| /* | 
 |  * Copyright (c) 2000-2006 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include <linux/stddef.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/init.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/sysctl.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/kthread.h> | 
 | #include <linux/migrate.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/list_sort.h> | 
 |  | 
 | #include "xfs_sb.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_trace.h" | 
 |  | 
 | static kmem_zone_t *xfs_buf_zone; | 
 | STATIC int xfsbufd(void *); | 
 | STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int); | 
 |  | 
 | static struct workqueue_struct *xfslogd_workqueue; | 
 | struct workqueue_struct *xfsdatad_workqueue; | 
 | struct workqueue_struct *xfsconvertd_workqueue; | 
 |  | 
 | #ifdef XFS_BUF_LOCK_TRACKING | 
 | # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid) | 
 | # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1) | 
 | # define XB_GET_OWNER(bp)	((bp)->b_last_holder) | 
 | #else | 
 | # define XB_SET_OWNER(bp)	do { } while (0) | 
 | # define XB_CLEAR_OWNER(bp)	do { } while (0) | 
 | # define XB_GET_OWNER(bp)	do { } while (0) | 
 | #endif | 
 |  | 
 | #define xb_to_gfp(flags) \ | 
 | 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ | 
 | 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) | 
 |  | 
 | #define xb_to_km(flags) \ | 
 | 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) | 
 |  | 
 | #define xfs_buf_allocate(flags) \ | 
 | 	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)) | 
 | #define xfs_buf_deallocate(bp) \ | 
 | 	kmem_zone_free(xfs_buf_zone, (bp)); | 
 |  | 
 | static inline int | 
 | xfs_buf_is_vmapped( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	/* | 
 | 	 * Return true if the buffer is vmapped. | 
 | 	 * | 
 | 	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the | 
 | 	 * code is clever enough to know it doesn't have to map a single page, | 
 | 	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. | 
 | 	 */ | 
 | 	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; | 
 | } | 
 |  | 
 | static inline int | 
 | xfs_buf_vmap_len( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_buf_lru_add - add a buffer to the LRU. | 
 |  * | 
 |  * The LRU takes a new reference to the buffer so that it will only be freed | 
 |  * once the shrinker takes the buffer off the LRU. | 
 |  */ | 
 | STATIC void | 
 | xfs_buf_lru_add( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_buftarg *btp = bp->b_target; | 
 |  | 
 | 	spin_lock(&btp->bt_lru_lock); | 
 | 	if (list_empty(&bp->b_lru)) { | 
 | 		atomic_inc(&bp->b_hold); | 
 | 		list_add_tail(&bp->b_lru, &btp->bt_lru); | 
 | 		btp->bt_lru_nr++; | 
 | 	} | 
 | 	spin_unlock(&btp->bt_lru_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_buf_lru_del - remove a buffer from the LRU | 
 |  * | 
 |  * The unlocked check is safe here because it only occurs when there are not | 
 |  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there | 
 |  * to optimise the shrinker removing the buffer from the LRU and calling | 
 |  * xfs_buf_free(). i.e. it removes an unneccessary round trip on the | 
 |  * bt_lru_lock. | 
 |  */ | 
 | STATIC void | 
 | xfs_buf_lru_del( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_buftarg *btp = bp->b_target; | 
 |  | 
 | 	if (list_empty(&bp->b_lru)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&btp->bt_lru_lock); | 
 | 	if (!list_empty(&bp->b_lru)) { | 
 | 		list_del_init(&bp->b_lru); | 
 | 		btp->bt_lru_nr--; | 
 | 	} | 
 | 	spin_unlock(&btp->bt_lru_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * When we mark a buffer stale, we remove the buffer from the LRU and clear the | 
 |  * b_lru_ref count so that the buffer is freed immediately when the buffer | 
 |  * reference count falls to zero. If the buffer is already on the LRU, we need | 
 |  * to remove the reference that LRU holds on the buffer. | 
 |  * | 
 |  * This prevents build-up of stale buffers on the LRU. | 
 |  */ | 
 | void | 
 | xfs_buf_stale( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	bp->b_flags |= XBF_STALE; | 
 | 	atomic_set(&(bp)->b_lru_ref, 0); | 
 | 	if (!list_empty(&bp->b_lru)) { | 
 | 		struct xfs_buftarg *btp = bp->b_target; | 
 |  | 
 | 		spin_lock(&btp->bt_lru_lock); | 
 | 		if (!list_empty(&bp->b_lru)) { | 
 | 			list_del_init(&bp->b_lru); | 
 | 			btp->bt_lru_nr--; | 
 | 			atomic_dec(&bp->b_hold); | 
 | 		} | 
 | 		spin_unlock(&btp->bt_lru_lock); | 
 | 	} | 
 | 	ASSERT(atomic_read(&bp->b_hold) >= 1); | 
 | } | 
 |  | 
 | STATIC void | 
 | _xfs_buf_initialize( | 
 | 	xfs_buf_t		*bp, | 
 | 	xfs_buftarg_t		*target, | 
 | 	xfs_off_t		range_base, | 
 | 	size_t			range_length, | 
 | 	xfs_buf_flags_t		flags) | 
 | { | 
 | 	/* | 
 | 	 * We don't want certain flags to appear in b_flags. | 
 | 	 */ | 
 | 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); | 
 |  | 
 | 	memset(bp, 0, sizeof(xfs_buf_t)); | 
 | 	atomic_set(&bp->b_hold, 1); | 
 | 	atomic_set(&bp->b_lru_ref, 1); | 
 | 	init_completion(&bp->b_iowait); | 
 | 	INIT_LIST_HEAD(&bp->b_lru); | 
 | 	INIT_LIST_HEAD(&bp->b_list); | 
 | 	RB_CLEAR_NODE(&bp->b_rbnode); | 
 | 	sema_init(&bp->b_sema, 0); /* held, no waiters */ | 
 | 	XB_SET_OWNER(bp); | 
 | 	bp->b_target = target; | 
 | 	bp->b_file_offset = range_base; | 
 | 	/* | 
 | 	 * Set buffer_length and count_desired to the same value initially. | 
 | 	 * I/O routines should use count_desired, which will be the same in | 
 | 	 * most cases but may be reset (e.g. XFS recovery). | 
 | 	 */ | 
 | 	bp->b_buffer_length = bp->b_count_desired = range_length; | 
 | 	bp->b_flags = flags; | 
 | 	bp->b_bn = XFS_BUF_DADDR_NULL; | 
 | 	atomic_set(&bp->b_pin_count, 0); | 
 | 	init_waitqueue_head(&bp->b_waiters); | 
 |  | 
 | 	XFS_STATS_INC(xb_create); | 
 |  | 
 | 	trace_xfs_buf_init(bp, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  *	Allocate a page array capable of holding a specified number | 
 |  *	of pages, and point the page buf at it. | 
 |  */ | 
 | STATIC int | 
 | _xfs_buf_get_pages( | 
 | 	xfs_buf_t		*bp, | 
 | 	int			page_count, | 
 | 	xfs_buf_flags_t		flags) | 
 | { | 
 | 	/* Make sure that we have a page list */ | 
 | 	if (bp->b_pages == NULL) { | 
 | 		bp->b_offset = xfs_buf_poff(bp->b_file_offset); | 
 | 		bp->b_page_count = page_count; | 
 | 		if (page_count <= XB_PAGES) { | 
 | 			bp->b_pages = bp->b_page_array; | 
 | 		} else { | 
 | 			bp->b_pages = kmem_alloc(sizeof(struct page *) * | 
 | 					page_count, xb_to_km(flags)); | 
 | 			if (bp->b_pages == NULL) | 
 | 				return -ENOMEM; | 
 | 		} | 
 | 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Frees b_pages if it was allocated. | 
 |  */ | 
 | STATIC void | 
 | _xfs_buf_free_pages( | 
 | 	xfs_buf_t	*bp) | 
 | { | 
 | 	if (bp->b_pages != bp->b_page_array) { | 
 | 		kmem_free(bp->b_pages); | 
 | 		bp->b_pages = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	Releases the specified buffer. | 
 |  * | 
 |  * 	The modification state of any associated pages is left unchanged. | 
 |  * 	The buffer most not be on any hash - use xfs_buf_rele instead for | 
 |  * 	hashed and refcounted buffers | 
 |  */ | 
 | void | 
 | xfs_buf_free( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	trace_xfs_buf_free(bp, _RET_IP_); | 
 |  | 
 | 	ASSERT(list_empty(&bp->b_lru)); | 
 |  | 
 | 	if (bp->b_flags & _XBF_PAGES) { | 
 | 		uint		i; | 
 |  | 
 | 		if (xfs_buf_is_vmapped(bp)) | 
 | 			vm_unmap_ram(bp->b_addr - bp->b_offset, | 
 | 					bp->b_page_count); | 
 |  | 
 | 		for (i = 0; i < bp->b_page_count; i++) { | 
 | 			struct page	*page = bp->b_pages[i]; | 
 |  | 
 | 			__free_page(page); | 
 | 		} | 
 | 	} else if (bp->b_flags & _XBF_KMEM) | 
 | 		kmem_free(bp->b_addr); | 
 | 	_xfs_buf_free_pages(bp); | 
 | 	xfs_buf_deallocate(bp); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocates all the pages for buffer in question and builds it's page list. | 
 |  */ | 
 | STATIC int | 
 | xfs_buf_allocate_memory( | 
 | 	xfs_buf_t		*bp, | 
 | 	uint			flags) | 
 | { | 
 | 	size_t			size = bp->b_count_desired; | 
 | 	size_t			nbytes, offset; | 
 | 	gfp_t			gfp_mask = xb_to_gfp(flags); | 
 | 	unsigned short		page_count, i; | 
 | 	pgoff_t			first; | 
 | 	xfs_off_t		end; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * for buffers that are contained within a single page, just allocate | 
 | 	 * the memory from the heap - there's no need for the complexity of | 
 | 	 * page arrays to keep allocation down to order 0. | 
 | 	 */ | 
 | 	if (bp->b_buffer_length < PAGE_SIZE) { | 
 | 		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); | 
 | 		if (!bp->b_addr) { | 
 | 			/* low memory - use alloc_page loop instead */ | 
 | 			goto use_alloc_page; | 
 | 		} | 
 |  | 
 | 		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & | 
 | 								PAGE_MASK) != | 
 | 		    ((unsigned long)bp->b_addr & PAGE_MASK)) { | 
 | 			/* b_addr spans two pages - use alloc_page instead */ | 
 | 			kmem_free(bp->b_addr); | 
 | 			bp->b_addr = NULL; | 
 | 			goto use_alloc_page; | 
 | 		} | 
 | 		bp->b_offset = offset_in_page(bp->b_addr); | 
 | 		bp->b_pages = bp->b_page_array; | 
 | 		bp->b_pages[0] = virt_to_page(bp->b_addr); | 
 | 		bp->b_page_count = 1; | 
 | 		bp->b_flags |= XBF_MAPPED | _XBF_KMEM; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | use_alloc_page: | 
 | 	end = bp->b_file_offset + bp->b_buffer_length; | 
 | 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); | 
 | 	error = _xfs_buf_get_pages(bp, page_count, flags); | 
 | 	if (unlikely(error)) | 
 | 		return error; | 
 |  | 
 | 	offset = bp->b_offset; | 
 | 	first = bp->b_file_offset >> PAGE_SHIFT; | 
 | 	bp->b_flags |= _XBF_PAGES; | 
 |  | 
 | 	for (i = 0; i < bp->b_page_count; i++) { | 
 | 		struct page	*page; | 
 | 		uint		retries = 0; | 
 | retry: | 
 | 		page = alloc_page(gfp_mask); | 
 | 		if (unlikely(page == NULL)) { | 
 | 			if (flags & XBF_READ_AHEAD) { | 
 | 				bp->b_page_count = i; | 
 | 				error = ENOMEM; | 
 | 				goto out_free_pages; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * This could deadlock. | 
 | 			 * | 
 | 			 * But until all the XFS lowlevel code is revamped to | 
 | 			 * handle buffer allocation failures we can't do much. | 
 | 			 */ | 
 | 			if (!(++retries % 100)) | 
 | 				xfs_err(NULL, | 
 | 		"possible memory allocation deadlock in %s (mode:0x%x)", | 
 | 					__func__, gfp_mask); | 
 |  | 
 | 			XFS_STATS_INC(xb_page_retries); | 
 | 			congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 			goto retry; | 
 | 		} | 
 |  | 
 | 		XFS_STATS_INC(xb_page_found); | 
 |  | 
 | 		nbytes = min_t(size_t, size, PAGE_SIZE - offset); | 
 | 		size -= nbytes; | 
 | 		bp->b_pages[i] = page; | 
 | 		offset = 0; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out_free_pages: | 
 | 	for (i = 0; i < bp->b_page_count; i++) | 
 | 		__free_page(bp->b_pages[i]); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  *	Map buffer into kernel address-space if nessecary. | 
 |  */ | 
 | STATIC int | 
 | _xfs_buf_map_pages( | 
 | 	xfs_buf_t		*bp, | 
 | 	uint			flags) | 
 | { | 
 | 	ASSERT(bp->b_flags & _XBF_PAGES); | 
 | 	if (bp->b_page_count == 1) { | 
 | 		/* A single page buffer is always mappable */ | 
 | 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; | 
 | 		bp->b_flags |= XBF_MAPPED; | 
 | 	} else if (flags & XBF_MAPPED) { | 
 | 		int retried = 0; | 
 |  | 
 | 		do { | 
 | 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, | 
 | 						-1, PAGE_KERNEL); | 
 | 			if (bp->b_addr) | 
 | 				break; | 
 | 			vm_unmap_aliases(); | 
 | 		} while (retried++ <= 1); | 
 |  | 
 | 		if (!bp->b_addr) | 
 | 			return -ENOMEM; | 
 | 		bp->b_addr += bp->b_offset; | 
 | 		bp->b_flags |= XBF_MAPPED; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Finding and Reading Buffers | 
 |  */ | 
 |  | 
 | /* | 
 |  *	Look up, and creates if absent, a lockable buffer for | 
 |  *	a given range of an inode.  The buffer is returned | 
 |  *	locked.	 If other overlapping buffers exist, they are | 
 |  *	released before the new buffer is created and locked, | 
 |  *	which may imply that this call will block until those buffers | 
 |  *	are unlocked.  No I/O is implied by this call. | 
 |  */ | 
 | xfs_buf_t * | 
 | _xfs_buf_find( | 
 | 	xfs_buftarg_t		*btp,	/* block device target		*/ | 
 | 	xfs_off_t		ioff,	/* starting offset of range	*/ | 
 | 	size_t			isize,	/* length of range		*/ | 
 | 	xfs_buf_flags_t		flags, | 
 | 	xfs_buf_t		*new_bp) | 
 | { | 
 | 	xfs_off_t		range_base; | 
 | 	size_t			range_length; | 
 | 	struct xfs_perag	*pag; | 
 | 	struct rb_node		**rbp; | 
 | 	struct rb_node		*parent; | 
 | 	xfs_buf_t		*bp; | 
 |  | 
 | 	range_base = (ioff << BBSHIFT); | 
 | 	range_length = (isize << BBSHIFT); | 
 |  | 
 | 	/* Check for IOs smaller than the sector size / not sector aligned */ | 
 | 	ASSERT(!(range_length < (1 << btp->bt_sshift))); | 
 | 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); | 
 |  | 
 | 	/* get tree root */ | 
 | 	pag = xfs_perag_get(btp->bt_mount, | 
 | 				xfs_daddr_to_agno(btp->bt_mount, ioff)); | 
 |  | 
 | 	/* walk tree */ | 
 | 	spin_lock(&pag->pag_buf_lock); | 
 | 	rbp = &pag->pag_buf_tree.rb_node; | 
 | 	parent = NULL; | 
 | 	bp = NULL; | 
 | 	while (*rbp) { | 
 | 		parent = *rbp; | 
 | 		bp = rb_entry(parent, struct xfs_buf, b_rbnode); | 
 |  | 
 | 		if (range_base < bp->b_file_offset) | 
 | 			rbp = &(*rbp)->rb_left; | 
 | 		else if (range_base > bp->b_file_offset) | 
 | 			rbp = &(*rbp)->rb_right; | 
 | 		else { | 
 | 			/* | 
 | 			 * found a block offset match. If the range doesn't | 
 | 			 * match, the only way this is allowed is if the buffer | 
 | 			 * in the cache is stale and the transaction that made | 
 | 			 * it stale has not yet committed. i.e. we are | 
 | 			 * reallocating a busy extent. Skip this buffer and | 
 | 			 * continue searching to the right for an exact match. | 
 | 			 */ | 
 | 			if (bp->b_buffer_length != range_length) { | 
 | 				ASSERT(bp->b_flags & XBF_STALE); | 
 | 				rbp = &(*rbp)->rb_right; | 
 | 				continue; | 
 | 			} | 
 | 			atomic_inc(&bp->b_hold); | 
 | 			goto found; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* No match found */ | 
 | 	if (new_bp) { | 
 | 		_xfs_buf_initialize(new_bp, btp, range_base, | 
 | 				range_length, flags); | 
 | 		rb_link_node(&new_bp->b_rbnode, parent, rbp); | 
 | 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); | 
 | 		/* the buffer keeps the perag reference until it is freed */ | 
 | 		new_bp->b_pag = pag; | 
 | 		spin_unlock(&pag->pag_buf_lock); | 
 | 	} else { | 
 | 		XFS_STATS_INC(xb_miss_locked); | 
 | 		spin_unlock(&pag->pag_buf_lock); | 
 | 		xfs_perag_put(pag); | 
 | 	} | 
 | 	return new_bp; | 
 |  | 
 | found: | 
 | 	spin_unlock(&pag->pag_buf_lock); | 
 | 	xfs_perag_put(pag); | 
 |  | 
 | 	if (xfs_buf_cond_lock(bp)) { | 
 | 		/* failed, so wait for the lock if requested. */ | 
 | 		if (!(flags & XBF_TRYLOCK)) { | 
 | 			xfs_buf_lock(bp); | 
 | 			XFS_STATS_INC(xb_get_locked_waited); | 
 | 		} else { | 
 | 			xfs_buf_rele(bp); | 
 | 			XFS_STATS_INC(xb_busy_locked); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if the buffer is stale, clear all the external state associated with | 
 | 	 * it. We need to keep flags such as how we allocated the buffer memory | 
 | 	 * intact here. | 
 | 	 */ | 
 | 	if (bp->b_flags & XBF_STALE) { | 
 | 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
 | 		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; | 
 | 	} | 
 |  | 
 | 	trace_xfs_buf_find(bp, flags, _RET_IP_); | 
 | 	XFS_STATS_INC(xb_get_locked); | 
 | 	return bp; | 
 | } | 
 |  | 
 | /* | 
 |  *	Assembles a buffer covering the specified range. | 
 |  *	Storage in memory for all portions of the buffer will be allocated, | 
 |  *	although backing storage may not be. | 
 |  */ | 
 | xfs_buf_t * | 
 | xfs_buf_get( | 
 | 	xfs_buftarg_t		*target,/* target for buffer		*/ | 
 | 	xfs_off_t		ioff,	/* starting offset of range	*/ | 
 | 	size_t			isize,	/* length of range		*/ | 
 | 	xfs_buf_flags_t		flags) | 
 | { | 
 | 	xfs_buf_t		*bp, *new_bp; | 
 | 	int			error = 0; | 
 |  | 
 | 	new_bp = xfs_buf_allocate(flags); | 
 | 	if (unlikely(!new_bp)) | 
 | 		return NULL; | 
 |  | 
 | 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); | 
 | 	if (bp == new_bp) { | 
 | 		error = xfs_buf_allocate_memory(bp, flags); | 
 | 		if (error) | 
 | 			goto no_buffer; | 
 | 	} else { | 
 | 		xfs_buf_deallocate(new_bp); | 
 | 		if (unlikely(bp == NULL)) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	if (!(bp->b_flags & XBF_MAPPED)) { | 
 | 		error = _xfs_buf_map_pages(bp, flags); | 
 | 		if (unlikely(error)) { | 
 | 			xfs_warn(target->bt_mount, | 
 | 				"%s: failed to map pages\n", __func__); | 
 | 			goto no_buffer; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	XFS_STATS_INC(xb_get); | 
 |  | 
 | 	/* | 
 | 	 * Always fill in the block number now, the mapped cases can do | 
 | 	 * their own overlay of this later. | 
 | 	 */ | 
 | 	bp->b_bn = ioff; | 
 | 	bp->b_count_desired = bp->b_buffer_length; | 
 |  | 
 | 	trace_xfs_buf_get(bp, flags, _RET_IP_); | 
 | 	return bp; | 
 |  | 
 |  no_buffer: | 
 | 	if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
 | 		xfs_buf_unlock(bp); | 
 | 	xfs_buf_rele(bp); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | STATIC int | 
 | _xfs_buf_read( | 
 | 	xfs_buf_t		*bp, | 
 | 	xfs_buf_flags_t		flags) | 
 | { | 
 | 	int			status; | 
 |  | 
 | 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); | 
 | 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); | 
 |  | 
 | 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \ | 
 | 			XBF_READ_AHEAD | _XBF_RUN_QUEUES); | 
 | 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \ | 
 | 			XBF_READ_AHEAD | _XBF_RUN_QUEUES); | 
 |  | 
 | 	status = xfs_buf_iorequest(bp); | 
 | 	if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC)) | 
 | 		return status; | 
 | 	return xfs_buf_iowait(bp); | 
 | } | 
 |  | 
 | xfs_buf_t * | 
 | xfs_buf_read( | 
 | 	xfs_buftarg_t		*target, | 
 | 	xfs_off_t		ioff, | 
 | 	size_t			isize, | 
 | 	xfs_buf_flags_t		flags) | 
 | { | 
 | 	xfs_buf_t		*bp; | 
 |  | 
 | 	flags |= XBF_READ; | 
 |  | 
 | 	bp = xfs_buf_get(target, ioff, isize, flags); | 
 | 	if (bp) { | 
 | 		trace_xfs_buf_read(bp, flags, _RET_IP_); | 
 |  | 
 | 		if (!XFS_BUF_ISDONE(bp)) { | 
 | 			XFS_STATS_INC(xb_get_read); | 
 | 			_xfs_buf_read(bp, flags); | 
 | 		} else if (flags & XBF_ASYNC) { | 
 | 			/* | 
 | 			 * Read ahead call which is already satisfied, | 
 | 			 * drop the buffer | 
 | 			 */ | 
 | 			goto no_buffer; | 
 | 		} else { | 
 | 			/* We do not want read in the flags */ | 
 | 			bp->b_flags &= ~XBF_READ; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return bp; | 
 |  | 
 |  no_buffer: | 
 | 	if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
 | 		xfs_buf_unlock(bp); | 
 | 	xfs_buf_rele(bp); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  *	If we are not low on memory then do the readahead in a deadlock | 
 |  *	safe manner. | 
 |  */ | 
 | void | 
 | xfs_buf_readahead( | 
 | 	xfs_buftarg_t		*target, | 
 | 	xfs_off_t		ioff, | 
 | 	size_t			isize) | 
 | { | 
 | 	struct backing_dev_info *bdi; | 
 |  | 
 | 	if (bdi_read_congested(target->bt_bdi)) | 
 | 		return; | 
 |  | 
 | 	xfs_buf_read(target, ioff, isize, | 
 | 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); | 
 | } | 
 |  | 
 | /* | 
 |  * Read an uncached buffer from disk. Allocates and returns a locked | 
 |  * buffer containing the disk contents or nothing. | 
 |  */ | 
 | struct xfs_buf * | 
 | xfs_buf_read_uncached( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_buftarg	*target, | 
 | 	xfs_daddr_t		daddr, | 
 | 	size_t			length, | 
 | 	int			flags) | 
 | { | 
 | 	xfs_buf_t		*bp; | 
 | 	int			error; | 
 |  | 
 | 	bp = xfs_buf_get_uncached(target, length, flags); | 
 | 	if (!bp) | 
 | 		return NULL; | 
 |  | 
 | 	/* set up the buffer for a read IO */ | 
 | 	xfs_buf_lock(bp); | 
 | 	XFS_BUF_SET_ADDR(bp, daddr); | 
 | 	XFS_BUF_READ(bp); | 
 | 	XFS_BUF_BUSY(bp); | 
 |  | 
 | 	xfsbdstrat(mp, bp); | 
 | 	error = xfs_buf_iowait(bp); | 
 | 	if (error || bp->b_error) { | 
 | 		xfs_buf_relse(bp); | 
 | 		return NULL; | 
 | 	} | 
 | 	return bp; | 
 | } | 
 |  | 
 | xfs_buf_t * | 
 | xfs_buf_get_empty( | 
 | 	size_t			len, | 
 | 	xfs_buftarg_t		*target) | 
 | { | 
 | 	xfs_buf_t		*bp; | 
 |  | 
 | 	bp = xfs_buf_allocate(0); | 
 | 	if (bp) | 
 | 		_xfs_buf_initialize(bp, target, 0, len, 0); | 
 | 	return bp; | 
 | } | 
 |  | 
 | static inline struct page * | 
 | mem_to_page( | 
 | 	void			*addr) | 
 | { | 
 | 	if ((!is_vmalloc_addr(addr))) { | 
 | 		return virt_to_page(addr); | 
 | 	} else { | 
 | 		return vmalloc_to_page(addr); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | xfs_buf_associate_memory( | 
 | 	xfs_buf_t		*bp, | 
 | 	void			*mem, | 
 | 	size_t			len) | 
 | { | 
 | 	int			rval; | 
 | 	int			i = 0; | 
 | 	unsigned long		pageaddr; | 
 | 	unsigned long		offset; | 
 | 	size_t			buflen; | 
 | 	int			page_count; | 
 |  | 
 | 	pageaddr = (unsigned long)mem & PAGE_MASK; | 
 | 	offset = (unsigned long)mem - pageaddr; | 
 | 	buflen = PAGE_ALIGN(len + offset); | 
 | 	page_count = buflen >> PAGE_SHIFT; | 
 |  | 
 | 	/* Free any previous set of page pointers */ | 
 | 	if (bp->b_pages) | 
 | 		_xfs_buf_free_pages(bp); | 
 |  | 
 | 	bp->b_pages = NULL; | 
 | 	bp->b_addr = mem; | 
 |  | 
 | 	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); | 
 | 	if (rval) | 
 | 		return rval; | 
 |  | 
 | 	bp->b_offset = offset; | 
 |  | 
 | 	for (i = 0; i < bp->b_page_count; i++) { | 
 | 		bp->b_pages[i] = mem_to_page((void *)pageaddr); | 
 | 		pageaddr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	bp->b_count_desired = len; | 
 | 	bp->b_buffer_length = buflen; | 
 | 	bp->b_flags |= XBF_MAPPED; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | xfs_buf_t * | 
 | xfs_buf_get_uncached( | 
 | 	struct xfs_buftarg	*target, | 
 | 	size_t			len, | 
 | 	int			flags) | 
 | { | 
 | 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; | 
 | 	int			error, i; | 
 | 	xfs_buf_t		*bp; | 
 |  | 
 | 	bp = xfs_buf_allocate(0); | 
 | 	if (unlikely(bp == NULL)) | 
 | 		goto fail; | 
 | 	_xfs_buf_initialize(bp, target, 0, len, 0); | 
 |  | 
 | 	error = _xfs_buf_get_pages(bp, page_count, 0); | 
 | 	if (error) | 
 | 		goto fail_free_buf; | 
 |  | 
 | 	for (i = 0; i < page_count; i++) { | 
 | 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); | 
 | 		if (!bp->b_pages[i]) | 
 | 			goto fail_free_mem; | 
 | 	} | 
 | 	bp->b_flags |= _XBF_PAGES; | 
 |  | 
 | 	error = _xfs_buf_map_pages(bp, XBF_MAPPED); | 
 | 	if (unlikely(error)) { | 
 | 		xfs_warn(target->bt_mount, | 
 | 			"%s: failed to map pages\n", __func__); | 
 | 		goto fail_free_mem; | 
 | 	} | 
 |  | 
 | 	xfs_buf_unlock(bp); | 
 |  | 
 | 	trace_xfs_buf_get_uncached(bp, _RET_IP_); | 
 | 	return bp; | 
 |  | 
 |  fail_free_mem: | 
 | 	while (--i >= 0) | 
 | 		__free_page(bp->b_pages[i]); | 
 | 	_xfs_buf_free_pages(bp); | 
 |  fail_free_buf: | 
 | 	xfs_buf_deallocate(bp); | 
 |  fail: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  *	Increment reference count on buffer, to hold the buffer concurrently | 
 |  *	with another thread which may release (free) the buffer asynchronously. | 
 |  *	Must hold the buffer already to call this function. | 
 |  */ | 
 | void | 
 | xfs_buf_hold( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	trace_xfs_buf_hold(bp, _RET_IP_); | 
 | 	atomic_inc(&bp->b_hold); | 
 | } | 
 |  | 
 | /* | 
 |  *	Releases a hold on the specified buffer.  If the | 
 |  *	the hold count is 1, calls xfs_buf_free. | 
 |  */ | 
 | void | 
 | xfs_buf_rele( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	struct xfs_perag	*pag = bp->b_pag; | 
 |  | 
 | 	trace_xfs_buf_rele(bp, _RET_IP_); | 
 |  | 
 | 	if (!pag) { | 
 | 		ASSERT(list_empty(&bp->b_lru)); | 
 | 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); | 
 | 		if (atomic_dec_and_test(&bp->b_hold)) | 
 | 			xfs_buf_free(bp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); | 
 |  | 
 | 	ASSERT(atomic_read(&bp->b_hold) > 0); | 
 | 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { | 
 | 		if (!(bp->b_flags & XBF_STALE) && | 
 | 			   atomic_read(&bp->b_lru_ref)) { | 
 | 			xfs_buf_lru_add(bp); | 
 | 			spin_unlock(&pag->pag_buf_lock); | 
 | 		} else { | 
 | 			xfs_buf_lru_del(bp); | 
 | 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); | 
 | 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); | 
 | 			spin_unlock(&pag->pag_buf_lock); | 
 | 			xfs_perag_put(pag); | 
 | 			xfs_buf_free(bp); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *	Lock a buffer object, if it is not already locked. | 
 |  * | 
 |  *	If we come across a stale, pinned, locked buffer, we know that we are | 
 |  *	being asked to lock a buffer that has been reallocated. Because it is | 
 |  *	pinned, we know that the log has not been pushed to disk and hence it | 
 |  *	will still be locked.  Rather than continuing to have trylock attempts | 
 |  *	fail until someone else pushes the log, push it ourselves before | 
 |  *	returning.  This means that the xfsaild will not get stuck trying | 
 |  *	to push on stale inode buffers. | 
 |  */ | 
 | int | 
 | xfs_buf_cond_lock( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	int			locked; | 
 |  | 
 | 	locked = down_trylock(&bp->b_sema) == 0; | 
 | 	if (locked) | 
 | 		XB_SET_OWNER(bp); | 
 | 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
 | 		xfs_log_force(bp->b_target->bt_mount, 0); | 
 |  | 
 | 	trace_xfs_buf_cond_lock(bp, _RET_IP_); | 
 | 	return locked ? 0 : -EBUSY; | 
 | } | 
 |  | 
 | int | 
 | xfs_buf_lock_value( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	return bp->b_sema.count; | 
 | } | 
 |  | 
 | /* | 
 |  *	Lock a buffer object. | 
 |  * | 
 |  *	If we come across a stale, pinned, locked buffer, we know that we | 
 |  *	are being asked to lock a buffer that has been reallocated. Because | 
 |  *	it is pinned, we know that the log has not been pushed to disk and | 
 |  *	hence it will still be locked. Rather than sleeping until someone | 
 |  *	else pushes the log, push it ourselves before trying to get the lock. | 
 |  */ | 
 | void | 
 | xfs_buf_lock( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	trace_xfs_buf_lock(bp, _RET_IP_); | 
 |  | 
 | 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) | 
 | 		xfs_log_force(bp->b_target->bt_mount, 0); | 
 | 	if (atomic_read(&bp->b_io_remaining)) | 
 | 		blk_flush_plug(current); | 
 | 	down(&bp->b_sema); | 
 | 	XB_SET_OWNER(bp); | 
 |  | 
 | 	trace_xfs_buf_lock_done(bp, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  *	Releases the lock on the buffer object. | 
 |  *	If the buffer is marked delwri but is not queued, do so before we | 
 |  *	unlock the buffer as we need to set flags correctly.  We also need to | 
 |  *	take a reference for the delwri queue because the unlocker is going to | 
 |  *	drop their's and they don't know we just queued it. | 
 |  */ | 
 | void | 
 | xfs_buf_unlock( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) { | 
 | 		atomic_inc(&bp->b_hold); | 
 | 		bp->b_flags |= XBF_ASYNC; | 
 | 		xfs_buf_delwri_queue(bp, 0); | 
 | 	} | 
 |  | 
 | 	XB_CLEAR_OWNER(bp); | 
 | 	up(&bp->b_sema); | 
 |  | 
 | 	trace_xfs_buf_unlock(bp, _RET_IP_); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_buf_wait_unpin( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	DECLARE_WAITQUEUE	(wait, current); | 
 |  | 
 | 	if (atomic_read(&bp->b_pin_count) == 0) | 
 | 		return; | 
 |  | 
 | 	add_wait_queue(&bp->b_waiters, &wait); | 
 | 	for (;;) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (atomic_read(&bp->b_pin_count) == 0) | 
 | 			break; | 
 | 		io_schedule(); | 
 | 	} | 
 | 	remove_wait_queue(&bp->b_waiters, &wait); | 
 | 	set_current_state(TASK_RUNNING); | 
 | } | 
 |  | 
 | /* | 
 |  *	Buffer Utility Routines | 
 |  */ | 
 |  | 
 | STATIC void | 
 | xfs_buf_iodone_work( | 
 | 	struct work_struct	*work) | 
 | { | 
 | 	xfs_buf_t		*bp = | 
 | 		container_of(work, xfs_buf_t, b_iodone_work); | 
 |  | 
 | 	if (bp->b_iodone) | 
 | 		(*(bp->b_iodone))(bp); | 
 | 	else if (bp->b_flags & XBF_ASYNC) | 
 | 		xfs_buf_relse(bp); | 
 | } | 
 |  | 
 | void | 
 | xfs_buf_ioend( | 
 | 	xfs_buf_t		*bp, | 
 | 	int			schedule) | 
 | { | 
 | 	trace_xfs_buf_iodone(bp, _RET_IP_); | 
 |  | 
 | 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); | 
 | 	if (bp->b_error == 0) | 
 | 		bp->b_flags |= XBF_DONE; | 
 |  | 
 | 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { | 
 | 		if (schedule) { | 
 | 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); | 
 | 			queue_work(xfslogd_workqueue, &bp->b_iodone_work); | 
 | 		} else { | 
 | 			xfs_buf_iodone_work(&bp->b_iodone_work); | 
 | 		} | 
 | 	} else { | 
 | 		complete(&bp->b_iowait); | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | xfs_buf_ioerror( | 
 | 	xfs_buf_t		*bp, | 
 | 	int			error) | 
 | { | 
 | 	ASSERT(error >= 0 && error <= 0xffff); | 
 | 	bp->b_error = (unsigned short)error; | 
 | 	trace_xfs_buf_ioerror(bp, error, _RET_IP_); | 
 | } | 
 |  | 
 | int | 
 | xfs_bwrite( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	int			error; | 
 |  | 
 | 	bp->b_flags |= XBF_WRITE; | 
 | 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ); | 
 |  | 
 | 	xfs_buf_delwri_dequeue(bp); | 
 | 	xfs_bdstrat_cb(bp); | 
 |  | 
 | 	error = xfs_buf_iowait(bp); | 
 | 	if (error) | 
 | 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
 | 	xfs_buf_relse(bp); | 
 | 	return error; | 
 | } | 
 |  | 
 | void | 
 | xfs_bdwrite( | 
 | 	void			*mp, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	trace_xfs_buf_bdwrite(bp, _RET_IP_); | 
 |  | 
 | 	bp->b_flags &= ~XBF_READ; | 
 | 	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC); | 
 |  | 
 | 	xfs_buf_delwri_queue(bp, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when we want to stop a buffer from getting written or read. | 
 |  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend | 
 |  * so that the proper iodone callbacks get called. | 
 |  */ | 
 | STATIC int | 
 | xfs_bioerror( | 
 | 	xfs_buf_t *bp) | 
 | { | 
 | #ifdef XFSERRORDEBUG | 
 | 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * No need to wait until the buffer is unpinned, we aren't flushing it. | 
 | 	 */ | 
 | 	XFS_BUF_ERROR(bp, EIO); | 
 |  | 
 | 	/* | 
 | 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. | 
 | 	 */ | 
 | 	XFS_BUF_UNREAD(bp); | 
 | 	XFS_BUF_UNDELAYWRITE(bp); | 
 | 	XFS_BUF_UNDONE(bp); | 
 | 	XFS_BUF_STALE(bp); | 
 |  | 
 | 	xfs_buf_ioend(bp, 0); | 
 |  | 
 | 	return EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * Same as xfs_bioerror, except that we are releasing the buffer | 
 |  * here ourselves, and avoiding the xfs_buf_ioend call. | 
 |  * This is meant for userdata errors; metadata bufs come with | 
 |  * iodone functions attached, so that we can track down errors. | 
 |  */ | 
 | STATIC int | 
 | xfs_bioerror_relse( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	int64_t		fl = XFS_BUF_BFLAGS(bp); | 
 | 	/* | 
 | 	 * No need to wait until the buffer is unpinned. | 
 | 	 * We aren't flushing it. | 
 | 	 * | 
 | 	 * chunkhold expects B_DONE to be set, whether | 
 | 	 * we actually finish the I/O or not. We don't want to | 
 | 	 * change that interface. | 
 | 	 */ | 
 | 	XFS_BUF_UNREAD(bp); | 
 | 	XFS_BUF_UNDELAYWRITE(bp); | 
 | 	XFS_BUF_DONE(bp); | 
 | 	XFS_BUF_STALE(bp); | 
 | 	XFS_BUF_CLR_IODONE_FUNC(bp); | 
 | 	if (!(fl & XBF_ASYNC)) { | 
 | 		/* | 
 | 		 * Mark b_error and B_ERROR _both_. | 
 | 		 * Lot's of chunkcache code assumes that. | 
 | 		 * There's no reason to mark error for | 
 | 		 * ASYNC buffers. | 
 | 		 */ | 
 | 		XFS_BUF_ERROR(bp, EIO); | 
 | 		XFS_BUF_FINISH_IOWAIT(bp); | 
 | 	} else { | 
 | 		xfs_buf_relse(bp); | 
 | 	} | 
 |  | 
 | 	return EIO; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * All xfs metadata buffers except log state machine buffers | 
 |  * get this attached as their b_bdstrat callback function. | 
 |  * This is so that we can catch a buffer | 
 |  * after prematurely unpinning it to forcibly shutdown the filesystem. | 
 |  */ | 
 | int | 
 | xfs_bdstrat_cb( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { | 
 | 		trace_xfs_bdstrat_shut(bp, _RET_IP_); | 
 | 		/* | 
 | 		 * Metadata write that didn't get logged but | 
 | 		 * written delayed anyway. These aren't associated | 
 | 		 * with a transaction, and can be ignored. | 
 | 		 */ | 
 | 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) | 
 | 			return xfs_bioerror_relse(bp); | 
 | 		else | 
 | 			return xfs_bioerror(bp); | 
 | 	} | 
 |  | 
 | 	xfs_buf_iorequest(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper around bdstrat so that we can stop data from going to disk in case | 
 |  * we are shutting down the filesystem.  Typically user data goes thru this | 
 |  * path; one of the exceptions is the superblock. | 
 |  */ | 
 | void | 
 | xfsbdstrat( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_buf		*bp) | 
 | { | 
 | 	if (XFS_FORCED_SHUTDOWN(mp)) { | 
 | 		trace_xfs_bdstrat_shut(bp, _RET_IP_); | 
 | 		xfs_bioerror_relse(bp); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	xfs_buf_iorequest(bp); | 
 | } | 
 |  | 
 | STATIC void | 
 | _xfs_buf_ioend( | 
 | 	xfs_buf_t		*bp, | 
 | 	int			schedule) | 
 | { | 
 | 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) | 
 | 		xfs_buf_ioend(bp, schedule); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_buf_bio_end_io( | 
 | 	struct bio		*bio, | 
 | 	int			error) | 
 | { | 
 | 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private; | 
 |  | 
 | 	xfs_buf_ioerror(bp, -error); | 
 |  | 
 | 	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) | 
 | 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); | 
 |  | 
 | 	_xfs_buf_ioend(bp, 1); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | STATIC void | 
 | _xfs_buf_ioapply( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	int			rw, map_i, total_nr_pages, nr_pages; | 
 | 	struct bio		*bio; | 
 | 	int			offset = bp->b_offset; | 
 | 	int			size = bp->b_count_desired; | 
 | 	sector_t		sector = bp->b_bn; | 
 |  | 
 | 	total_nr_pages = bp->b_page_count; | 
 | 	map_i = 0; | 
 |  | 
 | 	if (bp->b_flags & XBF_ORDERED) { | 
 | 		ASSERT(!(bp->b_flags & XBF_READ)); | 
 | 		rw = WRITE_FLUSH_FUA; | 
 | 	} else if (bp->b_flags & XBF_LOG_BUFFER) { | 
 | 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD)); | 
 | 		bp->b_flags &= ~_XBF_RUN_QUEUES; | 
 | 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC; | 
 | 	} else if (bp->b_flags & _XBF_RUN_QUEUES) { | 
 | 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD)); | 
 | 		bp->b_flags &= ~_XBF_RUN_QUEUES; | 
 | 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META; | 
 | 	} else { | 
 | 		rw = (bp->b_flags & XBF_WRITE) ? WRITE : | 
 | 		     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ; | 
 | 	} | 
 |  | 
 |  | 
 | next_chunk: | 
 | 	atomic_inc(&bp->b_io_remaining); | 
 | 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); | 
 | 	if (nr_pages > total_nr_pages) | 
 | 		nr_pages = total_nr_pages; | 
 |  | 
 | 	bio = bio_alloc(GFP_NOIO, nr_pages); | 
 | 	bio->bi_bdev = bp->b_target->bt_bdev; | 
 | 	bio->bi_sector = sector; | 
 | 	bio->bi_end_io = xfs_buf_bio_end_io; | 
 | 	bio->bi_private = bp; | 
 |  | 
 |  | 
 | 	for (; size && nr_pages; nr_pages--, map_i++) { | 
 | 		int	rbytes, nbytes = PAGE_SIZE - offset; | 
 |  | 
 | 		if (nbytes > size) | 
 | 			nbytes = size; | 
 |  | 
 | 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); | 
 | 		if (rbytes < nbytes) | 
 | 			break; | 
 |  | 
 | 		offset = 0; | 
 | 		sector += nbytes >> BBSHIFT; | 
 | 		size -= nbytes; | 
 | 		total_nr_pages--; | 
 | 	} | 
 |  | 
 | 	if (likely(bio->bi_size)) { | 
 | 		if (xfs_buf_is_vmapped(bp)) { | 
 | 			flush_kernel_vmap_range(bp->b_addr, | 
 | 						xfs_buf_vmap_len(bp)); | 
 | 		} | 
 | 		submit_bio(rw, bio); | 
 | 		if (size) | 
 | 			goto next_chunk; | 
 | 	} else { | 
 | 		xfs_buf_ioerror(bp, EIO); | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | xfs_buf_iorequest( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	trace_xfs_buf_iorequest(bp, _RET_IP_); | 
 |  | 
 | 	if (bp->b_flags & XBF_DELWRI) { | 
 | 		xfs_buf_delwri_queue(bp, 1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (bp->b_flags & XBF_WRITE) { | 
 | 		xfs_buf_wait_unpin(bp); | 
 | 	} | 
 |  | 
 | 	xfs_buf_hold(bp); | 
 |  | 
 | 	/* Set the count to 1 initially, this will stop an I/O | 
 | 	 * completion callout which happens before we have started | 
 | 	 * all the I/O from calling xfs_buf_ioend too early. | 
 | 	 */ | 
 | 	atomic_set(&bp->b_io_remaining, 1); | 
 | 	_xfs_buf_ioapply(bp); | 
 | 	_xfs_buf_ioend(bp, 0); | 
 |  | 
 | 	xfs_buf_rele(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Waits for I/O to complete on the buffer supplied. | 
 |  *	It returns immediately if no I/O is pending. | 
 |  *	It returns the I/O error code, if any, or 0 if there was no error. | 
 |  */ | 
 | int | 
 | xfs_buf_iowait( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	trace_xfs_buf_iowait(bp, _RET_IP_); | 
 |  | 
 | 	if (atomic_read(&bp->b_io_remaining)) | 
 | 		blk_flush_plug(current); | 
 | 	wait_for_completion(&bp->b_iowait); | 
 |  | 
 | 	trace_xfs_buf_iowait_done(bp, _RET_IP_); | 
 | 	return bp->b_error; | 
 | } | 
 |  | 
 | xfs_caddr_t | 
 | xfs_buf_offset( | 
 | 	xfs_buf_t		*bp, | 
 | 	size_t			offset) | 
 | { | 
 | 	struct page		*page; | 
 |  | 
 | 	if (bp->b_flags & XBF_MAPPED) | 
 | 		return XFS_BUF_PTR(bp) + offset; | 
 |  | 
 | 	offset += bp->b_offset; | 
 | 	page = bp->b_pages[offset >> PAGE_SHIFT]; | 
 | 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); | 
 | } | 
 |  | 
 | /* | 
 |  *	Move data into or out of a buffer. | 
 |  */ | 
 | void | 
 | xfs_buf_iomove( | 
 | 	xfs_buf_t		*bp,	/* buffer to process		*/ | 
 | 	size_t			boff,	/* starting buffer offset	*/ | 
 | 	size_t			bsize,	/* length to copy		*/ | 
 | 	void			*data,	/* data address			*/ | 
 | 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/ | 
 | { | 
 | 	size_t			bend, cpoff, csize; | 
 | 	struct page		*page; | 
 |  | 
 | 	bend = boff + bsize; | 
 | 	while (boff < bend) { | 
 | 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; | 
 | 		cpoff = xfs_buf_poff(boff + bp->b_offset); | 
 | 		csize = min_t(size_t, | 
 | 			      PAGE_SIZE-cpoff, bp->b_count_desired-boff); | 
 |  | 
 | 		ASSERT(((csize + cpoff) <= PAGE_SIZE)); | 
 |  | 
 | 		switch (mode) { | 
 | 		case XBRW_ZERO: | 
 | 			memset(page_address(page) + cpoff, 0, csize); | 
 | 			break; | 
 | 		case XBRW_READ: | 
 | 			memcpy(data, page_address(page) + cpoff, csize); | 
 | 			break; | 
 | 		case XBRW_WRITE: | 
 | 			memcpy(page_address(page) + cpoff, data, csize); | 
 | 		} | 
 |  | 
 | 		boff += csize; | 
 | 		data += csize; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *	Handling of buffer targets (buftargs). | 
 |  */ | 
 |  | 
 | /* | 
 |  * Wait for any bufs with callbacks that have been submitted but have not yet | 
 |  * returned. These buffers will have an elevated hold count, so wait on those | 
 |  * while freeing all the buffers only held by the LRU. | 
 |  */ | 
 | void | 
 | xfs_wait_buftarg( | 
 | 	struct xfs_buftarg	*btp) | 
 | { | 
 | 	struct xfs_buf		*bp; | 
 |  | 
 | restart: | 
 | 	spin_lock(&btp->bt_lru_lock); | 
 | 	while (!list_empty(&btp->bt_lru)) { | 
 | 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); | 
 | 		if (atomic_read(&bp->b_hold) > 1) { | 
 | 			spin_unlock(&btp->bt_lru_lock); | 
 | 			delay(100); | 
 | 			goto restart; | 
 | 		} | 
 | 		/* | 
 | 		 * clear the LRU reference count so the bufer doesn't get | 
 | 		 * ignored in xfs_buf_rele(). | 
 | 		 */ | 
 | 		atomic_set(&bp->b_lru_ref, 0); | 
 | 		spin_unlock(&btp->bt_lru_lock); | 
 | 		xfs_buf_rele(bp); | 
 | 		spin_lock(&btp->bt_lru_lock); | 
 | 	} | 
 | 	spin_unlock(&btp->bt_lru_lock); | 
 | } | 
 |  | 
 | int | 
 | xfs_buftarg_shrink( | 
 | 	struct shrinker		*shrink, | 
 | 	int			nr_to_scan, | 
 | 	gfp_t			mask) | 
 | { | 
 | 	struct xfs_buftarg	*btp = container_of(shrink, | 
 | 					struct xfs_buftarg, bt_shrinker); | 
 | 	struct xfs_buf		*bp; | 
 | 	LIST_HEAD(dispose); | 
 |  | 
 | 	if (!nr_to_scan) | 
 | 		return btp->bt_lru_nr; | 
 |  | 
 | 	spin_lock(&btp->bt_lru_lock); | 
 | 	while (!list_empty(&btp->bt_lru)) { | 
 | 		if (nr_to_scan-- <= 0) | 
 | 			break; | 
 |  | 
 | 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); | 
 |  | 
 | 		/* | 
 | 		 * Decrement the b_lru_ref count unless the value is already | 
 | 		 * zero. If the value is already zero, we need to reclaim the | 
 | 		 * buffer, otherwise it gets another trip through the LRU. | 
 | 		 */ | 
 | 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { | 
 | 			list_move_tail(&bp->b_lru, &btp->bt_lru); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * remove the buffer from the LRU now to avoid needing another | 
 | 		 * lock round trip inside xfs_buf_rele(). | 
 | 		 */ | 
 | 		list_move(&bp->b_lru, &dispose); | 
 | 		btp->bt_lru_nr--; | 
 | 	} | 
 | 	spin_unlock(&btp->bt_lru_lock); | 
 |  | 
 | 	while (!list_empty(&dispose)) { | 
 | 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru); | 
 | 		list_del_init(&bp->b_lru); | 
 | 		xfs_buf_rele(bp); | 
 | 	} | 
 |  | 
 | 	return btp->bt_lru_nr; | 
 | } | 
 |  | 
 | void | 
 | xfs_free_buftarg( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_buftarg	*btp) | 
 | { | 
 | 	unregister_shrinker(&btp->bt_shrinker); | 
 |  | 
 | 	xfs_flush_buftarg(btp, 1); | 
 | 	if (mp->m_flags & XFS_MOUNT_BARRIER) | 
 | 		xfs_blkdev_issue_flush(btp); | 
 |  | 
 | 	kthread_stop(btp->bt_task); | 
 | 	kmem_free(btp); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_setsize_buftarg_flags( | 
 | 	xfs_buftarg_t		*btp, | 
 | 	unsigned int		blocksize, | 
 | 	unsigned int		sectorsize, | 
 | 	int			verbose) | 
 | { | 
 | 	btp->bt_bsize = blocksize; | 
 | 	btp->bt_sshift = ffs(sectorsize) - 1; | 
 | 	btp->bt_smask = sectorsize - 1; | 
 |  | 
 | 	if (set_blocksize(btp->bt_bdev, sectorsize)) { | 
 | 		xfs_warn(btp->bt_mount, | 
 | 			"Cannot set_blocksize to %u on device %s\n", | 
 | 			sectorsize, XFS_BUFTARG_NAME(btp)); | 
 | 		return EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	When allocating the initial buffer target we have not yet | 
 |  *	read in the superblock, so don't know what sized sectors | 
 |  *	are being used is at this early stage.  Play safe. | 
 |  */ | 
 | STATIC int | 
 | xfs_setsize_buftarg_early( | 
 | 	xfs_buftarg_t		*btp, | 
 | 	struct block_device	*bdev) | 
 | { | 
 | 	return xfs_setsize_buftarg_flags(btp, | 
 | 			PAGE_SIZE, bdev_logical_block_size(bdev), 0); | 
 | } | 
 |  | 
 | int | 
 | xfs_setsize_buftarg( | 
 | 	xfs_buftarg_t		*btp, | 
 | 	unsigned int		blocksize, | 
 | 	unsigned int		sectorsize) | 
 | { | 
 | 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_alloc_delwrite_queue( | 
 | 	xfs_buftarg_t		*btp, | 
 | 	const char		*fsname) | 
 | { | 
 | 	INIT_LIST_HEAD(&btp->bt_delwrite_queue); | 
 | 	spin_lock_init(&btp->bt_delwrite_lock); | 
 | 	btp->bt_flags = 0; | 
 | 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); | 
 | 	if (IS_ERR(btp->bt_task)) | 
 | 		return PTR_ERR(btp->bt_task); | 
 | 	return 0; | 
 | } | 
 |  | 
 | xfs_buftarg_t * | 
 | xfs_alloc_buftarg( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct block_device	*bdev, | 
 | 	int			external, | 
 | 	const char		*fsname) | 
 | { | 
 | 	xfs_buftarg_t		*btp; | 
 |  | 
 | 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); | 
 |  | 
 | 	btp->bt_mount = mp; | 
 | 	btp->bt_dev =  bdev->bd_dev; | 
 | 	btp->bt_bdev = bdev; | 
 | 	btp->bt_bdi = blk_get_backing_dev_info(bdev); | 
 | 	if (!btp->bt_bdi) | 
 | 		goto error; | 
 |  | 
 | 	INIT_LIST_HEAD(&btp->bt_lru); | 
 | 	spin_lock_init(&btp->bt_lru_lock); | 
 | 	if (xfs_setsize_buftarg_early(btp, bdev)) | 
 | 		goto error; | 
 | 	if (xfs_alloc_delwrite_queue(btp, fsname)) | 
 | 		goto error; | 
 | 	btp->bt_shrinker.shrink = xfs_buftarg_shrink; | 
 | 	btp->bt_shrinker.seeks = DEFAULT_SEEKS; | 
 | 	register_shrinker(&btp->bt_shrinker); | 
 | 	return btp; | 
 |  | 
 | error: | 
 | 	kmem_free(btp); | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  *	Delayed write buffer handling | 
 |  */ | 
 | STATIC void | 
 | xfs_buf_delwri_queue( | 
 | 	xfs_buf_t		*bp, | 
 | 	int			unlock) | 
 | { | 
 | 	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue; | 
 | 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; | 
 |  | 
 | 	trace_xfs_buf_delwri_queue(bp, _RET_IP_); | 
 |  | 
 | 	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC)); | 
 |  | 
 | 	spin_lock(dwlk); | 
 | 	/* If already in the queue, dequeue and place at tail */ | 
 | 	if (!list_empty(&bp->b_list)) { | 
 | 		ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
 | 		if (unlock) | 
 | 			atomic_dec(&bp->b_hold); | 
 | 		list_del(&bp->b_list); | 
 | 	} | 
 |  | 
 | 	if (list_empty(dwq)) { | 
 | 		/* start xfsbufd as it is about to have something to do */ | 
 | 		wake_up_process(bp->b_target->bt_task); | 
 | 	} | 
 |  | 
 | 	bp->b_flags |= _XBF_DELWRI_Q; | 
 | 	list_add_tail(&bp->b_list, dwq); | 
 | 	bp->b_queuetime = jiffies; | 
 | 	spin_unlock(dwlk); | 
 |  | 
 | 	if (unlock) | 
 | 		xfs_buf_unlock(bp); | 
 | } | 
 |  | 
 | void | 
 | xfs_buf_delwri_dequeue( | 
 | 	xfs_buf_t		*bp) | 
 | { | 
 | 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; | 
 | 	int			dequeued = 0; | 
 |  | 
 | 	spin_lock(dwlk); | 
 | 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { | 
 | 		ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
 | 		list_del_init(&bp->b_list); | 
 | 		dequeued = 1; | 
 | 	} | 
 | 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); | 
 | 	spin_unlock(dwlk); | 
 |  | 
 | 	if (dequeued) | 
 | 		xfs_buf_rele(bp); | 
 |  | 
 | 	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); | 
 | } | 
 |  | 
 | /* | 
 |  * If a delwri buffer needs to be pushed before it has aged out, then promote | 
 |  * it to the head of the delwri queue so that it will be flushed on the next | 
 |  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older | 
 |  * than the age currently needed to flush the buffer. Hence the next time the | 
 |  * xfsbufd sees it is guaranteed to be considered old enough to flush. | 
 |  */ | 
 | void | 
 | xfs_buf_delwri_promote( | 
 | 	struct xfs_buf	*bp) | 
 | { | 
 | 	struct xfs_buftarg *btp = bp->b_target; | 
 | 	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; | 
 |  | 
 | 	ASSERT(bp->b_flags & XBF_DELWRI); | 
 | 	ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
 |  | 
 | 	/* | 
 | 	 * Check the buffer age before locking the delayed write queue as we | 
 | 	 * don't need to promote buffers that are already past the flush age. | 
 | 	 */ | 
 | 	if (bp->b_queuetime < jiffies - age) | 
 | 		return; | 
 | 	bp->b_queuetime = jiffies - age; | 
 | 	spin_lock(&btp->bt_delwrite_lock); | 
 | 	list_move(&bp->b_list, &btp->bt_delwrite_queue); | 
 | 	spin_unlock(&btp->bt_delwrite_lock); | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_buf_runall_queues( | 
 | 	struct workqueue_struct	*queue) | 
 | { | 
 | 	flush_workqueue(queue); | 
 | } | 
 |  | 
 | /* | 
 |  * Move as many buffers as specified to the supplied list | 
 |  * idicating if we skipped any buffers to prevent deadlocks. | 
 |  */ | 
 | STATIC int | 
 | xfs_buf_delwri_split( | 
 | 	xfs_buftarg_t	*target, | 
 | 	struct list_head *list, | 
 | 	unsigned long	age) | 
 | { | 
 | 	xfs_buf_t	*bp, *n; | 
 | 	struct list_head *dwq = &target->bt_delwrite_queue; | 
 | 	spinlock_t	*dwlk = &target->bt_delwrite_lock; | 
 | 	int		skipped = 0; | 
 | 	int		force; | 
 |  | 
 | 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); | 
 | 	INIT_LIST_HEAD(list); | 
 | 	spin_lock(dwlk); | 
 | 	list_for_each_entry_safe(bp, n, dwq, b_list) { | 
 | 		ASSERT(bp->b_flags & XBF_DELWRI); | 
 |  | 
 | 		if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) { | 
 | 			if (!force && | 
 | 			    time_before(jiffies, bp->b_queuetime + age)) { | 
 | 				xfs_buf_unlock(bp); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q| | 
 | 					 _XBF_RUN_QUEUES); | 
 | 			bp->b_flags |= XBF_WRITE; | 
 | 			list_move_tail(&bp->b_list, list); | 
 | 			trace_xfs_buf_delwri_split(bp, _RET_IP_); | 
 | 		} else | 
 | 			skipped++; | 
 | 	} | 
 | 	spin_unlock(dwlk); | 
 |  | 
 | 	return skipped; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Compare function is more complex than it needs to be because | 
 |  * the return value is only 32 bits and we are doing comparisons | 
 |  * on 64 bit values | 
 |  */ | 
 | static int | 
 | xfs_buf_cmp( | 
 | 	void		*priv, | 
 | 	struct list_head *a, | 
 | 	struct list_head *b) | 
 | { | 
 | 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list); | 
 | 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list); | 
 | 	xfs_daddr_t		diff; | 
 |  | 
 | 	diff = ap->b_bn - bp->b_bn; | 
 | 	if (diff < 0) | 
 | 		return -1; | 
 | 	if (diff > 0) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | xfs_buf_delwri_sort( | 
 | 	xfs_buftarg_t	*target, | 
 | 	struct list_head *list) | 
 | { | 
 | 	list_sort(NULL, list, xfs_buf_cmp); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfsbufd( | 
 | 	void		*data) | 
 | { | 
 | 	xfs_buftarg_t   *target = (xfs_buftarg_t *)data; | 
 |  | 
 | 	current->flags |= PF_MEMALLOC; | 
 |  | 
 | 	set_freezable(); | 
 |  | 
 | 	do { | 
 | 		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10); | 
 | 		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); | 
 | 		int	count = 0; | 
 | 		struct list_head tmp; | 
 |  | 
 | 		if (unlikely(freezing(current))) { | 
 | 			set_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
 | 			refrigerator(); | 
 | 		} else { | 
 | 			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
 | 		} | 
 |  | 
 | 		/* sleep for a long time if there is nothing to do. */ | 
 | 		if (list_empty(&target->bt_delwrite_queue)) | 
 | 			tout = MAX_SCHEDULE_TIMEOUT; | 
 | 		schedule_timeout_interruptible(tout); | 
 |  | 
 | 		xfs_buf_delwri_split(target, &tmp, age); | 
 | 		list_sort(NULL, &tmp, xfs_buf_cmp); | 
 | 		while (!list_empty(&tmp)) { | 
 | 			struct xfs_buf *bp; | 
 | 			bp = list_first_entry(&tmp, struct xfs_buf, b_list); | 
 | 			list_del_init(&bp->b_list); | 
 | 			xfs_bdstrat_cb(bp); | 
 | 			count++; | 
 | 		} | 
 | 		if (count) | 
 | 			blk_flush_plug(current); | 
 |  | 
 | 	} while (!kthread_should_stop()); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Go through all incore buffers, and release buffers if they belong to | 
 |  *	the given device. This is used in filesystem error handling to | 
 |  *	preserve the consistency of its metadata. | 
 |  */ | 
 | int | 
 | xfs_flush_buftarg( | 
 | 	xfs_buftarg_t	*target, | 
 | 	int		wait) | 
 | { | 
 | 	xfs_buf_t	*bp; | 
 | 	int		pincount = 0; | 
 | 	LIST_HEAD(tmp_list); | 
 | 	LIST_HEAD(wait_list); | 
 |  | 
 | 	xfs_buf_runall_queues(xfsconvertd_workqueue); | 
 | 	xfs_buf_runall_queues(xfsdatad_workqueue); | 
 | 	xfs_buf_runall_queues(xfslogd_workqueue); | 
 |  | 
 | 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags); | 
 | 	pincount = xfs_buf_delwri_split(target, &tmp_list, 0); | 
 |  | 
 | 	/* | 
 | 	 * Dropped the delayed write list lock, now walk the temporary list. | 
 | 	 * All I/O is issued async and then if we need to wait for completion | 
 | 	 * we do that after issuing all the IO. | 
 | 	 */ | 
 | 	list_sort(NULL, &tmp_list, xfs_buf_cmp); | 
 | 	while (!list_empty(&tmp_list)) { | 
 | 		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); | 
 | 		ASSERT(target == bp->b_target); | 
 | 		list_del_init(&bp->b_list); | 
 | 		if (wait) { | 
 | 			bp->b_flags &= ~XBF_ASYNC; | 
 | 			list_add(&bp->b_list, &wait_list); | 
 | 		} | 
 | 		xfs_bdstrat_cb(bp); | 
 | 	} | 
 |  | 
 | 	if (wait) { | 
 | 		/* Expedite and wait for IO to complete. */ | 
 | 		blk_flush_plug(current); | 
 | 		while (!list_empty(&wait_list)) { | 
 | 			bp = list_first_entry(&wait_list, struct xfs_buf, b_list); | 
 |  | 
 | 			list_del_init(&bp->b_list); | 
 | 			xfs_buf_iowait(bp); | 
 | 			xfs_buf_relse(bp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return pincount; | 
 | } | 
 |  | 
 | int __init | 
 | xfs_buf_init(void) | 
 | { | 
 | 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", | 
 | 						KM_ZONE_HWALIGN, NULL); | 
 | 	if (!xfs_buf_zone) | 
 | 		goto out; | 
 |  | 
 | 	xfslogd_workqueue = alloc_workqueue("xfslogd", | 
 | 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); | 
 | 	if (!xfslogd_workqueue) | 
 | 		goto out_free_buf_zone; | 
 |  | 
 | 	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1); | 
 | 	if (!xfsdatad_workqueue) | 
 | 		goto out_destroy_xfslogd_workqueue; | 
 |  | 
 | 	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd", | 
 | 						WQ_MEM_RECLAIM, 1); | 
 | 	if (!xfsconvertd_workqueue) | 
 | 		goto out_destroy_xfsdatad_workqueue; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_destroy_xfsdatad_workqueue: | 
 | 	destroy_workqueue(xfsdatad_workqueue); | 
 |  out_destroy_xfslogd_workqueue: | 
 | 	destroy_workqueue(xfslogd_workqueue); | 
 |  out_free_buf_zone: | 
 | 	kmem_zone_destroy(xfs_buf_zone); | 
 |  out: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void | 
 | xfs_buf_terminate(void) | 
 | { | 
 | 	destroy_workqueue(xfsconvertd_workqueue); | 
 | 	destroy_workqueue(xfsdatad_workqueue); | 
 | 	destroy_workqueue(xfslogd_workqueue); | 
 | 	kmem_zone_destroy(xfs_buf_zone); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KDB_MODULES | 
 | struct list_head * | 
 | xfs_get_buftarg_list(void) | 
 | { | 
 | 	return &xfs_buftarg_list; | 
 | } | 
 | #endif |