| /* | 
 |  * Universal Host Controller Interface driver for USB. | 
 |  * | 
 |  * Maintainer: Alan Stern <stern@rowland.harvard.edu> | 
 |  * | 
 |  * (C) Copyright 1999 Linus Torvalds | 
 |  * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com | 
 |  * (C) Copyright 1999 Randy Dunlap | 
 |  * (C) Copyright 1999 Georg Acher, acher@in.tum.de | 
 |  * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de | 
 |  * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch | 
 |  * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at | 
 |  * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface | 
 |  *               support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). | 
 |  * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) | 
 |  * (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  * Technically, updating td->status here is a race, but it's not really a | 
 |  * problem. The worst that can happen is that we set the IOC bit again | 
 |  * generating a spurious interrupt. We could fix this by creating another | 
 |  * QH and leaving the IOC bit always set, but then we would have to play | 
 |  * games with the FSBR code to make sure we get the correct order in all | 
 |  * the cases. I don't think it's worth the effort | 
 |  */ | 
 | static void uhci_set_next_interrupt(struct uhci_hcd *uhci) | 
 | { | 
 | 	if (uhci->is_stopped) | 
 | 		mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); | 
 | 	uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC);  | 
 | } | 
 |  | 
 | static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) | 
 | { | 
 | 	uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Full-Speed Bandwidth Reclamation (FSBR). | 
 |  * We turn on FSBR whenever a queue that wants it is advancing, | 
 |  * and leave it on for a short time thereafter. | 
 |  */ | 
 | static void uhci_fsbr_on(struct uhci_hcd *uhci) | 
 | { | 
 | 	struct uhci_qh *lqh; | 
 |  | 
 | 	/* The terminating skeleton QH always points back to the first | 
 | 	 * FSBR QH.  Make the last async QH point to the terminating | 
 | 	 * skeleton QH. */ | 
 | 	uhci->fsbr_is_on = 1; | 
 | 	lqh = list_entry(uhci->skel_async_qh->node.prev, | 
 | 			struct uhci_qh, node); | 
 | 	lqh->link = LINK_TO_QH(uhci->skel_term_qh); | 
 | } | 
 |  | 
 | static void uhci_fsbr_off(struct uhci_hcd *uhci) | 
 | { | 
 | 	struct uhci_qh *lqh; | 
 |  | 
 | 	/* Remove the link from the last async QH to the terminating | 
 | 	 * skeleton QH. */ | 
 | 	uhci->fsbr_is_on = 0; | 
 | 	lqh = list_entry(uhci->skel_async_qh->node.prev, | 
 | 			struct uhci_qh, node); | 
 | 	lqh->link = UHCI_PTR_TERM; | 
 | } | 
 |  | 
 | static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 |  | 
 | 	if (!(urb->transfer_flags & URB_NO_FSBR)) | 
 | 		urbp->fsbr = 1; | 
 | } | 
 |  | 
 | static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) | 
 | { | 
 | 	if (urbp->fsbr) { | 
 | 		uhci->fsbr_is_wanted = 1; | 
 | 		if (!uhci->fsbr_is_on) | 
 | 			uhci_fsbr_on(uhci); | 
 | 		else if (uhci->fsbr_expiring) { | 
 | 			uhci->fsbr_expiring = 0; | 
 | 			del_timer(&uhci->fsbr_timer); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void uhci_fsbr_timeout(unsigned long _uhci) | 
 | { | 
 | 	struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&uhci->lock, flags); | 
 | 	if (uhci->fsbr_expiring) { | 
 | 		uhci->fsbr_expiring = 0; | 
 | 		uhci_fsbr_off(uhci); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&uhci->lock, flags); | 
 | } | 
 |  | 
 |  | 
 | static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) | 
 | { | 
 | 	dma_addr_t dma_handle; | 
 | 	struct uhci_td *td; | 
 |  | 
 | 	td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); | 
 | 	if (!td) | 
 | 		return NULL; | 
 |  | 
 | 	td->dma_handle = dma_handle; | 
 | 	td->frame = -1; | 
 |  | 
 | 	INIT_LIST_HEAD(&td->list); | 
 | 	INIT_LIST_HEAD(&td->fl_list); | 
 |  | 
 | 	return td; | 
 | } | 
 |  | 
 | static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) | 
 | { | 
 | 	if (!list_empty(&td->list)) { | 
 | 		dev_warn(uhci_dev(uhci), "td %p still in list!\n", td); | 
 | 		WARN_ON(1); | 
 | 	} | 
 | 	if (!list_empty(&td->fl_list)) { | 
 | 		dev_warn(uhci_dev(uhci), "td %p still in fl_list!\n", td); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	dma_pool_free(uhci->td_pool, td, td->dma_handle); | 
 | } | 
 |  | 
 | static inline void uhci_fill_td(struct uhci_td *td, u32 status, | 
 | 		u32 token, u32 buffer) | 
 | { | 
 | 	td->status = cpu_to_le32(status); | 
 | 	td->token = cpu_to_le32(token); | 
 | 	td->buffer = cpu_to_le32(buffer); | 
 | } | 
 |  | 
 | static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) | 
 | { | 
 | 	list_add_tail(&td->list, &urbp->td_list); | 
 | } | 
 |  | 
 | static void uhci_remove_td_from_urbp(struct uhci_td *td) | 
 | { | 
 | 	list_del_init(&td->list); | 
 | } | 
 |  | 
 | /* | 
 |  * We insert Isochronous URBs directly into the frame list at the beginning | 
 |  */ | 
 | static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, | 
 | 		struct uhci_td *td, unsigned framenum) | 
 | { | 
 | 	framenum &= (UHCI_NUMFRAMES - 1); | 
 |  | 
 | 	td->frame = framenum; | 
 |  | 
 | 	/* Is there a TD already mapped there? */ | 
 | 	if (uhci->frame_cpu[framenum]) { | 
 | 		struct uhci_td *ftd, *ltd; | 
 |  | 
 | 		ftd = uhci->frame_cpu[framenum]; | 
 | 		ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); | 
 |  | 
 | 		list_add_tail(&td->fl_list, &ftd->fl_list); | 
 |  | 
 | 		td->link = ltd->link; | 
 | 		wmb(); | 
 | 		ltd->link = LINK_TO_TD(td); | 
 | 	} else { | 
 | 		td->link = uhci->frame[framenum]; | 
 | 		wmb(); | 
 | 		uhci->frame[framenum] = LINK_TO_TD(td); | 
 | 		uhci->frame_cpu[framenum] = td; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, | 
 | 		struct uhci_td *td) | 
 | { | 
 | 	/* If it's not inserted, don't remove it */ | 
 | 	if (td->frame == -1) { | 
 | 		WARN_ON(!list_empty(&td->fl_list)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (uhci->frame_cpu[td->frame] == td) { | 
 | 		if (list_empty(&td->fl_list)) { | 
 | 			uhci->frame[td->frame] = td->link; | 
 | 			uhci->frame_cpu[td->frame] = NULL; | 
 | 		} else { | 
 | 			struct uhci_td *ntd; | 
 |  | 
 | 			ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list); | 
 | 			uhci->frame[td->frame] = LINK_TO_TD(ntd); | 
 | 			uhci->frame_cpu[td->frame] = ntd; | 
 | 		} | 
 | 	} else { | 
 | 		struct uhci_td *ptd; | 
 |  | 
 | 		ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); | 
 | 		ptd->link = td->link; | 
 | 	} | 
 |  | 
 | 	list_del_init(&td->fl_list); | 
 | 	td->frame = -1; | 
 | } | 
 |  | 
 | static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, | 
 | 		unsigned int framenum) | 
 | { | 
 | 	struct uhci_td *ftd, *ltd; | 
 |  | 
 | 	framenum &= (UHCI_NUMFRAMES - 1); | 
 |  | 
 | 	ftd = uhci->frame_cpu[framenum]; | 
 | 	if (ftd) { | 
 | 		ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); | 
 | 		uhci->frame[framenum] = ltd->link; | 
 | 		uhci->frame_cpu[framenum] = NULL; | 
 |  | 
 | 		while (!list_empty(&ftd->fl_list)) | 
 | 			list_del_init(ftd->fl_list.prev); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove all the TDs for an Isochronous URB from the frame list | 
 |  */ | 
 | static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
 | 	struct uhci_td *td; | 
 |  | 
 | 	list_for_each_entry(td, &urbp->td_list, list) | 
 | 		uhci_remove_td_from_frame_list(uhci, td); | 
 | } | 
 |  | 
 | static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, | 
 | 		struct usb_device *udev, struct usb_host_endpoint *hep) | 
 | { | 
 | 	dma_addr_t dma_handle; | 
 | 	struct uhci_qh *qh; | 
 |  | 
 | 	qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); | 
 | 	if (!qh) | 
 | 		return NULL; | 
 |  | 
 | 	memset(qh, 0, sizeof(*qh)); | 
 | 	qh->dma_handle = dma_handle; | 
 |  | 
 | 	qh->element = UHCI_PTR_TERM; | 
 | 	qh->link = UHCI_PTR_TERM; | 
 |  | 
 | 	INIT_LIST_HEAD(&qh->queue); | 
 | 	INIT_LIST_HEAD(&qh->node); | 
 |  | 
 | 	if (udev) {		/* Normal QH */ | 
 | 		qh->type = hep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; | 
 | 		if (qh->type != USB_ENDPOINT_XFER_ISOC) { | 
 | 			qh->dummy_td = uhci_alloc_td(uhci); | 
 | 			if (!qh->dummy_td) { | 
 | 				dma_pool_free(uhci->qh_pool, qh, dma_handle); | 
 | 				return NULL; | 
 | 			} | 
 | 		} | 
 | 		qh->state = QH_STATE_IDLE; | 
 | 		qh->hep = hep; | 
 | 		qh->udev = udev; | 
 | 		hep->hcpriv = qh; | 
 |  | 
 | 		if (qh->type == USB_ENDPOINT_XFER_INT || | 
 | 				qh->type == USB_ENDPOINT_XFER_ISOC) | 
 | 			qh->load = usb_calc_bus_time(udev->speed, | 
 | 					usb_endpoint_dir_in(&hep->desc), | 
 | 					qh->type == USB_ENDPOINT_XFER_ISOC, | 
 | 					le16_to_cpu(hep->desc.wMaxPacketSize)) | 
 | 				/ 1000 + 1; | 
 |  | 
 | 	} else {		/* Skeleton QH */ | 
 | 		qh->state = QH_STATE_ACTIVE; | 
 | 		qh->type = -1; | 
 | 	} | 
 | 	return qh; | 
 | } | 
 |  | 
 | static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); | 
 | 	if (!list_empty(&qh->queue)) { | 
 | 		dev_warn(uhci_dev(uhci), "qh %p list not empty!\n", qh); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	list_del(&qh->node); | 
 | 	if (qh->udev) { | 
 | 		qh->hep->hcpriv = NULL; | 
 | 		if (qh->dummy_td) | 
 | 			uhci_free_td(uhci, qh->dummy_td); | 
 | 	} | 
 | 	dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); | 
 | } | 
 |  | 
 | /* | 
 |  * When a queue is stopped and a dequeued URB is given back, adjust | 
 |  * the previous TD link (if the URB isn't first on the queue) or | 
 |  * save its toggle value (if it is first and is currently executing). | 
 |  * | 
 |  * Returns 0 if the URB should not yet be given back, 1 otherwise. | 
 |  */ | 
 | static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, | 
 | 		struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 | 	struct uhci_td *td; | 
 | 	int ret = 1; | 
 |  | 
 | 	/* Isochronous pipes don't use toggles and their TD link pointers | 
 | 	 * get adjusted during uhci_urb_dequeue().  But since their queues | 
 | 	 * cannot truly be stopped, we have to watch out for dequeues | 
 | 	 * occurring after the nominal unlink frame. */ | 
 | 	if (qh->type == USB_ENDPOINT_XFER_ISOC) { | 
 | 		ret = (uhci->frame_number + uhci->is_stopped != | 
 | 				qh->unlink_frame); | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* If the URB isn't first on its queue, adjust the link pointer | 
 | 	 * of the last TD in the previous URB.  The toggle doesn't need | 
 | 	 * to be saved since this URB can't be executing yet. */ | 
 | 	if (qh->queue.next != &urbp->node) { | 
 | 		struct urb_priv *purbp; | 
 | 		struct uhci_td *ptd; | 
 |  | 
 | 		purbp = list_entry(urbp->node.prev, struct urb_priv, node); | 
 | 		WARN_ON(list_empty(&purbp->td_list)); | 
 | 		ptd = list_entry(purbp->td_list.prev, struct uhci_td, | 
 | 				list); | 
 | 		td = list_entry(urbp->td_list.prev, struct uhci_td, | 
 | 				list); | 
 | 		ptd->link = td->link; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	/* If the QH element pointer is UHCI_PTR_TERM then then currently | 
 | 	 * executing URB has already been unlinked, so this one isn't it. */ | 
 | 	if (qh_element(qh) == UHCI_PTR_TERM) | 
 | 		goto done; | 
 | 	qh->element = UHCI_PTR_TERM; | 
 |  | 
 | 	/* Control pipes don't have to worry about toggles */ | 
 | 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) | 
 | 		goto done; | 
 |  | 
 | 	/* Save the next toggle value */ | 
 | 	WARN_ON(list_empty(&urbp->td_list)); | 
 | 	td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
 | 	qh->needs_fixup = 1; | 
 | 	qh->initial_toggle = uhci_toggle(td_token(td)); | 
 |  | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Fix up the data toggles for URBs in a queue, when one of them | 
 |  * terminates early (short transfer, error, or dequeued). | 
 |  */ | 
 | static void uhci_fixup_toggles(struct uhci_qh *qh, int skip_first) | 
 | { | 
 | 	struct urb_priv *urbp = NULL; | 
 | 	struct uhci_td *td; | 
 | 	unsigned int toggle = qh->initial_toggle; | 
 | 	unsigned int pipe; | 
 |  | 
 | 	/* Fixups for a short transfer start with the second URB in the | 
 | 	 * queue (the short URB is the first). */ | 
 | 	if (skip_first) | 
 | 		urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
 |  | 
 | 	/* When starting with the first URB, if the QH element pointer is | 
 | 	 * still valid then we know the URB's toggles are okay. */ | 
 | 	else if (qh_element(qh) != UHCI_PTR_TERM) | 
 | 		toggle = 2; | 
 |  | 
 | 	/* Fix up the toggle for the URBs in the queue.  Normally this | 
 | 	 * loop won't run more than once: When an error or short transfer | 
 | 	 * occurs, the queue usually gets emptied. */ | 
 | 	urbp = list_prepare_entry(urbp, &qh->queue, node); | 
 | 	list_for_each_entry_continue(urbp, &qh->queue, node) { | 
 |  | 
 | 		/* If the first TD has the right toggle value, we don't | 
 | 		 * need to change any toggles in this URB */ | 
 | 		td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
 | 		if (toggle > 1 || uhci_toggle(td_token(td)) == toggle) { | 
 | 			td = list_entry(urbp->td_list.prev, struct uhci_td, | 
 | 					list); | 
 | 			toggle = uhci_toggle(td_token(td)) ^ 1; | 
 |  | 
 | 		/* Otherwise all the toggles in the URB have to be switched */ | 
 | 		} else { | 
 | 			list_for_each_entry(td, &urbp->td_list, list) { | 
 | 				td->token ^= __constant_cpu_to_le32( | 
 | 							TD_TOKEN_TOGGLE); | 
 | 				toggle ^= 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	wmb(); | 
 | 	pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; | 
 | 	usb_settoggle(qh->udev, usb_pipeendpoint(pipe), | 
 | 			usb_pipeout(pipe), toggle); | 
 | 	qh->needs_fixup = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Link an Isochronous QH into its skeleton's list | 
 |  */ | 
 | static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	list_add_tail(&qh->node, &uhci->skel_iso_qh->node); | 
 |  | 
 | 	/* Isochronous QHs aren't linked by the hardware */ | 
 | } | 
 |  | 
 | /* | 
 |  * Link a high-period interrupt QH into the schedule at the end of its | 
 |  * skeleton's list | 
 |  */ | 
 | static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_qh *pqh; | 
 |  | 
 | 	list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node); | 
 |  | 
 | 	pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
 | 	qh->link = pqh->link; | 
 | 	wmb(); | 
 | 	pqh->link = LINK_TO_QH(qh); | 
 | } | 
 |  | 
 | /* | 
 |  * Link a period-1 interrupt or async QH into the schedule at the | 
 |  * correct spot in the async skeleton's list, and update the FSBR link | 
 |  */ | 
 | static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_qh *pqh; | 
 | 	__le32 link_to_new_qh; | 
 |  | 
 | 	/* Find the predecessor QH for our new one and insert it in the list. | 
 | 	 * The list of QHs is expected to be short, so linear search won't | 
 | 	 * take too long. */ | 
 | 	list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) { | 
 | 		if (pqh->skel <= qh->skel) | 
 | 			break; | 
 | 	} | 
 | 	list_add(&qh->node, &pqh->node); | 
 |  | 
 | 	/* Link it into the schedule */ | 
 | 	qh->link = pqh->link; | 
 | 	wmb(); | 
 | 	link_to_new_qh = LINK_TO_QH(qh); | 
 | 	pqh->link = link_to_new_qh; | 
 |  | 
 | 	/* If this is now the first FSBR QH, link the terminating skeleton | 
 | 	 * QH to it. */ | 
 | 	if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) | 
 | 		uhci->skel_term_qh->link = link_to_new_qh; | 
 | } | 
 |  | 
 | /* | 
 |  * Put a QH on the schedule in both hardware and software | 
 |  */ | 
 | static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	WARN_ON(list_empty(&qh->queue)); | 
 |  | 
 | 	/* Set the element pointer if it isn't set already. | 
 | 	 * This isn't needed for Isochronous queues, but it doesn't hurt. */ | 
 | 	if (qh_element(qh) == UHCI_PTR_TERM) { | 
 | 		struct urb_priv *urbp = list_entry(qh->queue.next, | 
 | 				struct urb_priv, node); | 
 | 		struct uhci_td *td = list_entry(urbp->td_list.next, | 
 | 				struct uhci_td, list); | 
 |  | 
 | 		qh->element = LINK_TO_TD(td); | 
 | 	} | 
 |  | 
 | 	/* Treat the queue as if it has just advanced */ | 
 | 	qh->wait_expired = 0; | 
 | 	qh->advance_jiffies = jiffies; | 
 |  | 
 | 	if (qh->state == QH_STATE_ACTIVE) | 
 | 		return; | 
 | 	qh->state = QH_STATE_ACTIVE; | 
 |  | 
 | 	/* Move the QH from its old list to the correct spot in the appropriate | 
 | 	 * skeleton's list */ | 
 | 	if (qh == uhci->next_qh) | 
 | 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
 | 				node); | 
 | 	list_del(&qh->node); | 
 |  | 
 | 	if (qh->skel == SKEL_ISO) | 
 | 		link_iso(uhci, qh); | 
 | 	else if (qh->skel < SKEL_ASYNC) | 
 | 		link_interrupt(uhci, qh); | 
 | 	else | 
 | 		link_async(uhci, qh); | 
 | } | 
 |  | 
 | /* | 
 |  * Unlink a high-period interrupt QH from the schedule | 
 |  */ | 
 | static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_qh *pqh; | 
 |  | 
 | 	pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
 | 	pqh->link = qh->link; | 
 | 	mb(); | 
 | } | 
 |  | 
 | /* | 
 |  * Unlink a period-1 interrupt or async QH from the schedule | 
 |  */ | 
 | static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_qh *pqh; | 
 | 	__le32 link_to_next_qh = qh->link; | 
 |  | 
 | 	pqh = list_entry(qh->node.prev, struct uhci_qh, node); | 
 | 	pqh->link = link_to_next_qh; | 
 |  | 
 | 	/* If this was the old first FSBR QH, link the terminating skeleton | 
 | 	 * QH to the next (new first FSBR) QH. */ | 
 | 	if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR) | 
 | 		uhci->skel_term_qh->link = link_to_next_qh; | 
 | 	mb(); | 
 | } | 
 |  | 
 | /* | 
 |  * Take a QH off the hardware schedule | 
 |  */ | 
 | static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	if (qh->state == QH_STATE_UNLINKING) | 
 | 		return; | 
 | 	WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); | 
 | 	qh->state = QH_STATE_UNLINKING; | 
 |  | 
 | 	/* Unlink the QH from the schedule and record when we did it */ | 
 | 	if (qh->skel == SKEL_ISO) | 
 | 		; | 
 | 	else if (qh->skel < SKEL_ASYNC) | 
 | 		unlink_interrupt(uhci, qh); | 
 | 	else | 
 | 		unlink_async(uhci, qh); | 
 |  | 
 | 	uhci_get_current_frame_number(uhci); | 
 | 	qh->unlink_frame = uhci->frame_number; | 
 |  | 
 | 	/* Force an interrupt so we know when the QH is fully unlinked */ | 
 | 	if (list_empty(&uhci->skel_unlink_qh->node)) | 
 | 		uhci_set_next_interrupt(uhci); | 
 |  | 
 | 	/* Move the QH from its old list to the end of the unlinking list */ | 
 | 	if (qh == uhci->next_qh) | 
 | 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
 | 				node); | 
 | 	list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); | 
 | } | 
 |  | 
 | /* | 
 |  * When we and the controller are through with a QH, it becomes IDLE. | 
 |  * This happens when a QH has been off the schedule (on the unlinking | 
 |  * list) for more than one frame, or when an error occurs while adding | 
 |  * the first URB onto a new QH. | 
 |  */ | 
 | static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	WARN_ON(qh->state == QH_STATE_ACTIVE); | 
 |  | 
 | 	if (qh == uhci->next_qh) | 
 | 		uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, | 
 | 				node); | 
 | 	list_move(&qh->node, &uhci->idle_qh_list); | 
 | 	qh->state = QH_STATE_IDLE; | 
 |  | 
 | 	/* Now that the QH is idle, its post_td isn't being used */ | 
 | 	if (qh->post_td) { | 
 | 		uhci_free_td(uhci, qh->post_td); | 
 | 		qh->post_td = NULL; | 
 | 	} | 
 |  | 
 | 	/* If anyone is waiting for a QH to become idle, wake them up */ | 
 | 	if (uhci->num_waiting) | 
 | 		wake_up_all(&uhci->waitqh); | 
 | } | 
 |  | 
 | /* | 
 |  * Find the highest existing bandwidth load for a given phase and period. | 
 |  */ | 
 | static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) | 
 | { | 
 | 	int highest_load = uhci->load[phase]; | 
 |  | 
 | 	for (phase += period; phase < MAX_PHASE; phase += period) | 
 | 		highest_load = max_t(int, highest_load, uhci->load[phase]); | 
 | 	return highest_load; | 
 | } | 
 |  | 
 | /* | 
 |  * Set qh->phase to the optimal phase for a periodic transfer and | 
 |  * check whether the bandwidth requirement is acceptable. | 
 |  */ | 
 | static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	int minimax_load; | 
 |  | 
 | 	/* Find the optimal phase (unless it is already set) and get | 
 | 	 * its load value. */ | 
 | 	if (qh->phase >= 0) | 
 | 		minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); | 
 | 	else { | 
 | 		int phase, load; | 
 | 		int max_phase = min_t(int, MAX_PHASE, qh->period); | 
 |  | 
 | 		qh->phase = 0; | 
 | 		minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); | 
 | 		for (phase = 1; phase < max_phase; ++phase) { | 
 | 			load = uhci_highest_load(uhci, phase, qh->period); | 
 | 			if (load < minimax_load) { | 
 | 				minimax_load = load; | 
 | 				qh->phase = phase; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ | 
 | 	if (minimax_load + qh->load > 900) { | 
 | 		dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " | 
 | 				"period %d, phase %d, %d + %d us\n", | 
 | 				qh->period, qh->phase, minimax_load, qh->load); | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve a periodic QH's bandwidth in the schedule | 
 |  */ | 
 | static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	int i; | 
 | 	int load = qh->load; | 
 | 	char *p = "??"; | 
 |  | 
 | 	for (i = qh->phase; i < MAX_PHASE; i += qh->period) { | 
 | 		uhci->load[i] += load; | 
 | 		uhci->total_load += load; | 
 | 	} | 
 | 	uhci_to_hcd(uhci)->self.bandwidth_allocated = | 
 | 			uhci->total_load / MAX_PHASE; | 
 | 	switch (qh->type) { | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; | 
 | 		p = "INT"; | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; | 
 | 		p = "ISO"; | 
 | 		break; | 
 | 	} | 
 | 	qh->bandwidth_reserved = 1; | 
 | 	dev_dbg(uhci_dev(uhci), | 
 | 			"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", | 
 | 			"reserve", qh->udev->devnum, | 
 | 			qh->hep->desc.bEndpointAddress, p, | 
 | 			qh->period, qh->phase, load); | 
 | } | 
 |  | 
 | /* | 
 |  * Release a periodic QH's bandwidth reservation | 
 |  */ | 
 | static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	int i; | 
 | 	int load = qh->load; | 
 | 	char *p = "??"; | 
 |  | 
 | 	for (i = qh->phase; i < MAX_PHASE; i += qh->period) { | 
 | 		uhci->load[i] -= load; | 
 | 		uhci->total_load -= load; | 
 | 	} | 
 | 	uhci_to_hcd(uhci)->self.bandwidth_allocated = | 
 | 			uhci->total_load / MAX_PHASE; | 
 | 	switch (qh->type) { | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		--uhci_to_hcd(uhci)->self.bandwidth_int_reqs; | 
 | 		p = "INT"; | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		--uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; | 
 | 		p = "ISO"; | 
 | 		break; | 
 | 	} | 
 | 	qh->bandwidth_reserved = 0; | 
 | 	dev_dbg(uhci_dev(uhci), | 
 | 			"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", | 
 | 			"release", qh->udev->devnum, | 
 | 			qh->hep->desc.bEndpointAddress, p, | 
 | 			qh->period, qh->phase, load); | 
 | } | 
 |  | 
 | static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, | 
 | 		struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urbp; | 
 |  | 
 | 	urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC); | 
 | 	if (!urbp) | 
 | 		return NULL; | 
 |  | 
 | 	urbp->urb = urb; | 
 | 	urb->hcpriv = urbp; | 
 | 	 | 
 | 	INIT_LIST_HEAD(&urbp->node); | 
 | 	INIT_LIST_HEAD(&urbp->td_list); | 
 |  | 
 | 	return urbp; | 
 | } | 
 |  | 
 | static void uhci_free_urb_priv(struct uhci_hcd *uhci, | 
 | 		struct urb_priv *urbp) | 
 | { | 
 | 	struct uhci_td *td, *tmp; | 
 |  | 
 | 	if (!list_empty(&urbp->node)) { | 
 | 		dev_warn(uhci_dev(uhci), "urb %p still on QH's list!\n", | 
 | 				urbp->urb); | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
 | 		uhci_remove_td_from_urbp(td); | 
 | 		uhci_free_td(uhci, td); | 
 | 	} | 
 |  | 
 | 	kmem_cache_free(uhci_up_cachep, urbp); | 
 | } | 
 |  | 
 | /* | 
 |  * Map status to standard result codes | 
 |  * | 
 |  * <status> is (td_status(td) & 0xF60000), a.k.a. | 
 |  * uhci_status_bits(td_status(td)). | 
 |  * Note: <status> does not include the TD_CTRL_NAK bit. | 
 |  * <dir_out> is True for output TDs and False for input TDs. | 
 |  */ | 
 | static int uhci_map_status(int status, int dir_out) | 
 | { | 
 | 	if (!status) | 
 | 		return 0; | 
 | 	if (status & TD_CTRL_BITSTUFF)			/* Bitstuff error */ | 
 | 		return -EPROTO; | 
 | 	if (status & TD_CTRL_CRCTIMEO) {		/* CRC/Timeout */ | 
 | 		if (dir_out) | 
 | 			return -EPROTO; | 
 | 		else | 
 | 			return -EILSEQ; | 
 | 	} | 
 | 	if (status & TD_CTRL_BABBLE)			/* Babble */ | 
 | 		return -EOVERFLOW; | 
 | 	if (status & TD_CTRL_DBUFERR)			/* Buffer error */ | 
 | 		return -ENOSR; | 
 | 	if (status & TD_CTRL_STALLED)			/* Stalled */ | 
 | 		return -EPIPE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Control transfers | 
 |  */ | 
 | static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, | 
 | 		struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_td *td; | 
 | 	unsigned long destination, status; | 
 | 	int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); | 
 | 	int len = urb->transfer_buffer_length; | 
 | 	dma_addr_t data = urb->transfer_dma; | 
 | 	__le32 *plink; | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 | 	int skel; | 
 |  | 
 | 	/* The "pipe" thing contains the destination in bits 8--18 */ | 
 | 	destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; | 
 |  | 
 | 	/* 3 errors, dummy TD remains inactive */ | 
 | 	status = uhci_maxerr(3); | 
 | 	if (urb->dev->speed == USB_SPEED_LOW) | 
 | 		status |= TD_CTRL_LS; | 
 |  | 
 | 	/* | 
 | 	 * Build the TD for the control request setup packet | 
 | 	 */ | 
 | 	td = qh->dummy_td; | 
 | 	uhci_add_td_to_urbp(td, urbp); | 
 | 	uhci_fill_td(td, status, destination | uhci_explen(8), | 
 | 			urb->setup_dma); | 
 | 	plink = &td->link; | 
 | 	status |= TD_CTRL_ACTIVE; | 
 |  | 
 | 	/* | 
 | 	 * If direction is "send", change the packet ID from SETUP (0x2D) | 
 | 	 * to OUT (0xE1).  Else change it from SETUP to IN (0x69) and | 
 | 	 * set Short Packet Detect (SPD) for all data packets. | 
 | 	 * | 
 | 	 * 0-length transfers always get treated as "send". | 
 | 	 */ | 
 | 	if (usb_pipeout(urb->pipe) || len == 0) | 
 | 		destination ^= (USB_PID_SETUP ^ USB_PID_OUT); | 
 | 	else { | 
 | 		destination ^= (USB_PID_SETUP ^ USB_PID_IN); | 
 | 		status |= TD_CTRL_SPD; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Build the DATA TDs | 
 | 	 */ | 
 | 	while (len > 0) { | 
 | 		int pktsze = maxsze; | 
 |  | 
 | 		if (len <= pktsze) {		/* The last data packet */ | 
 | 			pktsze = len; | 
 | 			status &= ~TD_CTRL_SPD; | 
 | 		} | 
 |  | 
 | 		td = uhci_alloc_td(uhci); | 
 | 		if (!td) | 
 | 			goto nomem; | 
 | 		*plink = LINK_TO_TD(td); | 
 |  | 
 | 		/* Alternate Data0/1 (start with Data1) */ | 
 | 		destination ^= TD_TOKEN_TOGGLE; | 
 | 	 | 
 | 		uhci_add_td_to_urbp(td, urbp); | 
 | 		uhci_fill_td(td, status, destination | uhci_explen(pktsze), | 
 | 				data); | 
 | 		plink = &td->link; | 
 |  | 
 | 		data += pktsze; | 
 | 		len -= pktsze; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Build the final TD for control status  | 
 | 	 */ | 
 | 	td = uhci_alloc_td(uhci); | 
 | 	if (!td) | 
 | 		goto nomem; | 
 | 	*plink = LINK_TO_TD(td); | 
 |  | 
 | 	/* Change direction for the status transaction */ | 
 | 	destination ^= (USB_PID_IN ^ USB_PID_OUT); | 
 | 	destination |= TD_TOKEN_TOGGLE;		/* End in Data1 */ | 
 |  | 
 | 	uhci_add_td_to_urbp(td, urbp); | 
 | 	uhci_fill_td(td, status | TD_CTRL_IOC, | 
 | 			destination | uhci_explen(0), 0); | 
 | 	plink = &td->link; | 
 |  | 
 | 	/* | 
 | 	 * Build the new dummy TD and activate the old one | 
 | 	 */ | 
 | 	td = uhci_alloc_td(uhci); | 
 | 	if (!td) | 
 | 		goto nomem; | 
 | 	*plink = LINK_TO_TD(td); | 
 |  | 
 | 	uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); | 
 | 	wmb(); | 
 | 	qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE); | 
 | 	qh->dummy_td = td; | 
 |  | 
 | 	/* Low-speed transfers get a different queue, and won't hog the bus. | 
 | 	 * Also, some devices enumerate better without FSBR; the easiest way | 
 | 	 * to do that is to put URBs on the low-speed queue while the device | 
 | 	 * isn't in the CONFIGURED state. */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW || | 
 | 			urb->dev->state != USB_STATE_CONFIGURED) | 
 | 		skel = SKEL_LS_CONTROL; | 
 | 	else { | 
 | 		skel = SKEL_FS_CONTROL; | 
 | 		uhci_add_fsbr(uhci, urb); | 
 | 	} | 
 | 	if (qh->state != QH_STATE_ACTIVE) | 
 | 		qh->skel = skel; | 
 |  | 
 | 	urb->actual_length = -8;	/* Account for the SETUP packet */ | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	/* Remove the dummy TD from the td_list so it doesn't get freed */ | 
 | 	uhci_remove_td_from_urbp(qh->dummy_td); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* | 
 |  * Common submit for bulk and interrupt | 
 |  */ | 
 | static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, | 
 | 		struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_td *td; | 
 | 	unsigned long destination, status; | 
 | 	int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); | 
 | 	int len = urb->transfer_buffer_length; | 
 | 	dma_addr_t data = urb->transfer_dma; | 
 | 	__le32 *plink; | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 | 	unsigned int toggle; | 
 |  | 
 | 	if (len < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* The "pipe" thing contains the destination in bits 8--18 */ | 
 | 	destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); | 
 | 	toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
 | 			 usb_pipeout(urb->pipe)); | 
 |  | 
 | 	/* 3 errors, dummy TD remains inactive */ | 
 | 	status = uhci_maxerr(3); | 
 | 	if (urb->dev->speed == USB_SPEED_LOW) | 
 | 		status |= TD_CTRL_LS; | 
 | 	if (usb_pipein(urb->pipe)) | 
 | 		status |= TD_CTRL_SPD; | 
 |  | 
 | 	/* | 
 | 	 * Build the DATA TDs | 
 | 	 */ | 
 | 	plink = NULL; | 
 | 	td = qh->dummy_td; | 
 | 	do {	/* Allow zero length packets */ | 
 | 		int pktsze = maxsze; | 
 |  | 
 | 		if (len <= pktsze) {		/* The last packet */ | 
 | 			pktsze = len; | 
 | 			if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) | 
 | 				status &= ~TD_CTRL_SPD; | 
 | 		} | 
 |  | 
 | 		if (plink) { | 
 | 			td = uhci_alloc_td(uhci); | 
 | 			if (!td) | 
 | 				goto nomem; | 
 | 			*plink = LINK_TO_TD(td); | 
 | 		} | 
 | 		uhci_add_td_to_urbp(td, urbp); | 
 | 		uhci_fill_td(td, status, | 
 | 				destination | uhci_explen(pktsze) | | 
 | 					(toggle << TD_TOKEN_TOGGLE_SHIFT), | 
 | 				data); | 
 | 		plink = &td->link; | 
 | 		status |= TD_CTRL_ACTIVE; | 
 |  | 
 | 		data += pktsze; | 
 | 		len -= maxsze; | 
 | 		toggle ^= 1; | 
 | 	} while (len > 0); | 
 |  | 
 | 	/* | 
 | 	 * URB_ZERO_PACKET means adding a 0-length packet, if direction | 
 | 	 * is OUT and the transfer_length was an exact multiple of maxsze, | 
 | 	 * hence (len = transfer_length - N * maxsze) == 0 | 
 | 	 * however, if transfer_length == 0, the zero packet was already | 
 | 	 * prepared above. | 
 | 	 */ | 
 | 	if ((urb->transfer_flags & URB_ZERO_PACKET) && | 
 | 			usb_pipeout(urb->pipe) && len == 0 && | 
 | 			urb->transfer_buffer_length > 0) { | 
 | 		td = uhci_alloc_td(uhci); | 
 | 		if (!td) | 
 | 			goto nomem; | 
 | 		*plink = LINK_TO_TD(td); | 
 |  | 
 | 		uhci_add_td_to_urbp(td, urbp); | 
 | 		uhci_fill_td(td, status, | 
 | 				destination | uhci_explen(0) | | 
 | 					(toggle << TD_TOKEN_TOGGLE_SHIFT), | 
 | 				data); | 
 | 		plink = &td->link; | 
 |  | 
 | 		toggle ^= 1; | 
 | 	} | 
 |  | 
 | 	/* Set the interrupt-on-completion flag on the last packet. | 
 | 	 * A more-or-less typical 4 KB URB (= size of one memory page) | 
 | 	 * will require about 3 ms to transfer; that's a little on the | 
 | 	 * fast side but not enough to justify delaying an interrupt | 
 | 	 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT | 
 | 	 * flag setting. */ | 
 | 	td->status |= __constant_cpu_to_le32(TD_CTRL_IOC); | 
 |  | 
 | 	/* | 
 | 	 * Build the new dummy TD and activate the old one | 
 | 	 */ | 
 | 	td = uhci_alloc_td(uhci); | 
 | 	if (!td) | 
 | 		goto nomem; | 
 | 	*plink = LINK_TO_TD(td); | 
 |  | 
 | 	uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); | 
 | 	wmb(); | 
 | 	qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE); | 
 | 	qh->dummy_td = td; | 
 |  | 
 | 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
 | 			usb_pipeout(urb->pipe), toggle); | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	/* Remove the dummy TD from the td_list so it doesn't get freed */ | 
 | 	uhci_remove_td_from_urbp(qh->dummy_td); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, | 
 | 		struct uhci_qh *qh) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* Can't have low-speed bulk transfers */ | 
 | 	if (urb->dev->speed == USB_SPEED_LOW) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (qh->state != QH_STATE_ACTIVE) | 
 | 		qh->skel = SKEL_BULK; | 
 | 	ret = uhci_submit_common(uhci, urb, qh); | 
 | 	if (ret == 0) | 
 | 		uhci_add_fsbr(uhci, urb); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, | 
 | 		struct uhci_qh *qh) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* USB 1.1 interrupt transfers only involve one packet per interval. | 
 | 	 * Drivers can submit URBs of any length, but longer ones will need | 
 | 	 * multiple intervals to complete. | 
 | 	 */ | 
 |  | 
 | 	if (!qh->bandwidth_reserved) { | 
 | 		int exponent; | 
 |  | 
 | 		/* Figure out which power-of-two queue to use */ | 
 | 		for (exponent = 7; exponent >= 0; --exponent) { | 
 | 			if ((1 << exponent) <= urb->interval) | 
 | 				break; | 
 | 		} | 
 | 		if (exponent < 0) | 
 | 			return -EINVAL; | 
 | 		qh->period = 1 << exponent; | 
 | 		qh->skel = SKEL_INDEX(exponent); | 
 |  | 
 | 		/* For now, interrupt phase is fixed by the layout | 
 | 		 * of the QH lists. */ | 
 | 		qh->phase = (qh->period / 2) & (MAX_PHASE - 1); | 
 | 		ret = uhci_check_bandwidth(uhci, qh); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} else if (qh->period > urb->interval) | 
 | 		return -EINVAL;		/* Can't decrease the period */ | 
 |  | 
 | 	ret = uhci_submit_common(uhci, urb, qh); | 
 | 	if (ret == 0) { | 
 | 		urb->interval = qh->period; | 
 | 		if (!qh->bandwidth_reserved) | 
 | 			uhci_reserve_bandwidth(uhci, qh); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Fix up the data structures following a short transfer | 
 |  */ | 
 | static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, | 
 | 		struct uhci_qh *qh, struct urb_priv *urbp) | 
 | { | 
 | 	struct uhci_td *td; | 
 | 	struct list_head *tmp; | 
 | 	int ret; | 
 |  | 
 | 	td = list_entry(urbp->td_list.prev, struct uhci_td, list); | 
 | 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
 |  | 
 | 		/* When a control transfer is short, we have to restart | 
 | 		 * the queue at the status stage transaction, which is | 
 | 		 * the last TD. */ | 
 | 		WARN_ON(list_empty(&urbp->td_list)); | 
 | 		qh->element = LINK_TO_TD(td); | 
 | 		tmp = td->list.prev; | 
 | 		ret = -EINPROGRESS; | 
 |  | 
 | 	} else { | 
 |  | 
 | 		/* When a bulk/interrupt transfer is short, we have to | 
 | 		 * fix up the toggles of the following URBs on the queue | 
 | 		 * before restarting the queue at the next URB. */ | 
 | 		qh->initial_toggle = uhci_toggle(td_token(qh->post_td)) ^ 1; | 
 | 		uhci_fixup_toggles(qh, 1); | 
 |  | 
 | 		if (list_empty(&urbp->td_list)) | 
 | 			td = qh->post_td; | 
 | 		qh->element = td->link; | 
 | 		tmp = urbp->td_list.prev; | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	/* Remove all the TDs we skipped over, from tmp back to the start */ | 
 | 	while (tmp != &urbp->td_list) { | 
 | 		td = list_entry(tmp, struct uhci_td, list); | 
 | 		tmp = tmp->prev; | 
 |  | 
 | 		uhci_remove_td_from_urbp(td); | 
 | 		uhci_free_td(uhci, td); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Common result for control, bulk, and interrupt | 
 |  */ | 
 | static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) | 
 | { | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 | 	struct uhci_qh *qh = urbp->qh; | 
 | 	struct uhci_td *td, *tmp; | 
 | 	unsigned status; | 
 | 	int ret = 0; | 
 |  | 
 | 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
 | 		unsigned int ctrlstat; | 
 | 		int len; | 
 |  | 
 | 		ctrlstat = td_status(td); | 
 | 		status = uhci_status_bits(ctrlstat); | 
 | 		if (status & TD_CTRL_ACTIVE) | 
 | 			return -EINPROGRESS; | 
 |  | 
 | 		len = uhci_actual_length(ctrlstat); | 
 | 		urb->actual_length += len; | 
 |  | 
 | 		if (status) { | 
 | 			ret = uhci_map_status(status, | 
 | 					uhci_packetout(td_token(td))); | 
 | 			if ((debug == 1 && ret != -EPIPE) || debug > 1) { | 
 | 				/* Some debugging code */ | 
 | 				dev_dbg(&urb->dev->dev, | 
 | 						"%s: failed with status %x\n", | 
 | 						__FUNCTION__, status); | 
 |  | 
 | 				if (debug > 1 && errbuf) { | 
 | 					/* Print the chain for debugging */ | 
 | 					uhci_show_qh(uhci, urbp->qh, errbuf, | 
 | 							ERRBUF_LEN, 0); | 
 | 					lprintk(errbuf); | 
 | 				} | 
 | 			} | 
 |  | 
 | 		/* Did we receive a short packet? */ | 
 | 		} else if (len < uhci_expected_length(td_token(td))) { | 
 |  | 
 | 			/* For control transfers, go to the status TD if | 
 | 			 * this isn't already the last data TD */ | 
 | 			if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
 | 				if (td->list.next != urbp->td_list.prev) | 
 | 					ret = 1; | 
 | 			} | 
 |  | 
 | 			/* For bulk and interrupt, this may be an error */ | 
 | 			else if (urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 				ret = -EREMOTEIO; | 
 |  | 
 | 			/* Fixup needed only if this isn't the URB's last TD */ | 
 | 			else if (&td->list != urbp->td_list.prev) | 
 | 				ret = 1; | 
 | 		} | 
 |  | 
 | 		uhci_remove_td_from_urbp(td); | 
 | 		if (qh->post_td) | 
 | 			uhci_free_td(uhci, qh->post_td); | 
 | 		qh->post_td = td; | 
 |  | 
 | 		if (ret != 0) | 
 | 			goto err; | 
 | 	} | 
 | 	return ret; | 
 |  | 
 | err: | 
 | 	if (ret < 0) { | 
 | 		/* Note that the queue has stopped and save | 
 | 		 * the next toggle value */ | 
 | 		qh->element = UHCI_PTR_TERM; | 
 | 		qh->is_stopped = 1; | 
 | 		qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); | 
 | 		qh->initial_toggle = uhci_toggle(td_token(td)) ^ | 
 | 				(ret == -EREMOTEIO); | 
 |  | 
 | 	} else		/* Short packet received */ | 
 | 		ret = uhci_fixup_short_transfer(uhci, qh, urbp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Isochronous transfers | 
 |  */ | 
 | static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, | 
 | 		struct uhci_qh *qh) | 
 | { | 
 | 	struct uhci_td *td = NULL;	/* Since urb->number_of_packets > 0 */ | 
 | 	int i, frame; | 
 | 	unsigned long destination, status; | 
 | 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
 |  | 
 | 	/* Values must not be too big (could overflow below) */ | 
 | 	if (urb->interval >= UHCI_NUMFRAMES || | 
 | 			urb->number_of_packets >= UHCI_NUMFRAMES) | 
 | 		return -EFBIG; | 
 |  | 
 | 	/* Check the period and figure out the starting frame number */ | 
 | 	if (!qh->bandwidth_reserved) { | 
 | 		qh->period = urb->interval; | 
 | 		if (urb->transfer_flags & URB_ISO_ASAP) { | 
 | 			qh->phase = -1;		/* Find the best phase */ | 
 | 			i = uhci_check_bandwidth(uhci, qh); | 
 | 			if (i) | 
 | 				return i; | 
 |  | 
 | 			/* Allow a little time to allocate the TDs */ | 
 | 			uhci_get_current_frame_number(uhci); | 
 | 			frame = uhci->frame_number + 10; | 
 |  | 
 | 			/* Move forward to the first frame having the | 
 | 			 * correct phase */ | 
 | 			urb->start_frame = frame + ((qh->phase - frame) & | 
 | 					(qh->period - 1)); | 
 | 		} else { | 
 | 			i = urb->start_frame - uhci->last_iso_frame; | 
 | 			if (i <= 0 || i >= UHCI_NUMFRAMES) | 
 | 				return -EINVAL; | 
 | 			qh->phase = urb->start_frame & (qh->period - 1); | 
 | 			i = uhci_check_bandwidth(uhci, qh); | 
 | 			if (i) | 
 | 				return i; | 
 | 		} | 
 |  | 
 | 	} else if (qh->period != urb->interval) { | 
 | 		return -EINVAL;		/* Can't change the period */ | 
 |  | 
 | 	} else { | 
 | 		/* Find the next unused frame */ | 
 | 		if (list_empty(&qh->queue)) { | 
 | 			frame = qh->iso_frame; | 
 | 		} else { | 
 | 			struct urb *lurb; | 
 |  | 
 | 			lurb = list_entry(qh->queue.prev, | 
 | 					struct urb_priv, node)->urb; | 
 | 			frame = lurb->start_frame + | 
 | 					lurb->number_of_packets * | 
 | 					lurb->interval; | 
 | 		} | 
 | 		if (urb->transfer_flags & URB_ISO_ASAP) { | 
 | 			/* Skip some frames if necessary to insure | 
 | 			 * the start frame is in the future. | 
 | 			 */ | 
 | 			uhci_get_current_frame_number(uhci); | 
 | 			if (uhci_frame_before_eq(frame, uhci->frame_number)) { | 
 | 				frame = uhci->frame_number + 1; | 
 | 				frame += ((qh->phase - frame) & | 
 | 					(qh->period - 1)); | 
 | 			} | 
 | 		}	/* Otherwise pick up where the last URB leaves off */ | 
 | 		urb->start_frame = frame; | 
 | 	} | 
 |  | 
 | 	/* Make sure we won't have to go too far into the future */ | 
 | 	if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, | 
 | 			urb->start_frame + urb->number_of_packets * | 
 | 				urb->interval)) | 
 | 		return -EFBIG; | 
 |  | 
 | 	status = TD_CTRL_ACTIVE | TD_CTRL_IOS; | 
 | 	destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); | 
 |  | 
 | 	for (i = 0; i < urb->number_of_packets; i++) { | 
 | 		td = uhci_alloc_td(uhci); | 
 | 		if (!td) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		uhci_add_td_to_urbp(td, urbp); | 
 | 		uhci_fill_td(td, status, destination | | 
 | 				uhci_explen(urb->iso_frame_desc[i].length), | 
 | 				urb->transfer_dma + | 
 | 					urb->iso_frame_desc[i].offset); | 
 | 	} | 
 |  | 
 | 	/* Set the interrupt-on-completion flag on the last packet. */ | 
 | 	td->status |= __constant_cpu_to_le32(TD_CTRL_IOC); | 
 |  | 
 | 	/* Add the TDs to the frame list */ | 
 | 	frame = urb->start_frame; | 
 | 	list_for_each_entry(td, &urbp->td_list, list) { | 
 | 		uhci_insert_td_in_frame_list(uhci, td, frame); | 
 | 		frame += qh->period; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&qh->queue)) { | 
 | 		qh->iso_packet_desc = &urb->iso_frame_desc[0]; | 
 | 		qh->iso_frame = urb->start_frame; | 
 | 	} | 
 |  | 
 | 	qh->skel = SKEL_ISO; | 
 | 	if (!qh->bandwidth_reserved) | 
 | 		uhci_reserve_bandwidth(uhci, qh); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) | 
 | { | 
 | 	struct uhci_td *td, *tmp; | 
 | 	struct urb_priv *urbp = urb->hcpriv; | 
 | 	struct uhci_qh *qh = urbp->qh; | 
 |  | 
 | 	list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { | 
 | 		unsigned int ctrlstat; | 
 | 		int status; | 
 | 		int actlength; | 
 |  | 
 | 		if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) | 
 | 			return -EINPROGRESS; | 
 |  | 
 | 		uhci_remove_tds_from_frame(uhci, qh->iso_frame); | 
 |  | 
 | 		ctrlstat = td_status(td); | 
 | 		if (ctrlstat & TD_CTRL_ACTIVE) { | 
 | 			status = -EXDEV;	/* TD was added too late? */ | 
 | 		} else { | 
 | 			status = uhci_map_status(uhci_status_bits(ctrlstat), | 
 | 					usb_pipeout(urb->pipe)); | 
 | 			actlength = uhci_actual_length(ctrlstat); | 
 |  | 
 | 			urb->actual_length += actlength; | 
 | 			qh->iso_packet_desc->actual_length = actlength; | 
 | 			qh->iso_packet_desc->status = status; | 
 | 		} | 
 | 		if (status) | 
 | 			urb->error_count++; | 
 |  | 
 | 		uhci_remove_td_from_urbp(td); | 
 | 		uhci_free_td(uhci, td); | 
 | 		qh->iso_frame += qh->period; | 
 | 		++qh->iso_packet_desc; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int uhci_urb_enqueue(struct usb_hcd *hcd, | 
 | 		struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	int ret; | 
 | 	struct uhci_hcd *uhci = hcd_to_uhci(hcd); | 
 | 	unsigned long flags; | 
 | 	struct urb_priv *urbp; | 
 | 	struct uhci_qh *qh; | 
 |  | 
 | 	spin_lock_irqsave(&uhci->lock, flags); | 
 |  | 
 | 	ret = usb_hcd_link_urb_to_ep(hcd, urb); | 
 | 	if (ret) | 
 | 		goto done_not_linked; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	urbp = uhci_alloc_urb_priv(uhci, urb); | 
 | 	if (!urbp) | 
 | 		goto done; | 
 |  | 
 | 	if (urb->ep->hcpriv) | 
 | 		qh = urb->ep->hcpriv; | 
 | 	else { | 
 | 		qh = uhci_alloc_qh(uhci, urb->dev, urb->ep); | 
 | 		if (!qh) | 
 | 			goto err_no_qh; | 
 | 	} | 
 | 	urbp->qh = qh; | 
 |  | 
 | 	switch (qh->type) { | 
 | 	case USB_ENDPOINT_XFER_CONTROL: | 
 | 		ret = uhci_submit_control(uhci, urb, qh); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_BULK: | 
 | 		ret = uhci_submit_bulk(uhci, urb, qh); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_INT: | 
 | 		ret = uhci_submit_interrupt(uhci, urb, qh); | 
 | 		break; | 
 | 	case USB_ENDPOINT_XFER_ISOC: | 
 | 		urb->error_count = 0; | 
 | 		ret = uhci_submit_isochronous(uhci, urb, qh); | 
 | 		break; | 
 | 	} | 
 | 	if (ret != 0) | 
 | 		goto err_submit_failed; | 
 |  | 
 | 	/* Add this URB to the QH */ | 
 | 	urbp->qh = qh; | 
 | 	list_add_tail(&urbp->node, &qh->queue); | 
 |  | 
 | 	/* If the new URB is the first and only one on this QH then either | 
 | 	 * the QH is new and idle or else it's unlinked and waiting to | 
 | 	 * become idle, so we can activate it right away.  But only if the | 
 | 	 * queue isn't stopped. */ | 
 | 	if (qh->queue.next == &urbp->node && !qh->is_stopped) { | 
 | 		uhci_activate_qh(uhci, qh); | 
 | 		uhci_urbp_wants_fsbr(uhci, urbp); | 
 | 	} | 
 | 	goto done; | 
 |  | 
 | err_submit_failed: | 
 | 	if (qh->state == QH_STATE_IDLE) | 
 | 		uhci_make_qh_idle(uhci, qh);	/* Reclaim unused QH */ | 
 | err_no_qh: | 
 | 	uhci_free_urb_priv(uhci, urbp); | 
 | done: | 
 | 	if (ret) | 
 | 		usb_hcd_unlink_urb_from_ep(hcd, urb); | 
 | done_not_linked: | 
 | 	spin_unlock_irqrestore(&uhci->lock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) | 
 | { | 
 | 	struct uhci_hcd *uhci = hcd_to_uhci(hcd); | 
 | 	unsigned long flags; | 
 | 	struct uhci_qh *qh; | 
 | 	int rc; | 
 |  | 
 | 	spin_lock_irqsave(&uhci->lock, flags); | 
 | 	rc = usb_hcd_check_unlink_urb(hcd, urb, status); | 
 | 	if (rc) | 
 | 		goto done; | 
 |  | 
 | 	qh = ((struct urb_priv *) urb->hcpriv)->qh; | 
 |  | 
 | 	/* Remove Isochronous TDs from the frame list ASAP */ | 
 | 	if (qh->type == USB_ENDPOINT_XFER_ISOC) { | 
 | 		uhci_unlink_isochronous_tds(uhci, urb); | 
 | 		mb(); | 
 |  | 
 | 		/* If the URB has already started, update the QH unlink time */ | 
 | 		uhci_get_current_frame_number(uhci); | 
 | 		if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) | 
 | 			qh->unlink_frame = uhci->frame_number; | 
 | 	} | 
 |  | 
 | 	uhci_unlink_qh(uhci, qh); | 
 |  | 
 | done: | 
 | 	spin_unlock_irqrestore(&uhci->lock, flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Finish unlinking an URB and give it back | 
 |  */ | 
 | static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, | 
 | 		struct urb *urb, int status) | 
 | __releases(uhci->lock) | 
 | __acquires(uhci->lock) | 
 | { | 
 | 	struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; | 
 |  | 
 | 	if (qh->type == USB_ENDPOINT_XFER_CONTROL) { | 
 |  | 
 | 		/* urb->actual_length < 0 means the setup transaction didn't | 
 | 		 * complete successfully.  Either it failed or the URB was | 
 | 		 * unlinked first.  Regardless, don't confuse people with a | 
 | 		 * negative length. */ | 
 | 		urb->actual_length = max(urb->actual_length, 0); | 
 | 	} | 
 |  | 
 | 	/* When giving back the first URB in an Isochronous queue, | 
 | 	 * reinitialize the QH's iso-related members for the next URB. */ | 
 | 	else if (qh->type == USB_ENDPOINT_XFER_ISOC && | 
 | 			urbp->node.prev == &qh->queue && | 
 | 			urbp->node.next != &qh->queue) { | 
 | 		struct urb *nurb = list_entry(urbp->node.next, | 
 | 				struct urb_priv, node)->urb; | 
 |  | 
 | 		qh->iso_packet_desc = &nurb->iso_frame_desc[0]; | 
 | 		qh->iso_frame = nurb->start_frame; | 
 | 	} | 
 |  | 
 | 	/* Take the URB off the QH's queue.  If the queue is now empty, | 
 | 	 * this is a perfect time for a toggle fixup. */ | 
 | 	list_del_init(&urbp->node); | 
 | 	if (list_empty(&qh->queue) && qh->needs_fixup) { | 
 | 		usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), | 
 | 				usb_pipeout(urb->pipe), qh->initial_toggle); | 
 | 		qh->needs_fixup = 0; | 
 | 	} | 
 |  | 
 | 	uhci_free_urb_priv(uhci, urbp); | 
 | 	usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb); | 
 |  | 
 | 	spin_unlock(&uhci->lock); | 
 | 	usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status); | 
 | 	spin_lock(&uhci->lock); | 
 |  | 
 | 	/* If the queue is now empty, we can unlink the QH and give up its | 
 | 	 * reserved bandwidth. */ | 
 | 	if (list_empty(&qh->queue)) { | 
 | 		uhci_unlink_qh(uhci, qh); | 
 | 		if (qh->bandwidth_reserved) | 
 | 			uhci_release_bandwidth(uhci, qh); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Scan the URBs in a QH's queue | 
 |  */ | 
 | #define QH_FINISHED_UNLINKING(qh)			\ | 
 | 		(qh->state == QH_STATE_UNLINKING &&	\ | 
 | 		uhci->frame_number + uhci->is_stopped != qh->unlink_frame) | 
 |  | 
 | static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct urb_priv *urbp; | 
 | 	struct urb *urb; | 
 | 	int status; | 
 |  | 
 | 	while (!list_empty(&qh->queue)) { | 
 | 		urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
 | 		urb = urbp->urb; | 
 |  | 
 | 		if (qh->type == USB_ENDPOINT_XFER_ISOC) | 
 | 			status = uhci_result_isochronous(uhci, urb); | 
 | 		else | 
 | 			status = uhci_result_common(uhci, urb); | 
 | 		if (status == -EINPROGRESS) | 
 | 			break; | 
 |  | 
 | 		/* Dequeued but completed URBs can't be given back unless | 
 | 		 * the QH is stopped or has finished unlinking. */ | 
 | 		if (urb->unlinked) { | 
 | 			if (QH_FINISHED_UNLINKING(qh)) | 
 | 				qh->is_stopped = 1; | 
 | 			else if (!qh->is_stopped) | 
 | 				return; | 
 | 		} | 
 |  | 
 | 		uhci_giveback_urb(uhci, qh, urb, status); | 
 | 		if (status < 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* If the QH is neither stopped nor finished unlinking (normal case), | 
 | 	 * our work here is done. */ | 
 | 	if (QH_FINISHED_UNLINKING(qh)) | 
 | 		qh->is_stopped = 1; | 
 | 	else if (!qh->is_stopped) | 
 | 		return; | 
 |  | 
 | 	/* Otherwise give back each of the dequeued URBs */ | 
 | restart: | 
 | 	list_for_each_entry(urbp, &qh->queue, node) { | 
 | 		urb = urbp->urb; | 
 | 		if (urb->unlinked) { | 
 |  | 
 | 			/* Fix up the TD links and save the toggles for | 
 | 			 * non-Isochronous queues.  For Isochronous queues, | 
 | 			 * test for too-recent dequeues. */ | 
 | 			if (!uhci_cleanup_queue(uhci, qh, urb)) { | 
 | 				qh->is_stopped = 0; | 
 | 				return; | 
 | 			} | 
 | 			uhci_giveback_urb(uhci, qh, urb, 0); | 
 | 			goto restart; | 
 | 		} | 
 | 	} | 
 | 	qh->is_stopped = 0; | 
 |  | 
 | 	/* There are no more dequeued URBs.  If there are still URBs on the | 
 | 	 * queue, the QH can now be re-activated. */ | 
 | 	if (!list_empty(&qh->queue)) { | 
 | 		if (qh->needs_fixup) | 
 | 			uhci_fixup_toggles(qh, 0); | 
 |  | 
 | 		/* If the first URB on the queue wants FSBR but its time | 
 | 		 * limit has expired, set the next TD to interrupt on | 
 | 		 * completion before reactivating the QH. */ | 
 | 		urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
 | 		if (urbp->fsbr && qh->wait_expired) { | 
 | 			struct uhci_td *td = list_entry(urbp->td_list.next, | 
 | 					struct uhci_td, list); | 
 |  | 
 | 			td->status |= __cpu_to_le32(TD_CTRL_IOC); | 
 | 		} | 
 |  | 
 | 		uhci_activate_qh(uhci, qh); | 
 | 	} | 
 |  | 
 | 	/* The queue is empty.  The QH can become idle if it is fully | 
 | 	 * unlinked. */ | 
 | 	else if (QH_FINISHED_UNLINKING(qh)) | 
 | 		uhci_make_qh_idle(uhci, qh); | 
 | } | 
 |  | 
 | /* | 
 |  * Check for queues that have made some forward progress. | 
 |  * Returns 0 if the queue is not Isochronous, is ACTIVE, and | 
 |  * has not advanced since last examined; 1 otherwise. | 
 |  * | 
 |  * Early Intel controllers have a bug which causes qh->element sometimes | 
 |  * not to advance when a TD completes successfully.  The queue remains | 
 |  * stuck on the inactive completed TD.  We detect such cases and advance | 
 |  * the element pointer by hand. | 
 |  */ | 
 | static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) | 
 | { | 
 | 	struct urb_priv *urbp = NULL; | 
 | 	struct uhci_td *td; | 
 | 	int ret = 1; | 
 | 	unsigned status; | 
 |  | 
 | 	if (qh->type == USB_ENDPOINT_XFER_ISOC) | 
 | 		goto done; | 
 |  | 
 | 	/* Treat an UNLINKING queue as though it hasn't advanced. | 
 | 	 * This is okay because reactivation will treat it as though | 
 | 	 * it has advanced, and if it is going to become IDLE then | 
 | 	 * this doesn't matter anyway.  Furthermore it's possible | 
 | 	 * for an UNLINKING queue not to have any URBs at all, or | 
 | 	 * for its first URB not to have any TDs (if it was dequeued | 
 | 	 * just as it completed).  So it's not easy in any case to | 
 | 	 * test whether such queues have advanced. */ | 
 | 	if (qh->state != QH_STATE_ACTIVE) { | 
 | 		urbp = NULL; | 
 | 		status = 0; | 
 |  | 
 | 	} else { | 
 | 		urbp = list_entry(qh->queue.next, struct urb_priv, node); | 
 | 		td = list_entry(urbp->td_list.next, struct uhci_td, list); | 
 | 		status = td_status(td); | 
 | 		if (!(status & TD_CTRL_ACTIVE)) { | 
 |  | 
 | 			/* We're okay, the queue has advanced */ | 
 | 			qh->wait_expired = 0; | 
 | 			qh->advance_jiffies = jiffies; | 
 | 			goto done; | 
 | 		} | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	/* The queue hasn't advanced; check for timeout */ | 
 | 	if (qh->wait_expired) | 
 | 		goto done; | 
 |  | 
 | 	if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { | 
 |  | 
 | 		/* Detect the Intel bug and work around it */ | 
 | 		if (qh->post_td && qh_element(qh) == LINK_TO_TD(qh->post_td)) { | 
 | 			qh->element = qh->post_td->link; | 
 | 			qh->advance_jiffies = jiffies; | 
 | 			ret = 1; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		qh->wait_expired = 1; | 
 |  | 
 | 		/* If the current URB wants FSBR, unlink it temporarily | 
 | 		 * so that we can safely set the next TD to interrupt on | 
 | 		 * completion.  That way we'll know as soon as the queue | 
 | 		 * starts moving again. */ | 
 | 		if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) | 
 | 			uhci_unlink_qh(uhci, qh); | 
 |  | 
 | 	} else { | 
 | 		/* Unmoving but not-yet-expired queues keep FSBR alive */ | 
 | 		if (urbp) | 
 | 			uhci_urbp_wants_fsbr(uhci, urbp); | 
 | 	} | 
 |  | 
 | done: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Process events in the schedule, but only in one thread at a time | 
 |  */ | 
 | static void uhci_scan_schedule(struct uhci_hcd *uhci) | 
 | { | 
 | 	int i; | 
 | 	struct uhci_qh *qh; | 
 |  | 
 | 	/* Don't allow re-entrant calls */ | 
 | 	if (uhci->scan_in_progress) { | 
 | 		uhci->need_rescan = 1; | 
 | 		return; | 
 | 	} | 
 | 	uhci->scan_in_progress = 1; | 
 | rescan: | 
 | 	uhci->need_rescan = 0; | 
 | 	uhci->fsbr_is_wanted = 0; | 
 |  | 
 | 	uhci_clear_next_interrupt(uhci); | 
 | 	uhci_get_current_frame_number(uhci); | 
 | 	uhci->cur_iso_frame = uhci->frame_number; | 
 |  | 
 | 	/* Go through all the QH queues and process the URBs in each one */ | 
 | 	for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { | 
 | 		uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, | 
 | 				struct uhci_qh, node); | 
 | 		while ((qh = uhci->next_qh) != uhci->skelqh[i]) { | 
 | 			uhci->next_qh = list_entry(qh->node.next, | 
 | 					struct uhci_qh, node); | 
 |  | 
 | 			if (uhci_advance_check(uhci, qh)) { | 
 | 				uhci_scan_qh(uhci, qh); | 
 | 				if (qh->state == QH_STATE_ACTIVE) { | 
 | 					uhci_urbp_wants_fsbr(uhci, | 
 | 	list_entry(qh->queue.next, struct urb_priv, node)); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	uhci->last_iso_frame = uhci->cur_iso_frame; | 
 | 	if (uhci->need_rescan) | 
 | 		goto rescan; | 
 | 	uhci->scan_in_progress = 0; | 
 |  | 
 | 	if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && | 
 | 			!uhci->fsbr_expiring) { | 
 | 		uhci->fsbr_expiring = 1; | 
 | 		mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); | 
 | 	} | 
 |  | 
 | 	if (list_empty(&uhci->skel_unlink_qh->node)) | 
 | 		uhci_clear_next_interrupt(uhci); | 
 | 	else | 
 | 		uhci_set_next_interrupt(uhci); | 
 | } |