the full Rx FIFO size minus the early receive size (for parts | 
 | 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or | 
 | 	 * - the full Rx FIFO size minus one full frame | 
 | 	 */ | 
 | 	if (adapter->flags & FLAG_HAS_ERT) | 
 | 		hwm = min(((pba << 10) * 9 / 10), | 
 | 			  ((pba << 10) - (E1000_ERT_2048 << 3))); | 
 | 	else | 
 | 		hwm = min(((pba << 10) * 9 / 10), | 
 | 			  ((pba << 10) - adapter->max_frame_size)); | 
 |  | 
 | 	fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ | 
 | 	fc->low_water = fc->high_water - 8; | 
 |  | 
 | 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | 
 | 		fc->pause_time = 0xFFFF; | 
 | 	else | 
 | 		fc->pause_time = E1000_FC_PAUSE_TIME; | 
 | 	fc->send_xon = 1; | 
 | 	fc->type = fc->original_type; | 
 |  | 
 | 	/* Allow time for pending master requests to run */ | 
 | 	mac->ops.reset_hw(hw); | 
 | 	ew32(WUC, 0); | 
 |  | 
 | 	if (mac->ops.init_hw(hw)) | 
 | 		ndev_err(adapter->netdev, "Hardware Error\n"); | 
 |  | 
 | 	e1000_update_mng_vlan(adapter); | 
 |  | 
 | 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
 | 	ew32(VET, ETH_P_8021Q); | 
 |  | 
 | 	e1000e_reset_adaptive(hw); | 
 | 	e1000_get_phy_info(hw); | 
 |  | 
 | 	if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { | 
 | 		u16 phy_data = 0; | 
 | 		/* | 
 | 		 * speed up time to link by disabling smart power down, ignore | 
 | 		 * the return value of this function because there is nothing | 
 | 		 * different we would do if it failed | 
 | 		 */ | 
 | 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
 | 		phy_data &= ~IGP02E1000_PM_SPD; | 
 | 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
 | 	} | 
 | } | 
 |  | 
 | int e1000e_up(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	/* hardware has been reset, we need to reload some things */ | 
 | 	e1000_configure(adapter); | 
 |  | 
 | 	clear_bit(__E1000_DOWN, &adapter->state); | 
 |  | 
 | 	napi_enable(&adapter->napi); | 
 | 	e1000_irq_enable(adapter); | 
 |  | 
 | 	/* fire a link change interrupt to start the watchdog */ | 
 | 	ew32(ICS, E1000_ICS_LSC); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void e1000e_down(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 tctl, rctl; | 
 |  | 
 | 	/* | 
 | 	 * signal that we're down so the interrupt handler does not | 
 | 	 * reschedule our watchdog timer | 
 | 	 */ | 
 | 	set_bit(__E1000_DOWN, &adapter->state); | 
 |  | 
 | 	/* disable receives in the hardware */ | 
 | 	rctl = er32(RCTL); | 
 | 	ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
 | 	/* flush and sleep below */ | 
 |  | 
 | 	netif_stop_queue(netdev); | 
 |  | 
 | 	/* disable transmits in the hardware */ | 
 | 	tctl = er32(TCTL); | 
 | 	tctl &= ~E1000_TCTL_EN; | 
 | 	ew32(TCTL, tctl); | 
 | 	/* flush both disables and wait for them to finish */ | 
 | 	e1e_flush(); | 
 | 	msleep(10); | 
 |  | 
 | 	napi_disable(&adapter->napi); | 
 | 	e1000_irq_disable(adapter); | 
 |  | 
 | 	del_timer_sync(&adapter->watchdog_timer); | 
 | 	del_timer_sync(&adapter->phy_info_timer); | 
 |  | 
 | 	netdev->tx_queue_len = adapter->tx_queue_len; | 
 | 	netif_carrier_off(netdev); | 
 | 	adapter->link_speed = 0; | 
 | 	adapter->link_duplex = 0; | 
 |  | 
 | 	e1000e_reset(adapter); | 
 | 	e1000_clean_tx_ring(adapter); | 
 | 	e1000_clean_rx_ring(adapter); | 
 |  | 
 | 	/* | 
 | 	 * TODO: for power management, we could drop the link and | 
 | 	 * pci_disable_device here. | 
 | 	 */ | 
 | } | 
 |  | 
 | void e1000e_reinit_locked(struct e1000_adapter *adapter) | 
 | { | 
 | 	might_sleep(); | 
 | 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
 | 		msleep(1); | 
 | 	e1000e_down(adapter); | 
 | 	e1000e_up(adapter); | 
 | 	clear_bit(__E1000_RESETTING, &adapter->state); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
 |  * @adapter: board private structure to initialize | 
 |  * | 
 |  * e1000_sw_init initializes the Adapter private data structure. | 
 |  * Fields are initialized based on PCI device information and | 
 |  * OS network device settings (MTU size). | 
 |  **/ | 
 | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct net_device *netdev = adapter->netdev; | 
 |  | 
 | 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | 
 | 	adapter->rx_ps_bsize0 = 128; | 
 | 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | 
 | 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | 
 |  | 
 | 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
 | 	if (!adapter->tx_ring) | 
 | 		goto err; | 
 |  | 
 | 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
 | 	if (!adapter->rx_ring) | 
 | 		goto err; | 
 |  | 
 | 	spin_lock_init(&adapter->tx_queue_lock); | 
 |  | 
 | 	/* Explicitly disable IRQ since the NIC can be in any state. */ | 
 | 	e1000_irq_disable(adapter); | 
 |  | 
 | 	spin_lock_init(&adapter->stats_lock); | 
 |  | 
 | 	set_bit(__E1000_DOWN, &adapter->state); | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	ndev_err(netdev, "Unable to allocate memory for queues\n"); | 
 | 	kfree(adapter->rx_ring); | 
 | 	kfree(adapter->tx_ring); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_open - Called when a network interface is made active | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns 0 on success, negative value on failure | 
 |  * | 
 |  * The open entry point is called when a network interface is made | 
 |  * active by the system (IFF_UP).  At this point all resources needed | 
 |  * for transmit and receive operations are allocated, the interrupt | 
 |  * handler is registered with the OS, the watchdog timer is started, | 
 |  * and the stack is notified that the interface is ready. | 
 |  **/ | 
 | static int e1000_open(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	int err; | 
 |  | 
 | 	/* disallow open during test */ | 
 | 	if (test_bit(__E1000_TESTING, &adapter->state)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* allocate transmit descriptors */ | 
 | 	err = e1000e_setup_tx_resources(adapter); | 
 | 	if (err) | 
 | 		goto err_setup_tx; | 
 |  | 
 | 	/* allocate receive descriptors */ | 
 | 	err = e1000e_setup_rx_resources(adapter); | 
 | 	if (err) | 
 | 		goto err_setup_rx; | 
 |  | 
 | 	e1000e_power_up_phy(adapter); | 
 |  | 
 | 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
 | 	if ((adapter->hw.mng_cookie.status & | 
 | 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | 
 | 		e1000_update_mng_vlan(adapter); | 
 |  | 
 | 	/* | 
 | 	 * If AMT is enabled, let the firmware know that the network | 
 | 	 * interface is now open | 
 | 	 */ | 
 | 	if ((adapter->flags & FLAG_HAS_AMT) && | 
 | 	    e1000e_check_mng_mode(&adapter->hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	/* | 
 | 	 * before we allocate an interrupt, we must be ready to handle it. | 
 | 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
 | 	 * as soon as we call pci_request_irq, so we have to setup our | 
 | 	 * clean_rx handler before we do so. | 
 | 	 */ | 
 | 	e1000_configure(adapter); | 
 |  | 
 | 	err = e1000_request_irq(adapter); | 
 | 	if (err) | 
 | 		goto err_req_irq; | 
 |  | 
 | 	/* From here on the code is the same as e1000e_up() */ | 
 | 	clear_bit(__E1000_DOWN, &adapter->state); | 
 |  | 
 | 	napi_enable(&adapter->napi); | 
 |  | 
 | 	e1000_irq_enable(adapter); | 
 |  | 
 | 	/* fire a link status change interrupt to start the watchdog */ | 
 | 	ew32(ICS, E1000_ICS_LSC); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_req_irq: | 
 | 	e1000_release_hw_control(adapter); | 
 | 	e1000_power_down_phy(adapter); | 
 | 	e1000e_free_rx_resources(adapter); | 
 | err_setup_rx: | 
 | 	e1000e_free_tx_resources(adapter); | 
 | err_setup_tx: | 
 | 	e1000e_reset(adapter); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_close - Disables a network interface | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns 0, this is not allowed to fail | 
 |  * | 
 |  * The close entry point is called when an interface is de-activated | 
 |  * by the OS.  The hardware is still under the drivers control, but | 
 |  * needs to be disabled.  A global MAC reset is issued to stop the | 
 |  * hardware, and all transmit and receive resources are freed. | 
 |  **/ | 
 | static int e1000_close(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
 | 	e1000e_down(adapter); | 
 | 	e1000_power_down_phy(adapter); | 
 | 	e1000_free_irq(adapter); | 
 |  | 
 | 	e1000e_free_tx_resources(adapter); | 
 | 	e1000e_free_rx_resources(adapter); | 
 |  | 
 | 	/* | 
 | 	 * kill manageability vlan ID if supported, but not if a vlan with | 
 | 	 * the same ID is registered on the host OS (let 8021q kill it) | 
 | 	 */ | 
 | 	if ((adapter->hw.mng_cookie.status & | 
 | 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
 | 	     !(adapter->vlgrp && | 
 | 	       vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | 
 | 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 
 |  | 
 | 	/* | 
 | 	 * If AMT is enabled, let the firmware know that the network | 
 | 	 * interface is now closed | 
 | 	 */ | 
 | 	if ((adapter->flags & FLAG_HAS_AMT) && | 
 | 	    e1000e_check_mng_mode(&adapter->hw)) | 
 | 		e1000_release_hw_control(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 | /** | 
 |  * e1000_set_mac - Change the Ethernet Address of the NIC | 
 |  * @netdev: network interface device structure | 
 |  * @p: pointer to an address structure | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 | static int e1000_set_mac(struct net_device *netdev, void *p) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct sockaddr *addr = p; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) | 
 | 		return -EADDRNOTAVAIL; | 
 |  | 
 | 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
 | 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | 
 |  | 
 | 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | 
 |  | 
 | 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | 
 | 		/* activate the work around */ | 
 | 		e1000e_set_laa_state_82571(&adapter->hw, 1); | 
 |  | 
 | 		/* | 
 | 		 * Hold a copy of the LAA in RAR[14] This is done so that | 
 | 		 * between the time RAR[0] gets clobbered  and the time it | 
 | 		 * gets fixed (in e1000_watchdog), the actual LAA is in one | 
 | 		 * of the RARs and no incoming packets directed to this port | 
 | 		 * are dropped. Eventually the LAA will be in RAR[0] and | 
 | 		 * RAR[14] | 
 | 		 */ | 
 | 		e1000e_rar_set(&adapter->hw, | 
 | 			      adapter->hw.mac.addr, | 
 | 			      adapter->hw.mac.rar_entry_count - 1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Need to wait a few seconds after link up to get diagnostic information from | 
 |  * the phy | 
 |  */ | 
 | static void e1000_update_phy_info(unsigned long data) | 
 | { | 
 | 	struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
 | 	e1000_get_phy_info(&adapter->hw); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000e_update_stats - Update the board statistics counters | 
 |  * @adapter: board private structure | 
 |  **/ | 
 | void e1000e_update_stats(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	unsigned long irq_flags; | 
 | 	u16 phy_tmp; | 
 |  | 
 | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
 |  | 
 | 	/* | 
 | 	 * Prevent stats update while adapter is being reset, or if the pci | 
 | 	 * connection is down. | 
 | 	 */ | 
 | 	if (adapter->link_speed == 0) | 
 | 		return; | 
 | 	if (pci_channel_offline(pdev)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irqsave(&adapter->stats_lock, irq_flags); | 
 |  | 
 | 	/* | 
 | 	 * these counters are modified from e1000_adjust_tbi_stats, | 
 | 	 * called from the interrupt context, so they must only | 
 | 	 * be written while holding adapter->stats_lock | 
 | 	 */ | 
 |  | 
 | 	adapter->stats.crcerrs += er32(CRCERRS); | 
 | 	adapter->stats.gprc += er32(GPRC); | 
 | 	adapter->stats.gorcl += er32(GORCL); | 
 | 	adapter->stats.gorch += er32(GORCH); | 
 | 	adapter->stats.bprc += er32(BPRC); | 
 | 	adapter->stats.mprc += er32(MPRC); | 
 | 	adapter->stats.roc += er32(ROC); | 
 |  | 
 | 	if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | 
 | 		adapter->stats.prc64 += er32(PRC64); | 
 | 		adapter->stats.prc127 += er32(PRC127); | 
 | 		adapter->stats.prc255 += er32(PRC255); | 
 | 		adapter->stats.prc511 += er32(PRC511); | 
 | 		adapter->stats.prc1023 += er32(PRC1023); | 
 | 		adapter->stats.prc1522 += er32(PRC1522); | 
 | 		adapter->stats.symerrs += er32(SYMERRS); | 
 | 		adapter->stats.sec += er32(SEC); | 
 | 	} | 
 |  | 
 | 	adapter->stats.mpc += er32(MPC); | 
 | 	adapter->stats.scc += er32(SCC); | 
 | 	adapter->stats.ecol += er32(ECOL); | 
 | 	adapter->stats.mcc += er32(MCC); | 
 | 	adapter->stats.latecol += er32(LATECOL); | 
 | 	adapter->stats.dc += er32(DC); | 
 | 	adapter->stats.rlec += er32(RLEC); | 
 | 	adapter->stats.xonrxc += er32(XONRXC); | 
 | 	adapter->stats.xontxc += er32(XONTXC); | 
 | 	adapter->stats.xoffrxc += er32(XOFFRXC); | 
 | 	adapter->stats.xofftxc += er32(XOFFTXC); | 
 | 	adapter->stats.fcruc += er32(FCRUC); | 
 | 	adapter->stats.gptc += er32(GPTC); | 
 | 	adapter->stats.gotcl += er32(GOTCL); | 
 | 	adapter->stats.gotch += er32(GOTCH); | 
 | 	adapter->stats.rnbc += er32(RNBC); | 
 | 	adapter->stats.ruc += er32(RUC); | 
 | 	adapter->stats.rfc += er32(RFC); | 
 | 	adapter->stats.rjc += er32(RJC); | 
 | 	adapter->stats.torl += er32(TORL); | 
 | 	adapter->stats.torh += er32(TORH); | 
 | 	adapter->stats.totl += er32(TOTL); | 
 | 	adapter->stats.toth += er32(TOTH); | 
 | 	adapter->stats.tpr += er32(TPR); | 
 |  | 
 | 	if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) { | 
 | 		adapter->stats.ptc64 += er32(PTC64); | 
 | 		adapter->stats.ptc127 += er32(PTC127); | 
 | 		adapter->stats.ptc255 += er32(PTC255); | 
 | 		adapter->stats.ptc511 += er32(PTC511); | 
 | 		adapter->stats.ptc1023 += er32(PTC1023); | 
 | 		adapter->stats.ptc1522 += er32(PTC1522); | 
 | 	} | 
 |  | 
 | 	adapter->stats.mptc += er32(MPTC); | 
 | 	adapter->stats.bptc += er32(BPTC); | 
 |  | 
 | 	/* used for adaptive IFS */ | 
 |  | 
 | 	hw->mac.tx_packet_delta = er32(TPT); | 
 | 	adapter->stats.tpt += hw->mac.tx_packet_delta; | 
 | 	hw->mac.collision_delta = er32(COLC); | 
 | 	adapter->stats.colc += hw->mac.collision_delta; | 
 |  | 
 | 	adapter->stats.algnerrc += er32(ALGNERRC); | 
 | 	adapter->stats.rxerrc += er32(RXERRC); | 
 | 	adapter->stats.tncrs += er32(TNCRS); | 
 | 	adapter->stats.cexterr += er32(CEXTERR); | 
 | 	adapter->stats.tsctc += er32(TSCTC); | 
 | 	adapter->stats.tsctfc += er32(TSCTFC); | 
 |  | 
 | 	adapter->stats.iac += er32(IAC); | 
 |  | 
 | 	if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) { | 
 | 		adapter->stats.icrxoc += er32(ICRXOC); | 
 | 		adapter->stats.icrxptc += er32(ICRXPTC); | 
 | 		adapter->stats.icrxatc += er32(ICRXATC); | 
 | 		adapter->stats.ictxptc += er32(ICTXPTC); | 
 | 		adapter->stats.ictxatc += er32(ICTXATC); | 
 | 		adapter->stats.ictxqec += er32(ICTXQEC); | 
 | 		adapter->stats.ictxqmtc += er32(ICTXQMTC); | 
 | 		adapter->stats.icrxdmtc += er32(ICRXDMTC); | 
 | 	} | 
 |  | 
 | 	/* Fill out the OS statistics structure */ | 
 | 	adapter->net_stats.multicast = adapter->stats.mprc; | 
 | 	adapter->net_stats.collisions = adapter->stats.colc; | 
 |  | 
 | 	/* Rx Errors */ | 
 |  | 
 | 	/* | 
 | 	 * RLEC on some newer hardware can be incorrect so build | 
 | 	 * our own version based on RUC and ROC | 
 | 	 */ | 
 | 	adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 
 | 		adapter->stats.crcerrs + adapter->stats.algnerrc + | 
 | 		adapter->stats.ruc + adapter->stats.roc + | 
 | 		adapter->stats.cexterr; | 
 | 	adapter->net_stats.rx_length_errors = adapter->stats.ruc + | 
 | 					      adapter->stats.roc; | 
 | 	adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 
 | 	adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 
 | 	adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | 
 |  | 
 | 	/* Tx Errors */ | 
 | 	adapter->net_stats.tx_errors = adapter->stats.ecol + | 
 | 				       adapter->stats.latecol; | 
 | 	adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | 
 | 	adapter->net_stats.tx_window_errors = adapter->stats.latecol; | 
 | 	adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | 
 |  | 
 | 	/* Tx Dropped needs to be maintained elsewhere */ | 
 |  | 
 | 	/* Phy Stats */ | 
 | 	if (hw->phy.media_type == e1000_media_type_copper) { | 
 | 		if ((adapter->link_speed == SPEED_1000) && | 
 | 		   (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
 | 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
 | 			adapter->phy_stats.idle_errors += phy_tmp; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Management Stats */ | 
 | 	adapter->stats.mgptc += er32(MGTPTC); | 
 | 	adapter->stats.mgprc += er32(MGTPRC); | 
 | 	adapter->stats.mgpdc += er32(MGTPDC); | 
 |  | 
 | 	spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
 | } | 
 |  | 
 | static void e1000_print_link_info(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u32 ctrl = er32(CTRL); | 
 |  | 
 | 	ndev_info(netdev, | 
 | 		"Link is Up %d Mbps %s, Flow Control: %s\n", | 
 | 		adapter->link_speed, | 
 | 		(adapter->link_duplex == FULL_DUPLEX) ? | 
 | 				"Full Duplex" : "Half Duplex", | 
 | 		((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | 
 | 				"RX/TX" : | 
 | 		((ctrl & E1000_CTRL_RFCE) ? "RX" : | 
 | 		((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | 
 | } | 
 |  | 
 | static bool e1000_has_link(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	bool link_active = 0; | 
 | 	s32 ret_val = 0; | 
 |  | 
 | 	/* | 
 | 	 * get_link_status is set on LSC (link status) interrupt or | 
 | 	 * Rx sequence error interrupt.  get_link_status will stay | 
 | 	 * false until the check_for_link establishes link | 
 | 	 * for copper adapters ONLY | 
 | 	 */ | 
 | 	switch (hw->phy.media_type) { | 
 | 	case e1000_media_type_copper: | 
 | 		if (hw->mac.get_link_status) { | 
 | 			ret_val = hw->mac.ops.check_for_link(hw); | 
 | 			link_active = !hw->mac.get_link_status; | 
 | 		} else { | 
 | 			link_active = 1; | 
 | 		} | 
 | 		break; | 
 | 	case e1000_media_type_fiber: | 
 | 		ret_val = hw->mac.ops.check_for_link(hw); | 
 | 		link_active = !!(er32(STATUS) & E1000_STATUS_LU); | 
 | 		break; | 
 | 	case e1000_media_type_internal_serdes: | 
 | 		ret_val = hw->mac.ops.check_for_link(hw); | 
 | 		link_active = adapter->hw.mac.serdes_has_link; | 
 | 		break; | 
 | 	default: | 
 | 	case e1000_media_type_unknown: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | 
 | 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | 
 | 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | 
 | 		ndev_info(adapter->netdev, | 
 | 			  "Gigabit has been disabled, downgrading speed\n"); | 
 | 	} | 
 |  | 
 | 	return link_active; | 
 | } | 
 |  | 
 | static void e1000e_enable_receives(struct e1000_adapter *adapter) | 
 | { | 
 | 	/* make sure the receive unit is started */ | 
 | 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | 
 | 	    (adapter->flags & FLAG_RX_RESTART_NOW)) { | 
 | 		struct e1000_hw *hw = &adapter->hw; | 
 | 		u32 rctl = er32(RCTL); | 
 | 		ew32(RCTL, rctl | E1000_RCTL_EN); | 
 | 		adapter->flags &= ~FLAG_RX_RESTART_NOW; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_watchdog - Timer Call-back | 
 |  * @data: pointer to adapter cast into an unsigned long | 
 |  **/ | 
 | static void e1000_watchdog(unsigned long data) | 
 | { | 
 | 	struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
 |  | 
 | 	/* Do the rest outside of interrupt context */ | 
 | 	schedule_work(&adapter->watchdog_task); | 
 |  | 
 | 	/* TODO: make this use queue_delayed_work() */ | 
 | } | 
 |  | 
 | static void e1000_watchdog_task(struct work_struct *work) | 
 | { | 
 | 	struct e1000_adapter *adapter = container_of(work, | 
 | 					struct e1000_adapter, watchdog_task); | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	struct e1000_mac_info *mac = &adapter->hw.mac; | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 link, tctl; | 
 | 	int tx_pending = 0; | 
 |  | 
 | 	link = e1000_has_link(adapter); | 
 | 	if ((netif_carrier_ok(netdev)) && link) { | 
 | 		e1000e_enable_receives(adapter); | 
 | 		goto link_up; | 
 | 	} | 
 |  | 
 | 	if ((e1000e_enable_tx_pkt_filtering(hw)) && | 
 | 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | 
 | 		e1000_update_mng_vlan(adapter); | 
 |  | 
 | 	if (link) { | 
 | 		if (!netif_carrier_ok(netdev)) { | 
 | 			bool txb2b = 1; | 
 | 			/* update snapshot of PHY registers on LSC */ | 
 | 			mac->ops.get_link_up_info(&adapter->hw, | 
 | 						   &adapter->link_speed, | 
 | 						   &adapter->link_duplex); | 
 | 			e1000_print_link_info(adapter); | 
 | 			/* | 
 | 			 * tweak tx_queue_len according to speed/duplex | 
 | 			 * and adjust the timeout factor | 
 | 			 */ | 
 | 			netdev->tx_queue_len = adapter->tx_queue_len; | 
 | 			adapter->tx_timeout_factor = 1; | 
 | 			switch (adapter->link_speed) { | 
 | 			case SPEED_10: | 
 | 				txb2b = 0; | 
 | 				netdev->tx_queue_len = 10; | 
 | 				adapter->tx_timeout_factor = 14; | 
 | 				break; | 
 | 			case SPEED_100: | 
 | 				txb2b = 0; | 
 | 				netdev->tx_queue_len = 100; | 
 | 				/* maybe add some timeout factor ? */ | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * workaround: re-program speed mode bit after | 
 | 			 * link-up event | 
 | 			 */ | 
 | 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | 
 | 			    !txb2b) { | 
 | 				u32 tarc0; | 
 | 				tarc0 = er32(TARC(0)); | 
 | 				tarc0 &= ~SPEED_MODE_BIT; | 
 | 				ew32(TARC(0), tarc0); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * disable TSO for pcie and 10/100 speeds, to avoid | 
 | 			 * some hardware issues | 
 | 			 */ | 
 | 			if (!(adapter->flags & FLAG_TSO_FORCE)) { | 
 | 				switch (adapter->link_speed) { | 
 | 				case SPEED_10: | 
 | 				case SPEED_100: | 
 | 					ndev_info(netdev, | 
 | 					"10/100 speed: disabling TSO\n"); | 
 | 					netdev->features &= ~NETIF_F_TSO; | 
 | 					netdev->features &= ~NETIF_F_TSO6; | 
 | 					break; | 
 | 				case SPEED_1000: | 
 | 					netdev->features |= NETIF_F_TSO; | 
 | 					netdev->features |= NETIF_F_TSO6; | 
 | 					break; | 
 | 				default: | 
 | 					/* oops */ | 
 | 					break; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * enable transmits in the hardware, need to do this | 
 | 			 * after setting TARC(0) | 
 | 			 */ | 
 | 			tctl = er32(TCTL); | 
 | 			tctl |= E1000_TCTL_EN; | 
 | 			ew32(TCTL, tctl); | 
 |  | 
 | 			netif_carrier_on(netdev); | 
 | 			netif_wake_queue(netdev); | 
 |  | 
 | 			if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 				mod_timer(&adapter->phy_info_timer, | 
 | 					  round_jiffies(jiffies + 2 * HZ)); | 
 | 		} | 
 | 	} else { | 
 | 		if (netif_carrier_ok(netdev)) { | 
 | 			adapter->link_speed = 0; | 
 | 			adapter->link_duplex = 0; | 
 | 			ndev_info(netdev, "Link is Down\n"); | 
 | 			netif_carrier_off(netdev); | 
 | 			netif_stop_queue(netdev); | 
 | 			if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 				mod_timer(&adapter->phy_info_timer, | 
 | 					  round_jiffies(jiffies + 2 * HZ)); | 
 |  | 
 | 			if (adapter->flags & FLAG_RX_NEEDS_RESTART) | 
 | 				schedule_work(&adapter->reset_task); | 
 | 		} | 
 | 	} | 
 |  | 
 | link_up: | 
 | 	e1000e_update_stats(adapter); | 
 |  | 
 | 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
 | 	adapter->tpt_old = adapter->stats.tpt; | 
 | 	mac->collision_delta = adapter->stats.colc - adapter->colc_old; | 
 | 	adapter->colc_old = adapter->stats.colc; | 
 |  | 
 | 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | 
 | 	adapter->gorcl_old = adapter->stats.gorcl; | 
 | 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | 
 | 	adapter->gotcl_old = adapter->stats.gotcl; | 
 |  | 
 | 	e1000e_update_adaptive(&adapter->hw); | 
 |  | 
 | 	if (!netif_carrier_ok(netdev)) { | 
 | 		tx_pending = (e1000_desc_unused(tx_ring) + 1 < | 
 | 			       tx_ring->count); | 
 | 		if (tx_pending) { | 
 | 			/* | 
 | 			 * We've lost link, so the controller stops DMA, | 
 | 			 * but we've got queued Tx work that's never going | 
 | 			 * to get done, so reset controller to flush Tx. | 
 | 			 * (Do the reset outside of interrupt context). | 
 | 			 */ | 
 | 			adapter->tx_timeout_count++; | 
 | 			schedule_work(&adapter->reset_task); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Cause software interrupt to ensure Rx ring is cleaned */ | 
 | 	ew32(ICS, E1000_ICS_RXDMT0); | 
 |  | 
 | 	/* Force detection of hung controller every watchdog period */ | 
 | 	adapter->detect_tx_hung = 1; | 
 |  | 
 | 	/* | 
 | 	 * With 82571 controllers, LAA may be overwritten due to controller | 
 | 	 * reset from the other port. Set the appropriate LAA in RAR[0] | 
 | 	 */ | 
 | 	if (e1000e_get_laa_state_82571(hw)) | 
 | 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | 
 |  | 
 | 	/* Reset the timer */ | 
 | 	if (!test_bit(__E1000_DOWN, &adapter->state)) | 
 | 		mod_timer(&adapter->watchdog_timer, | 
 | 			  round_jiffies(jiffies + 2 * HZ)); | 
 | } | 
 |  | 
 | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
 | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
 | #define E1000_TX_FLAGS_TSO		0x00000004 | 
 | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
 | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
 | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
 |  | 
 | static int e1000_tso(struct e1000_adapter *adapter, | 
 | 		     struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_context_desc *context_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i; | 
 | 	u32 cmd_length = 0; | 
 | 	u16 ipcse = 0, tucse, mss; | 
 | 	u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
 | 	int err; | 
 |  | 
 | 	if (skb_is_gso(skb)) { | 
 | 		if (skb_header_cloned(skb)) { | 
 | 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} | 
 |  | 
 | 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 		mss = skb_shinfo(skb)->gso_size; | 
 | 		if (skb->protocol == htons(ETH_P_IP)) { | 
 | 			struct iphdr *iph = ip_hdr(skb); | 
 | 			iph->tot_len = 0; | 
 | 			iph->check = 0; | 
 | 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
 | 								 iph->daddr, 0, | 
 | 								 IPPROTO_TCP, | 
 | 								 0); | 
 | 			cmd_length = E1000_TXD_CMD_IP; | 
 | 			ipcse = skb_transport_offset(skb) - 1; | 
 | 		} else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | 
 | 			ipv6_hdr(skb)->payload_len = 0; | 
 | 			tcp_hdr(skb)->check = | 
 | 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
 | 						 &ipv6_hdr(skb)->daddr, | 
 | 						 0, IPPROTO_TCP, 0); | 
 | 			ipcse = 0; | 
 | 		} | 
 | 		ipcss = skb_network_offset(skb); | 
 | 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
 | 		tucss = skb_transport_offset(skb); | 
 | 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
 | 		tucse = 0; | 
 |  | 
 | 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
 | 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
 |  | 
 | 		i = tx_ring->next_to_use; | 
 | 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 |  | 
 | 		context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
 | 		context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
 | 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
 | 		context_desc->upper_setup.tcp_fields.tucss = tucss; | 
 | 		context_desc->upper_setup.tcp_fields.tucso = tucso; | 
 | 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
 | 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
 | 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
 | 		context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
 |  | 
 | 		buffer_info->time_stamp = jiffies; | 
 | 		buffer_info->next_to_watch = i; | 
 |  | 
 | 		i++; | 
 | 		if (i == tx_ring->count) | 
 | 			i = 0; | 
 | 		tx_ring->next_to_use = i; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_context_desc *context_desc; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int i; | 
 | 	u8 css; | 
 |  | 
 | 	if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
 | 		css = skb_transport_offset(skb); | 
 |  | 
 | 		i = tx_ring->next_to_use; | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
 |  | 
 | 		context_desc->lower_setup.ip_config = 0; | 
 | 		context_desc->upper_setup.tcp_fields.tucss = css; | 
 | 		context_desc->upper_setup.tcp_fields.tucso = | 
 | 					css + skb->csum_offset; | 
 | 		context_desc->upper_setup.tcp_fields.tucse = 0; | 
 | 		context_desc->tcp_seg_setup.data = 0; | 
 | 		context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT); | 
 |  | 
 | 		buffer_info->time_stamp = jiffies; | 
 | 		buffer_info->next_to_watch = i; | 
 |  | 
 | 		i++; | 
 | 		if (i == tx_ring->count) | 
 | 			i = 0; | 
 | 		tx_ring->next_to_use = i; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define E1000_MAX_PER_TXD	8192 | 
 | #define E1000_MAX_TXD_PWR	12 | 
 |  | 
 | static int e1000_tx_map(struct e1000_adapter *adapter, | 
 | 			struct sk_buff *skb, unsigned int first, | 
 | 			unsigned int max_per_txd, unsigned int nr_frags, | 
 | 			unsigned int mss) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	unsigned int len = skb->len - skb->data_len; | 
 | 	unsigned int offset = 0, size, count = 0, i; | 
 | 	unsigned int f; | 
 |  | 
 | 	i = tx_ring->next_to_use; | 
 |  | 
 | 	while (len) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		size = min(len, max_per_txd); | 
 |  | 
 | 		/* Workaround for premature desc write-backs | 
 | 		 * in TSO mode.  Append 4-byte sentinel desc */ | 
 | 		if (mss && !nr_frags && size == len && size > 8) | 
 | 			size -= 4; | 
 |  | 
 | 		buffer_info->length = size; | 
 | 		/* set time_stamp *before* dma to help avoid a possible race */ | 
 | 		buffer_info->time_stamp = jiffies; | 
 | 		buffer_info->dma = | 
 | 			pci_map_single(adapter->pdev, | 
 | 				skb->data + offset, | 
 | 				size, | 
 | 				PCI_DMA_TODEVICE); | 
 | 		if (pci_dma_mapping_error(buffer_info->dma)) { | 
 | 			dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | 
 | 			adapter->tx_dma_failed++; | 
 | 			return -1; | 
 | 		} | 
 | 		buffer_info->next_to_watch = i; | 
 |  | 
 | 		len -= size; | 
 | 		offset += size; | 
 | 		count++; | 
 | 		i++; | 
 | 		if (i == tx_ring->count) | 
 | 			i = 0; | 
 | 	} | 
 |  | 
 | 	for (f = 0; f < nr_frags; f++) { | 
 | 		struct skb_frag_struct *frag; | 
 |  | 
 | 		frag = &skb_shinfo(skb)->frags[f]; | 
 | 		len = frag->size; | 
 | 		offset = frag->page_offset; | 
 |  | 
 | 		while (len) { | 
 | 			buffer_info = &tx_ring->buffer_info[i]; | 
 | 			size = min(len, max_per_txd); | 
 | 			/* Workaround for premature desc write-backs | 
 | 			 * in TSO mode.  Append 4-byte sentinel desc */ | 
 | 			if (mss && f == (nr_frags-1) && size == len && size > 8) | 
 | 				size -= 4; | 
 |  | 
 | 			buffer_info->length = size; | 
 | 			buffer_info->time_stamp = jiffies; | 
 | 			buffer_info->dma = | 
 | 				pci_map_page(adapter->pdev, | 
 | 					frag->page, | 
 | 					offset, | 
 | 					size, | 
 | 					PCI_DMA_TODEVICE); | 
 | 			if (pci_dma_mapping_error(buffer_info->dma)) { | 
 | 				dev_err(&adapter->pdev->dev, | 
 | 					"TX DMA page map failed\n"); | 
 | 				adapter->tx_dma_failed++; | 
 | 				return -1; | 
 | 			} | 
 |  | 
 | 			buffer_info->next_to_watch = i; | 
 |  | 
 | 			len -= size; | 
 | 			offset += size; | 
 | 			count++; | 
 |  | 
 | 			i++; | 
 | 			if (i == tx_ring->count) | 
 | 				i = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (i == 0) | 
 | 		i = tx_ring->count - 1; | 
 | 	else | 
 | 		i--; | 
 |  | 
 | 	tx_ring->buffer_info[i].skb = skb; | 
 | 	tx_ring->buffer_info[first].next_to_watch = i; | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static void e1000_tx_queue(struct e1000_adapter *adapter, | 
 | 			   int tx_flags, int count) | 
 | { | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	struct e1000_tx_desc *tx_desc = NULL; | 
 | 	struct e1000_buffer *buffer_info; | 
 | 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
 | 	unsigned int i; | 
 |  | 
 | 	if (tx_flags & E1000_TX_FLAGS_TSO) { | 
 | 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
 | 			     E1000_TXD_CMD_TSE; | 
 | 		txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
 |  | 
 | 		if (tx_flags & E1000_TX_FLAGS_IPV4) | 
 | 			txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
 | 	} | 
 |  | 
 | 	if (tx_flags & E1000_TX_FLAGS_CSUM) { | 
 | 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
 | 		txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
 | 	} | 
 |  | 
 | 	if (tx_flags & E1000_TX_FLAGS_VLAN) { | 
 | 		txd_lower |= E1000_TXD_CMD_VLE; | 
 | 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
 | 	} | 
 |  | 
 | 	i = tx_ring->next_to_use; | 
 |  | 
 | 	while (count--) { | 
 | 		buffer_info = &tx_ring->buffer_info[i]; | 
 | 		tx_desc = E1000_TX_DESC(*tx_ring, i); | 
 | 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
 | 		tx_desc->lower.data = | 
 | 			cpu_to_le32(txd_lower | buffer_info->length); | 
 | 		tx_desc->upper.data = cpu_to_le32(txd_upper); | 
 |  | 
 | 		i++; | 
 | 		if (i == tx_ring->count) | 
 | 			i = 0; | 
 | 	} | 
 |  | 
 | 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
 |  | 
 | 	/* | 
 | 	 * Force memory writes to complete before letting h/w | 
 | 	 * know there are new descriptors to fetch.  (Only | 
 | 	 * applicable for weak-ordered memory model archs, | 
 | 	 * such as IA-64). | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | 	tx_ring->next_to_use = i; | 
 | 	writel(i, adapter->hw.hw_addr + tx_ring->tail); | 
 | 	/* | 
 | 	 * we need this if more than one processor can write to our tail | 
 | 	 * at a time, it synchronizes IO on IA64/Altix systems | 
 | 	 */ | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
 | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | 
 | 				    struct sk_buff *skb) | 
 | { | 
 | 	struct e1000_hw *hw =  &adapter->hw; | 
 | 	u16 length, offset; | 
 |  | 
 | 	if (vlan_tx_tag_present(skb)) { | 
 | 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) | 
 | 		    && (adapter->hw.mng_cookie.status & | 
 | 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | 
 | 		return 0; | 
 |  | 
 | 	{ | 
 | 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | 
 | 		struct udphdr *udp; | 
 |  | 
 | 		if (ip->protocol != IPPROTO_UDP) | 
 | 			return 0; | 
 |  | 
 | 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | 
 | 		if (ntohs(udp->dest) != 67) | 
 | 			return 0; | 
 |  | 
 | 		offset = (u8 *)udp + 8 - skb->data; | 
 | 		length = skb->len - offset; | 
 | 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	netif_stop_queue(netdev); | 
 | 	/* | 
 | 	 * Herbert's original patch had: | 
 | 	 *  smp_mb__after_netif_stop_queue(); | 
 | 	 * but since that doesn't exist yet, just open code it. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * We need to check again in a case another CPU has just | 
 | 	 * made room available. | 
 | 	 */ | 
 | 	if (e1000_desc_unused(adapter->tx_ring) < size) | 
 | 		return -EBUSY; | 
 |  | 
 | 	/* A reprieve! */ | 
 | 	netif_start_queue(netdev); | 
 | 	++adapter->restart_queue; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	if (e1000_desc_unused(adapter->tx_ring) >= size) | 
 | 		return 0; | 
 | 	return __e1000_maybe_stop_tx(netdev, size); | 
 | } | 
 |  | 
 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 
 | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_ring *tx_ring = adapter->tx_ring; | 
 | 	unsigned int first; | 
 | 	unsigned int max_per_txd = E1000_MAX_PER_TXD; | 
 | 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
 | 	unsigned int tx_flags = 0; | 
 | 	unsigned int len = skb->len - skb->data_len; | 
 | 	unsigned long irq_flags; | 
 | 	unsigned int nr_frags; | 
 | 	unsigned int mss; | 
 | 	int count = 0; | 
 | 	int tso; | 
 | 	unsigned int f; | 
 |  | 
 | 	if (test_bit(__E1000_DOWN, &adapter->state)) { | 
 | 		dev_kfree_skb_any(skb); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	if (skb->len <= 0) { | 
 | 		dev_kfree_skb_any(skb); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	mss = skb_shinfo(skb)->gso_size; | 
 | 	/* | 
 | 	 * The controller does a simple calculation to | 
 | 	 * make sure there is enough room in the FIFO before | 
 | 	 * initiating the DMA for each buffer.  The calc is: | 
 | 	 * 4 = ceil(buffer len/mss).  To make sure we don't | 
 | 	 * overrun the FIFO, adjust the max buffer len if mss | 
 | 	 * drops. | 
 | 	 */ | 
 | 	if (mss) { | 
 | 		u8 hdr_len; | 
 | 		max_per_txd = min(mss << 2, max_per_txd); | 
 | 		max_txd_pwr = fls(max_per_txd) - 1; | 
 |  | 
 | 		/* | 
 | 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
 | 		 * points to just header, pull a few bytes of payload from | 
 | 		 * frags into skb->data | 
 | 		 */ | 
 | 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
 | 		/* | 
 | 		 * we do this workaround for ES2LAN, but it is un-necessary, | 
 | 		 * avoiding it could save a lot of cycles | 
 | 		 */ | 
 | 		if (skb->data_len && (hdr_len == len)) { | 
 | 			unsigned int pull_size; | 
 |  | 
 | 			pull_size = min((unsigned int)4, skb->data_len); | 
 | 			if (!__pskb_pull_tail(skb, pull_size)) { | 
 | 				ndev_err(netdev, | 
 | 					 "__pskb_pull_tail failed.\n"); | 
 | 				dev_kfree_skb_any(skb); | 
 | 				return NETDEV_TX_OK; | 
 | 			} | 
 | 			len = skb->len - skb->data_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* reserve a descriptor for the offload context */ | 
 | 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
 | 		count++; | 
 | 	count++; | 
 |  | 
 | 	count += TXD_USE_COUNT(len, max_txd_pwr); | 
 |  | 
 | 	nr_frags = skb_shinfo(skb)->nr_frags; | 
 | 	for (f = 0; f < nr_frags; f++) | 
 | 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 
 | 				       max_txd_pwr); | 
 |  | 
 | 	if (adapter->hw.mac.tx_pkt_filtering) | 
 | 		e1000_transfer_dhcp_info(adapter, skb); | 
 |  | 
 | 	if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags)) | 
 | 		/* Collision - tell upper layer to requeue */ | 
 | 		return NETDEV_TX_LOCKED; | 
 |  | 
 | 	/* | 
 | 	 * need: count + 2 desc gap to keep tail from touching | 
 | 	 * head, otherwise try next time | 
 | 	 */ | 
 | 	if (e1000_maybe_stop_tx(netdev, count + 2)) { | 
 | 		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | 
 | 		tx_flags |= E1000_TX_FLAGS_VLAN; | 
 | 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
 | 	} | 
 |  | 
 | 	first = tx_ring->next_to_use; | 
 |  | 
 | 	tso = e1000_tso(adapter, skb); | 
 | 	if (tso < 0) { | 
 | 		dev_kfree_skb_any(skb); | 
 | 		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	if (tso) | 
 | 		tx_flags |= E1000_TX_FLAGS_TSO; | 
 | 	else if (e1000_tx_csum(adapter, skb)) | 
 | 		tx_flags |= E1000_TX_FLAGS_CSUM; | 
 |  | 
 | 	/* | 
 | 	 * Old method was to assume IPv4 packet by default if TSO was enabled. | 
 | 	 * 82571 hardware supports TSO capabilities for IPv6 as well... | 
 | 	 * no longer assume, we must. | 
 | 	 */ | 
 | 	if (skb->protocol == htons(ETH_P_IP)) | 
 | 		tx_flags |= E1000_TX_FLAGS_IPV4; | 
 |  | 
 | 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | 
 | 	if (count < 0) { | 
 | 		/* handle pci_map_single() error in e1000_tx_map */ | 
 | 		dev_kfree_skb_any(skb); | 
 | 		spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	e1000_tx_queue(adapter, tx_flags, count); | 
 |  | 
 | 	netdev->trans_start = jiffies; | 
 |  | 
 | 	/* Make sure there is space in the ring for the next send. */ | 
 | 	e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | 
 |  | 
 | 	spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_tx_timeout - Respond to a Tx Hang | 
 |  * @netdev: network interface device structure | 
 |  **/ | 
 | static void e1000_tx_timeout(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	/* Do the reset outside of interrupt context */ | 
 | 	adapter->tx_timeout_count++; | 
 | 	schedule_work(&adapter->reset_task); | 
 | } | 
 |  | 
 | static void e1000_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct e1000_adapter *adapter; | 
 | 	adapter = container_of(work, struct e1000_adapter, reset_task); | 
 |  | 
 | 	e1000e_reinit_locked(adapter); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_get_stats - Get System Network Statistics | 
 |  * @netdev: network interface device structure | 
 |  * | 
 |  * Returns the address of the device statistics structure. | 
 |  * The statistics are actually updated from the timer callback. | 
 |  **/ | 
 | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	/* only return the current stats */ | 
 | 	return &adapter->net_stats; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_change_mtu - Change the Maximum Transfer Unit | 
 |  * @netdev: network interface device structure | 
 |  * @new_mtu: new value for maximum frame size | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  **/ | 
 | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | 
 |  | 
 | 	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || | 
 | 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
 | 		ndev_err(netdev, "Invalid MTU setting\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Jumbo frame size limits */ | 
 | 	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
 | 		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | 
 | 			ndev_err(netdev, "Jumbo Frames not supported.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		if (adapter->hw.phy.type == e1000_phy_ife) { | 
 | 			ndev_err(netdev, "Jumbo Frames not supported.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | 
 | 	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
 | 		ndev_err(netdev, "MTU > 9216 not supported.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
 | 		msleep(1); | 
 | 	/* e1000e_down has a dependency on max_frame_size */ | 
 | 	adapter->max_frame_size = max_frame; | 
 | 	if (netif_running(netdev)) | 
 | 		e1000e_down(adapter); | 
 |  | 
 | 	/* | 
 | 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
 | 	 * means we reserve 2 more, this pushes us to allocate from the next | 
 | 	 * larger slab size. | 
 | 	 * i.e. RXBUFFER_2048 --> size-4096 slab | 
 | 	 */ | 
 |  | 
 | 	if (max_frame <= 256) | 
 | 		adapter->rx_buffer_len = 256; | 
 | 	else if (max_frame <= 512) | 
 | 		adapter->rx_buffer_len = 512; | 
 | 	else if (max_frame <= 1024) | 
 | 		adapter->rx_buffer_len = 1024; | 
 | 	else if (max_frame <= 2048) | 
 | 		adapter->rx_buffer_len = 2048; | 
 | 	else | 
 | 		adapter->rx_buffer_len = 4096; | 
 |  | 
 | 	/* adjust allocation if LPE protects us, and we aren't using SBP */ | 
 | 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | 
 | 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | 
 | 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | 
 | 					 + ETH_FCS_LEN; | 
 |  | 
 | 	ndev_info(netdev, "changing MTU from %d to %d\n", | 
 | 		netdev->mtu, new_mtu); | 
 | 	netdev->mtu = new_mtu; | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000e_up(adapter); | 
 | 	else | 
 | 		e1000e_reset(adapter); | 
 |  | 
 | 	clear_bit(__E1000_RESETTING, &adapter->state); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
 | 			   int cmd) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct mii_ioctl_data *data = if_mii(ifr); | 
 | 	unsigned long irq_flags; | 
 |  | 
 | 	if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 		data->phy_id = adapter->hw.phy.addr; | 
 | 		break; | 
 | 	case SIOCGMIIREG: | 
 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 			return -EPERM; | 
 | 		spin_lock_irqsave(&adapter->stats_lock, irq_flags); | 
 | 		if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F, | 
 | 				   &data->val_out)) { | 
 | 			spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
 | 			return -EIO; | 
 | 		} | 
 | 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
 | 		break; | 
 | 	case SIOCSMIIREG: | 
 | 	default: | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
 | { | 
 | 	switch (cmd) { | 
 | 	case SIOCGMIIPHY: | 
 | 	case SIOCGMIIREG: | 
 | 	case SIOCSMIIREG: | 
 | 		return e1000_mii_ioctl(netdev, ifr, cmd); | 
 | 	default: | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 | } | 
 |  | 
 | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 ctrl, ctrl_ext, rctl, status; | 
 | 	u32 wufc = adapter->wol; | 
 | 	int retval = 0; | 
 |  | 
 | 	netif_device_detach(netdev); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
 | 		e1000e_down(adapter); | 
 | 		e1000_free_irq(adapter); | 
 | 	} | 
 |  | 
 | 	retval = pci_save_state(pdev); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	status = er32(STATUS); | 
 | 	if (status & E1000_STATUS_LU) | 
 | 		wufc &= ~E1000_WUFC_LNKC; | 
 |  | 
 | 	if (wufc) { | 
 | 		e1000_setup_rctl(adapter); | 
 | 		e1000_set_multi(netdev); | 
 |  | 
 | 		/* turn on all-multi mode if wake on multicast is enabled */ | 
 | 		if (wufc & E1000_WUFC_MC) { | 
 | 			rctl = er32(RCTL); | 
 | 			rctl |= E1000_RCTL_MPE; | 
 | 			ew32(RCTL, rctl); | 
 | 		} | 
 |  | 
 | 		ctrl = er32(CTRL); | 
 | 		/* advertise wake from D3Cold */ | 
 | 		#define E1000_CTRL_ADVD3WUC 0x00100000 | 
 | 		/* phy power management enable */ | 
 | 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
 | 		ctrl |= E1000_CTRL_ADVD3WUC | | 
 | 			E1000_CTRL_EN_PHY_PWR_MGMT; | 
 | 		ew32(CTRL, ctrl); | 
 |  | 
 | 		if (adapter->hw.phy.media_type == e1000_media_type_fiber || | 
 | 		    adapter->hw.phy.media_type == | 
 | 		    e1000_media_type_internal_serdes) { | 
 | 			/* keep the laser running in D3 */ | 
 | 			ctrl_ext = er32(CTRL_EXT); | 
 | 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
 | 			ew32(CTRL_EXT, ctrl_ext); | 
 | 		} | 
 |  | 
 | 		/* Allow time for pending master requests to run */ | 
 | 		e1000e_disable_pcie_master(&adapter->hw); | 
 |  | 
 | 		ew32(WUC, E1000_WUC_PME_EN); | 
 | 		ew32(WUFC, wufc); | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 1); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 1); | 
 | 	} else { | 
 | 		ew32(WUC, 0); | 
 | 		ew32(WUFC, 0); | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 0); | 
 | 	} | 
 |  | 
 | 	/* make sure adapter isn't asleep if manageability is enabled */ | 
 | 	if (adapter->flags & FLAG_MNG_PT_ENABLED) { | 
 | 		pci_enable_wake(pdev, PCI_D3hot, 1); | 
 | 		pci_enable_wake(pdev, PCI_D3cold, 1); | 
 | 	} | 
 |  | 
 | 	if (adapter->hw.phy.type == e1000_phy_igp_3) | 
 | 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | 
 |  | 
 | 	/* | 
 | 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this | 
 | 	 * would have already happened in close and is redundant. | 
 | 	 */ | 
 | 	e1000_release_hw_control(adapter); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void e1000e_disable_l1aspm(struct pci_dev *pdev) | 
 | { | 
 | 	int pos; | 
 | 	u16 val; | 
 |  | 
 | 	/* | 
 | 	 * 82573 workaround - disable L1 ASPM on mobile chipsets | 
 | 	 * | 
 | 	 * L1 ASPM on various mobile (ich7) chipsets do not behave properly | 
 | 	 * resulting in lost data or garbage information on the pci-e link | 
 | 	 * level. This could result in (false) bad EEPROM checksum errors, | 
 | 	 * long ping times (up to 2s) or even a system freeze/hang. | 
 | 	 * | 
 | 	 * Unfortunately this feature saves about 1W power consumption when | 
 | 	 * active. | 
 | 	 */ | 
 | 	pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); | 
 | 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); | 
 | 	if (val & 0x2) { | 
 | 		dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); | 
 | 		val &= ~0x2; | 
 | 		pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int e1000_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	u32 err; | 
 |  | 
 | 	pci_set_power_state(pdev, PCI_D0); | 
 | 	pci_restore_state(pdev); | 
 | 	e1000e_disable_l1aspm(pdev); | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Cannot enable PCI device from suspend\n"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 	pci_enable_wake(pdev, PCI_D3cold, 0); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		err = e1000_request_irq(adapter); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	e1000e_power_up_phy(adapter); | 
 | 	e1000e_reset(adapter); | 
 | 	ew32(WUS, ~0); | 
 |  | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000e_up(adapter); | 
 |  | 
 | 	netif_device_attach(netdev); | 
 |  | 
 | 	/* | 
 | 	 * If the controller has AMT, do not set DRV_LOAD until the interface | 
 | 	 * is up.  For all other cases, let the f/w know that the h/w is now | 
 | 	 * under the control of the driver. | 
 | 	 */ | 
 | 	if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static void e1000_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	e1000_suspend(pdev, PMSG_SUSPEND); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | /* | 
 |  * Polling 'interrupt' - used by things like netconsole to send skbs | 
 |  * without having to re-enable interrupts. It's not called while | 
 |  * the interrupt routine is executing. | 
 |  */ | 
 | static void e1000_netpoll(struct net_device *netdev) | 
 | { | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	disable_irq(adapter->pdev->irq); | 
 | 	e1000_intr(adapter->pdev->irq, netdev); | 
 |  | 
 | 	e1000_clean_tx_irq(adapter); | 
 |  | 
 | 	enable_irq(adapter->pdev->irq); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * e1000_io_error_detected - called when PCI error is detected | 
 |  * @pdev: Pointer to PCI device | 
 |  * @state: The current pci connection state | 
 |  * | 
 |  * This function is called after a PCI bus error affecting | 
 |  * this device has been detected. | 
 |  */ | 
 | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
 | 						pci_channel_state_t state) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	netif_device_detach(netdev); | 
 |  | 
 | 	if (netif_running(netdev)) | 
 | 		e1000e_down(adapter); | 
 | 	pci_disable_device(pdev); | 
 |  | 
 | 	/* Request a slot slot reset. */ | 
 | 	return PCI_ERS_RESULT_NEED_RESET; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_io_slot_reset - called after the pci bus has been reset. | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * Restart the card from scratch, as if from a cold-boot. Implementation | 
 |  * resembles the first-half of the e1000_resume routine. | 
 |  */ | 
 | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 |  | 
 | 	e1000e_disable_l1aspm(pdev); | 
 | 	if (pci_enable_device(pdev)) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"Cannot re-enable PCI device after reset.\n"); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	pci_enable_wake(pdev, PCI_D3hot, 0); | 
 | 	pci_enable_wake(pdev, PCI_D3cold, 0); | 
 |  | 
 | 	e1000e_reset(adapter); | 
 | 	ew32(WUS, ~0); | 
 |  | 
 | 	return PCI_ERS_RESULT_RECOVERED; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_io_resume - called when traffic can start flowing again. | 
 |  * @pdev: Pointer to PCI device | 
 |  * | 
 |  * This callback is called when the error recovery driver tells us that | 
 |  * its OK to resume normal operation. Implementation resembles the | 
 |  * second-half of the e1000_resume routine. | 
 |  */ | 
 | static void e1000_io_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	e1000_init_manageability(adapter); | 
 |  | 
 | 	if (netif_running(netdev)) { | 
 | 		if (e1000e_up(adapter)) { | 
 | 			dev_err(&pdev->dev, | 
 | 				"can't bring device back up after reset\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	netif_device_attach(netdev); | 
 |  | 
 | 	/* | 
 | 	 * If the controller has AMT, do not set DRV_LOAD until the interface | 
 | 	 * is up.  For all other cases, let the f/w know that the h/w is now | 
 | 	 * under the control of the driver. | 
 | 	 */ | 
 | 	if (!(adapter->flags & FLAG_HAS_AMT) || | 
 | 	    !e1000e_check_mng_mode(&adapter->hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | } | 
 |  | 
 | static void e1000_print_device_info(struct e1000_adapter *adapter) | 
 | { | 
 | 	struct e1000_hw *hw = &adapter->hw; | 
 | 	struct net_device *netdev = adapter->netdev; | 
 | 	u32 pba_num; | 
 |  | 
 | 	/* print bus type/speed/width info */ | 
 | 	ndev_info(netdev, "(PCI Express:2.5GB/s:%s) " | 
 | 		  "%02x:%02x:%02x:%02x:%02x:%02x\n", | 
 | 		  /* bus width */ | 
 | 		 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | 
 | 		  "Width x1"), | 
 | 		  /* MAC address */ | 
 | 		  netdev->dev_addr[0], netdev->dev_addr[1], | 
 | 		  netdev->dev_addr[2], netdev->dev_addr[3], | 
 | 		  netdev->dev_addr[4], netdev->dev_addr[5]); | 
 | 	ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n", | 
 | 		  (hw->phy.type == e1000_phy_ife) | 
 | 		   ? "10/100" : "1000"); | 
 | 	e1000e_read_pba_num(hw, &pba_num); | 
 | 	ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n", | 
 | 		  hw->mac.type, hw->phy.type, | 
 | 		  (pba_num >> 8), (pba_num & 0xff)); | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_probe - Device Initialization Routine | 
 |  * @pdev: PCI device information struct | 
 |  * @ent: entry in e1000_pci_tbl | 
 |  * | 
 |  * Returns 0 on success, negative on failure | 
 |  * | 
 |  * e1000_probe initializes an adapter identified by a pci_dev structure. | 
 |  * The OS initialization, configuring of the adapter private structure, | 
 |  * and a hardware reset occur. | 
 |  **/ | 
 | static int __devinit e1000_probe(struct pci_dev *pdev, | 
 | 				 const struct pci_device_id *ent) | 
 | { | 
 | 	struct net_device *netdev; | 
 | 	struct e1000_adapter *adapter; | 
 | 	struct e1000_hw *hw; | 
 | 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | 
 | 	unsigned long mmio_start, mmio_len; | 
 | 	unsigned long flash_start, flash_len; | 
 |  | 
 | 	static int cards_found; | 
 | 	int i, err, pci_using_dac; | 
 | 	u16 eeprom_data = 0; | 
 | 	u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
 |  | 
 | 	e1000e_disable_l1aspm(pdev); | 
 | 	err = pci_enable_device(pdev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	pci_using_dac = 0; | 
 | 	err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | 
 | 	if (!err) { | 
 | 		err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | 
 | 		if (!err) | 
 | 			pci_using_dac = 1; | 
 | 	} else { | 
 | 		err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
 | 		if (err) { | 
 | 			err = pci_set_consistent_dma_mask(pdev, | 
 | 							  DMA_32BIT_MASK); | 
 | 			if (err) { | 
 | 				dev_err(&pdev->dev, "No usable DMA " | 
 | 					"configuration, aborting\n"); | 
 | 				goto err_dma; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = pci_request_regions(pdev, e1000e_driver_name); | 
 | 	if (err) | 
 | 		goto err_pci_reg; | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
 | 	if (!netdev) | 
 | 		goto err_alloc_etherdev; | 
 |  | 
 | 	SET_NETDEV_DEV(netdev, &pdev->dev); | 
 |  | 
 | 	pci_set_drvdata(pdev, netdev); | 
 | 	adapter = netdev_priv(netdev); | 
 | 	hw = &adapter->hw; | 
 | 	adapter->netdev = netdev; | 
 | 	adapter->pdev = pdev; | 
 | 	adapter->ei = ei; | 
 | 	adapter->pba = ei->pba; | 
 | 	adapter->flags = ei->flags; | 
 | 	adapter->hw.adapter = adapter; | 
 | 	adapter->hw.mac.type = ei->mac; | 
 | 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | 
 |  | 
 | 	mmio_start = pci_resource_start(pdev, 0); | 
 | 	mmio_len = pci_resource_len(pdev, 0); | 
 |  | 
 | 	err = -EIO; | 
 | 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | 
 | 	if (!adapter->hw.hw_addr) | 
 | 		goto err_ioremap; | 
 |  | 
 | 	if ((adapter->flags & FLAG_HAS_FLASH) && | 
 | 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
 | 		flash_start = pci_resource_start(pdev, 1); | 
 | 		flash_len = pci_resource_len(pdev, 1); | 
 | 		adapter->hw.flash_address = ioremap(flash_start, flash_len); | 
 | 		if (!adapter->hw.flash_address) | 
 | 			goto err_flashmap; | 
 | 	} | 
 |  | 
 | 	/* construct the net_device struct */ | 
 | 	netdev->open			= &e1000_open; | 
 | 	netdev->stop			= &e1000_close; | 
 | 	netdev->hard_start_xmit		= &e1000_xmit_frame; | 
 | 	netdev->get_stats		= &e1000_get_stats; | 
 | 	netdev->set_multicast_list	= &e1000_set_multi; | 
 | 	netdev->set_mac_address		= &e1000_set_mac; | 
 | 	netdev->change_mtu		= &e1000_change_mtu; | 
 | 	netdev->do_ioctl		= &e1000_ioctl; | 
 | 	e1000e_set_ethtool_ops(netdev); | 
 | 	netdev->tx_timeout		= &e1000_tx_timeout; | 
 | 	netdev->watchdog_timeo		= 5 * HZ; | 
 | 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | 
 | 	netdev->vlan_rx_register	= e1000_vlan_rx_register; | 
 | 	netdev->vlan_rx_add_vid		= e1000_vlan_rx_add_vid; | 
 | 	netdev->vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid; | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	netdev->poll_controller		= e1000_netpoll; | 
 | #endif | 
 | 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
 |  | 
 | 	netdev->mem_start = mmio_start; | 
 | 	netdev->mem_end = mmio_start + mmio_len; | 
 |  | 
 | 	adapter->bd_number = cards_found++; | 
 |  | 
 | 	/* setup adapter struct */ | 
 | 	err = e1000_sw_init(adapter); | 
 | 	if (err) | 
 | 		goto err_sw_init; | 
 |  | 
 | 	err = -EIO; | 
 |  | 
 | 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | 
 | 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | 
 | 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | 
 |  | 
 | 	err = ei->get_variants(adapter); | 
 | 	if (err) | 
 | 		goto err_hw_init; | 
 |  | 
 | 	hw->mac.ops.get_bus_info(&adapter->hw); | 
 |  | 
 | 	adapter->hw.phy.autoneg_wait_to_complete = 0; | 
 |  | 
 | 	/* Copper options */ | 
 | 	if (adapter->hw.phy.media_type == e1000_media_type_copper) { | 
 | 		adapter->hw.phy.mdix = AUTO_ALL_MODES; | 
 | 		adapter->hw.phy.disable_polarity_correction = 0; | 
 | 		adapter->hw.phy.ms_type = e1000_ms_hw_default; | 
 | 	} | 
 |  | 
 | 	if (e1000_check_reset_block(&adapter->hw)) | 
 | 		ndev_info(netdev, | 
 | 			  "PHY reset is blocked due to SOL/IDER session.\n"); | 
 |  | 
 | 	netdev->features = NETIF_F_SG | | 
 | 			   NETIF_F_HW_CSUM | | 
 | 			   NETIF_F_HW_VLAN_TX | | 
 | 			   NETIF_F_HW_VLAN_RX; | 
 |  | 
 | 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | 
 | 		netdev->features |= NETIF_F_HW_VLAN_FILTER; | 
 |  | 
 | 	netdev->features |= NETIF_F_TSO; | 
 | 	netdev->features |= NETIF_F_TSO6; | 
 |  | 
 | 	if (pci_using_dac) | 
 | 		netdev->features |= NETIF_F_HIGHDMA; | 
 |  | 
 | 	/* | 
 | 	 * We should not be using LLTX anymore, but we are still Tx faster with | 
 | 	 * it. | 
 | 	 */ | 
 | 	netdev->features |= NETIF_F_LLTX; | 
 |  | 
 | 	if (e1000e_enable_mng_pass_thru(&adapter->hw)) | 
 | 		adapter->flags |= FLAG_MNG_PT_ENABLED; | 
 |  | 
 | 	/* | 
 | 	 * before reading the NVM, reset the controller to | 
 | 	 * put the device in a known good starting state | 
 | 	 */ | 
 | 	adapter->hw.mac.ops.reset_hw(&adapter->hw); | 
 |  | 
 | 	/* | 
 | 	 * systems with ASPM and others may see the checksum fail on the first | 
 | 	 * attempt. Let's give it a few tries | 
 | 	 */ | 
 | 	for (i = 0;; i++) { | 
 | 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | 
 | 			break; | 
 | 		if (i == 2) { | 
 | 			ndev_err(netdev, "The NVM Checksum Is Not Valid\n"); | 
 | 			err = -EIO; | 
 | 			goto err_eeprom; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* copy the MAC address out of the NVM */ | 
 | 	if (e1000e_read_mac_addr(&adapter->hw)) | 
 | 		ndev_err(netdev, "NVM Read Error while reading MAC address\n"); | 
 |  | 
 | 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | 
 | 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | 
 |  | 
 | 	if (!is_valid_ether_addr(netdev->perm_addr)) { | 
 | 		ndev_err(netdev, "Invalid MAC Address: " | 
 | 			 "%02x:%02x:%02x:%02x:%02x:%02x\n", | 
 | 			 netdev->perm_addr[0], netdev->perm_addr[1], | 
 | 			 netdev->perm_addr[2], netdev->perm_addr[3], | 
 | 			 netdev->perm_addr[4], netdev->perm_addr[5]); | 
 | 		err = -EIO; | 
 | 		goto err_eeprom; | 
 | 	} | 
 |  | 
 | 	init_timer(&adapter->watchdog_timer); | 
 | 	adapter->watchdog_timer.function = &e1000_watchdog; | 
 | 	adapter->watchdog_timer.data = (unsigned long) adapter; | 
 |  | 
 | 	init_timer(&adapter->phy_info_timer); | 
 | 	adapter->phy_info_timer.function = &e1000_update_phy_info; | 
 | 	adapter->phy_info_timer.data = (unsigned long) adapter; | 
 |  | 
 | 	INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
 | 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | 
 |  | 
 | 	e1000e_check_options(adapter); | 
 |  | 
 | 	/* Initialize link parameters. User can change them with ethtool */ | 
 | 	adapter->hw.mac.autoneg = 1; | 
 | 	adapter->fc_autoneg = 1; | 
 | 	adapter->hw.fc.original_type = e1000_fc_default; | 
 | 	adapter->hw.fc.type = e1000_fc_default; | 
 | 	adapter->hw.phy.autoneg_advertised = 0x2f; | 
 |  | 
 | 	/* ring size defaults */ | 
 | 	adapter->rx_ring->count = 256; | 
 | 	adapter->tx_ring->count = 256; | 
 |  | 
 | 	/* | 
 | 	 * Initial Wake on LAN setting - If APM wake is enabled in | 
 | 	 * the EEPROM, enable the ACPI Magic Packet filter | 
 | 	 */ | 
 | 	if (adapter->flags & FLAG_APME_IN_WUC) { | 
 | 		/* APME bit in EEPROM is mapped to WUC.APME */ | 
 | 		eeprom_data = er32(WUC); | 
 | 		eeprom_apme_mask = E1000_WUC_APME; | 
 | 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) { | 
 | 		if (adapter->flags & FLAG_APME_CHECK_PORT_B && | 
 | 		    (adapter->hw.bus.func == 1)) | 
 | 			e1000_read_nvm(&adapter->hw, | 
 | 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
 | 		else | 
 | 			e1000_read_nvm(&adapter->hw, | 
 | 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
 | 	} | 
 |  | 
 | 	/* fetch WoL from EEPROM */ | 
 | 	if (eeprom_data & eeprom_apme_mask) | 
 | 		adapter->eeprom_wol |= E1000_WUFC_MAG; | 
 |  | 
 | 	/* | 
 | 	 * now that we have the eeprom settings, apply the special cases | 
 | 	 * where the eeprom may be wrong or the board simply won't support | 
 | 	 * wake on lan on a particular port | 
 | 	 */ | 
 | 	if (!(adapter->flags & FLAG_HAS_WOL)) | 
 | 		adapter->eeprom_wol = 0; | 
 |  | 
 | 	/* initialize the wol settings based on the eeprom settings */ | 
 | 	adapter->wol = adapter->eeprom_wol; | 
 |  | 
 | 	/* reset the hardware with the new settings */ | 
 | 	e1000e_reset(adapter); | 
 |  | 
 | 	/* | 
 | 	 * If the controller has AMT, do not set DRV_LOAD until the interface | 
 | 	 * is up.  For all other cases, let the f/w know that the h/w is now | 
 | 	 * under the control of the driver. | 
 | 	 */ | 
 | 	if (!(adapter->flags & FLAG_HAS_AMT) || | 
 | 	    !e1000e_check_mng_mode(&adapter->hw)) | 
 | 		e1000_get_hw_control(adapter); | 
 |  | 
 | 	/* tell the stack to leave us alone until e1000_open() is called */ | 
 | 	netif_carrier_off(netdev); | 
 | 	netif_stop_queue(netdev); | 
 |  | 
 | 	strcpy(netdev->name, "eth%d"); | 
 | 	err = register_netdev(netdev); | 
 | 	if (err) | 
 | 		goto err_register; | 
 |  | 
 | 	e1000_print_device_info(adapter); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_register: | 
 | err_hw_init: | 
 | 	e1000_release_hw_control(adapter); | 
 | err_eeprom: | 
 | 	if (!e1000_check_reset_block(&adapter->hw)) | 
 | 		e1000_phy_hw_reset(&adapter->hw); | 
 |  | 
 | 	if (adapter->hw.flash_address) | 
 | 		iounmap(adapter->hw.flash_address); | 
 |  | 
 | err_flashmap: | 
 | 	kfree(adapter->tx_ring); | 
 | 	kfree(adapter->rx_ring); | 
 | err_sw_init: | 
 | 	iounmap(adapter->hw.hw_addr); | 
 | err_ioremap: | 
 | 	free_netdev(netdev); | 
 | err_alloc_etherdev: | 
 | 	pci_release_regions(pdev); | 
 | err_pci_reg: | 
 | err_dma: | 
 | 	pci_disable_device(pdev); | 
 | 	return err; | 
 | } | 
 |  | 
 | /** | 
 |  * e1000_remove - Device Removal Routine | 
 |  * @pdev: PCI device information struct | 
 |  * | 
 |  * e1000_remove is called by the PCI subsystem to alert the driver | 
 |  * that it should release a PCI device.  The could be caused by a | 
 |  * Hot-Plug event, or because the driver is going to be removed from | 
 |  * memory. | 
 |  **/ | 
 | static void __devexit e1000_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *netdev = pci_get_drvdata(pdev); | 
 | 	struct e1000_adapter *adapter = netdev_priv(netdev); | 
 |  | 
 | 	/* | 
 | 	 * flush_scheduled work may reschedule our watchdog task, so | 
 | 	 * explicitly disable watchdog tasks from being rescheduled | 
 | 	 */ | 
 | 	set_bit(__E1000_DOWN, &adapter->state); | 
 | 	del_timer_sync(&adapter->watchdog_timer); | 
 | 	del_timer_sync(&adapter->phy_info_timer); | 
 |  | 
 | 	flush_scheduled_work(); | 
 |  | 
 | 	/* | 
 | 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this | 
 | 	 * would have already happened in close and is redundant. | 
 | 	 */ | 
 | 	e1000_release_hw_control(adapter); | 
 |  | 
 | 	unregister_netdev(netdev); | 
 |  | 
 | 	if (!e1000_check_reset_block(&adapter->hw)) | 
 | 		e1000_phy_hw_reset(&adapter->hw); | 
 |  | 
 | 	kfree(adapter->tx_ring); | 
 | 	kfree(adapter->rx_ring); | 
 |  | 
 | 	iounmap(adapter->hw.hw_addr); | 
 | 	if (adapter->hw.flash_address) | 
 | 		iounmap(adapter->hw.flash_address); | 
 | 	pci_release_regions(pdev); | 
 |  | 
 | 	free_netdev(netdev); | 
 |  | 
 | 	pci_disable_device(pdev); | 
 | } | 
 |  | 
 | /* PCI Error Recovery (ERS) */ | 
 | static struct pci_error_handlers e1000_err_handler = { | 
 | 	.error_detected = e1000_io_error_detected, | 
 | 	.slot_reset = e1000_io_slot_reset, | 
 | 	.resume = e1000_io_resume, | 
 | }; | 
 |  | 
 | static struct pci_device_id e1000_pci_tbl[] = { | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | 
 |  | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | 
 |  | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | 
 |  | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | 
 | 	  board_80003es2lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | 
 | 	  board_80003es2lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | 
 | 	  board_80003es2lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | 
 | 	  board_80003es2lan }, | 
 |  | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | 
 |  | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | 
 | 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | 
 |  | 
 | 	{ }	/* terminate list */ | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
 |  | 
 | /* PCI Device API Driver */ | 
 | static struct pci_driver e1000_driver = { | 
 | 	.name     = e1000e_driver_name, | 
 | 	.id_table = e1000_pci_tbl, | 
 | 	.probe    = e1000_probe, | 
 | 	.remove   = __devexit_p(e1000_remove), | 
 | #ifdef CONFIG_PM | 
 | 	/* Power Management Hooks */ | 
 | 	.suspend  = e1000_suspend, | 
 | 	.resume   = e1000_resume, | 
 | #endif | 
 | 	.shutdown = e1000_shutdown, | 
 | 	.err_handler = &e1000_err_handler | 
 | }; | 
 |  | 
 | /** | 
 |  * e1000_init_module - Driver Registration Routine | 
 |  * | 
 |  * e1000_init_module is the first routine called when the driver is | 
 |  * loaded. All it does is register with the PCI subsystem. | 
 |  **/ | 
 | static int __init e1000_init_module(void) | 
 | { | 
 | 	int ret; | 
 | 	printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | 
 | 	       e1000e_driver_name, e1000e_driver_version); | 
 | 	printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", | 
 | 	       e1000e_driver_name); | 
 | 	ret = pci_register_driver(&e1000_driver); | 
 |  | 
 | 	return ret; | 
 | } | 
 | module_init(e1000_init_module); | 
 |  | 
 | /** | 
 |  * e1000_exit_module - Driver Exit Cleanup Routine | 
 |  * | 
 |  * e1000_exit_module is called just before the driver is removed | 
 |  * from memory. | 
 |  **/ | 
 | static void __exit e1000_exit_module(void) | 
 | { | 
 | 	pci_unregister_driver(&e1000_driver); | 
 | } | 
 | module_exit(e1000_exit_module); | 
 |  | 
 |  | 
 | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
 | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION(DRV_VERSION); | 
 |  | 
 | /* e1000_main.c */ |