| /* | 
 |  * arch/sh/mm/cache-sh4.c | 
 |  * | 
 |  * Copyright (C) 1999, 2000, 2002  Niibe Yutaka | 
 |  * Copyright (C) 2001 - 2009  Paul Mundt | 
 |  * Copyright (C) 2003  Richard Curnow | 
 |  * Copyright (c) 2007 STMicroelectronics (R&D) Ltd. | 
 |  * | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  */ | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/highmem.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/cache_insns.h> | 
 | #include <asm/cacheflush.h> | 
 |  | 
 | /* | 
 |  * The maximum number of pages we support up to when doing ranged dcache | 
 |  * flushing. Anything exceeding this will simply flush the dcache in its | 
 |  * entirety. | 
 |  */ | 
 | #define MAX_ICACHE_PAGES	32 | 
 |  | 
 | static void __flush_cache_one(unsigned long addr, unsigned long phys, | 
 | 			       unsigned long exec_offset); | 
 |  | 
 | /* | 
 |  * Write back the range of D-cache, and purge the I-cache. | 
 |  * | 
 |  * Called from kernel/module.c:sys_init_module and routine for a.out format, | 
 |  * signal handler code and kprobes code | 
 |  */ | 
 | static void sh4_flush_icache_range(void *args) | 
 | { | 
 | 	struct flusher_data *data = args; | 
 | 	unsigned long start, end; | 
 | 	unsigned long flags, v; | 
 | 	int i; | 
 |  | 
 | 	start = data->addr1; | 
 | 	end = data->addr2; | 
 |  | 
 | 	/* If there are too many pages then just blow away the caches */ | 
 | 	if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) { | 
 | 		local_flush_cache_all(NULL); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Selectively flush d-cache then invalidate the i-cache. | 
 | 	 * This is inefficient, so only use this for small ranges. | 
 | 	 */ | 
 | 	start &= ~(L1_CACHE_BYTES-1); | 
 | 	end += L1_CACHE_BYTES-1; | 
 | 	end &= ~(L1_CACHE_BYTES-1); | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	jump_to_uncached(); | 
 |  | 
 | 	for (v = start; v < end; v += L1_CACHE_BYTES) { | 
 | 		unsigned long icacheaddr; | 
 | 		int j, n; | 
 |  | 
 | 		__ocbwb(v); | 
 |  | 
 | 		icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v & | 
 | 				cpu_data->icache.entry_mask); | 
 |  | 
 | 		/* Clear i-cache line valid-bit */ | 
 | 		n = boot_cpu_data.icache.n_aliases; | 
 | 		for (i = 0; i < cpu_data->icache.ways; i++) { | 
 | 			for (j = 0; j < n; j++) | 
 | 				__raw_writel(0, icacheaddr + (j * PAGE_SIZE)); | 
 | 			icacheaddr += cpu_data->icache.way_incr; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	back_to_cached(); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static inline void flush_cache_one(unsigned long start, unsigned long phys) | 
 | { | 
 | 	unsigned long flags, exec_offset = 0; | 
 |  | 
 | 	/* | 
 | 	 * All types of SH-4 require PC to be uncached to operate on the I-cache. | 
 | 	 * Some types of SH-4 require PC to be uncached to operate on the D-cache. | 
 | 	 */ | 
 | 	if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) || | 
 | 	    (start < CACHE_OC_ADDRESS_ARRAY)) | 
 | 		exec_offset = cached_to_uncached; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	__flush_cache_one(start, phys, exec_offset); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Write back & invalidate the D-cache of the page. | 
 |  * (To avoid "alias" issues) | 
 |  */ | 
 | static void sh4_flush_dcache_page(void *arg) | 
 | { | 
 | 	struct page *page = arg; | 
 | 	unsigned long addr = (unsigned long)page_address(page); | 
 | #ifndef CONFIG_SMP | 
 | 	struct address_space *mapping = page_mapping(page); | 
 |  | 
 | 	if (mapping && !mapping_mapped(mapping)) | 
 | 		clear_bit(PG_dcache_clean, &page->flags); | 
 | 	else | 
 | #endif | 
 | 		flush_cache_one(CACHE_OC_ADDRESS_ARRAY | | 
 | 				(addr & shm_align_mask), page_to_phys(page)); | 
 |  | 
 | 	wmb(); | 
 | } | 
 |  | 
 | /* TODO: Selective icache invalidation through IC address array.. */ | 
 | static void flush_icache_all(void) | 
 | { | 
 | 	unsigned long flags, ccr; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	jump_to_uncached(); | 
 |  | 
 | 	/* Flush I-cache */ | 
 | 	ccr = __raw_readl(CCR); | 
 | 	ccr |= CCR_CACHE_ICI; | 
 | 	__raw_writel(ccr, CCR); | 
 |  | 
 | 	/* | 
 | 	 * back_to_cached() will take care of the barrier for us, don't add | 
 | 	 * another one! | 
 | 	 */ | 
 |  | 
 | 	back_to_cached(); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static void flush_dcache_all(void) | 
 | { | 
 | 	unsigned long addr, end_addr, entry_offset; | 
 |  | 
 | 	end_addr = CACHE_OC_ADDRESS_ARRAY + | 
 | 		(current_cpu_data.dcache.sets << | 
 | 		 current_cpu_data.dcache.entry_shift) * | 
 | 			current_cpu_data.dcache.ways; | 
 |  | 
 | 	entry_offset = 1 << current_cpu_data.dcache.entry_shift; | 
 |  | 
 | 	for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) { | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 		__raw_writel(0, addr); addr += entry_offset; | 
 | 	} | 
 | } | 
 |  | 
 | static void sh4_flush_cache_all(void *unused) | 
 | { | 
 | 	flush_dcache_all(); | 
 | 	flush_icache_all(); | 
 | } | 
 |  | 
 | /* | 
 |  * Note : (RPC) since the caches are physically tagged, the only point | 
 |  * of flush_cache_mm for SH-4 is to get rid of aliases from the | 
 |  * D-cache.  The assumption elsewhere, e.g. flush_cache_range, is that | 
 |  * lines can stay resident so long as the virtual address they were | 
 |  * accessed with (hence cache set) is in accord with the physical | 
 |  * address (i.e. tag).  It's no different here. | 
 |  * | 
 |  * Caller takes mm->mmap_sem. | 
 |  */ | 
 | static void sh4_flush_cache_mm(void *arg) | 
 | { | 
 | 	struct mm_struct *mm = arg; | 
 |  | 
 | 	if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT) | 
 | 		return; | 
 |  | 
 | 	flush_dcache_all(); | 
 | } | 
 |  | 
 | /* | 
 |  * Write back and invalidate I/D-caches for the page. | 
 |  * | 
 |  * ADDR: Virtual Address (U0 address) | 
 |  * PFN: Physical page number | 
 |  */ | 
 | static void sh4_flush_cache_page(void *args) | 
 | { | 
 | 	struct flusher_data *data = args; | 
 | 	struct vm_area_struct *vma; | 
 | 	struct page *page; | 
 | 	unsigned long address, pfn, phys; | 
 | 	int map_coherent = 0; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	void *vaddr; | 
 |  | 
 | 	vma = data->vma; | 
 | 	address = data->addr1 & PAGE_MASK; | 
 | 	pfn = data->addr2; | 
 | 	phys = pfn << PAGE_SHIFT; | 
 | 	page = pfn_to_page(pfn); | 
 |  | 
 | 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) | 
 | 		return; | 
 |  | 
 | 	pgd = pgd_offset(vma->vm_mm, address); | 
 | 	pud = pud_offset(pgd, address); | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	pte = pte_offset_kernel(pmd, address); | 
 |  | 
 | 	/* If the page isn't present, there is nothing to do here. */ | 
 | 	if (!(pte_val(*pte) & _PAGE_PRESENT)) | 
 | 		return; | 
 |  | 
 | 	if ((vma->vm_mm == current->active_mm)) | 
 | 		vaddr = NULL; | 
 | 	else { | 
 | 		/* | 
 | 		 * Use kmap_coherent or kmap_atomic to do flushes for | 
 | 		 * another ASID than the current one. | 
 | 		 */ | 
 | 		map_coherent = (current_cpu_data.dcache.n_aliases && | 
 | 			test_bit(PG_dcache_clean, &page->flags) && | 
 | 			page_mapped(page)); | 
 | 		if (map_coherent) | 
 | 			vaddr = kmap_coherent(page, address); | 
 | 		else | 
 | 			vaddr = kmap_atomic(page); | 
 |  | 
 | 		address = (unsigned long)vaddr; | 
 | 	} | 
 |  | 
 | 	flush_cache_one(CACHE_OC_ADDRESS_ARRAY | | 
 | 			(address & shm_align_mask), phys); | 
 |  | 
 | 	if (vma->vm_flags & VM_EXEC) | 
 | 		flush_icache_all(); | 
 |  | 
 | 	if (vaddr) { | 
 | 		if (map_coherent) | 
 | 			kunmap_coherent(vaddr); | 
 | 		else | 
 | 			kunmap_atomic(vaddr); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Write back and invalidate D-caches. | 
 |  * | 
 |  * START, END: Virtual Address (U0 address) | 
 |  * | 
 |  * NOTE: We need to flush the _physical_ page entry. | 
 |  * Flushing the cache lines for U0 only isn't enough. | 
 |  * We need to flush for P1 too, which may contain aliases. | 
 |  */ | 
 | static void sh4_flush_cache_range(void *args) | 
 | { | 
 | 	struct flusher_data *data = args; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned long start, end; | 
 |  | 
 | 	vma = data->vma; | 
 | 	start = data->addr1; | 
 | 	end = data->addr2; | 
 |  | 
 | 	if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * If cache is only 4k-per-way, there are never any 'aliases'.  Since | 
 | 	 * the cache is physically tagged, the data can just be left in there. | 
 | 	 */ | 
 | 	if (boot_cpu_data.dcache.n_aliases == 0) | 
 | 		return; | 
 |  | 
 | 	flush_dcache_all(); | 
 |  | 
 | 	if (vma->vm_flags & VM_EXEC) | 
 | 		flush_icache_all(); | 
 | } | 
 |  | 
 | /** | 
 |  * __flush_cache_one | 
 |  * | 
 |  * @addr:  address in memory mapped cache array | 
 |  * @phys:  P1 address to flush (has to match tags if addr has 'A' bit | 
 |  *         set i.e. associative write) | 
 |  * @exec_offset: set to 0x20000000 if flush has to be executed from P2 | 
 |  *               region else 0x0 | 
 |  * | 
 |  * The offset into the cache array implied by 'addr' selects the | 
 |  * 'colour' of the virtual address range that will be flushed.  The | 
 |  * operation (purge/write-back) is selected by the lower 2 bits of | 
 |  * 'phys'. | 
 |  */ | 
 | static void __flush_cache_one(unsigned long addr, unsigned long phys, | 
 | 			       unsigned long exec_offset) | 
 | { | 
 | 	int way_count; | 
 | 	unsigned long base_addr = addr; | 
 | 	struct cache_info *dcache; | 
 | 	unsigned long way_incr; | 
 | 	unsigned long a, ea, p; | 
 | 	unsigned long temp_pc; | 
 |  | 
 | 	dcache = &boot_cpu_data.dcache; | 
 | 	/* Write this way for better assembly. */ | 
 | 	way_count = dcache->ways; | 
 | 	way_incr = dcache->way_incr; | 
 |  | 
 | 	/* | 
 | 	 * Apply exec_offset (i.e. branch to P2 if required.). | 
 | 	 * | 
 | 	 * FIXME: | 
 | 	 * | 
 | 	 *	If I write "=r" for the (temp_pc), it puts this in r6 hence | 
 | 	 *	trashing exec_offset before it's been added on - why?  Hence | 
 | 	 *	"=&r" as a 'workaround' | 
 | 	 */ | 
 | 	asm volatile("mov.l 1f, %0\n\t" | 
 | 		     "add   %1, %0\n\t" | 
 | 		     "jmp   @%0\n\t" | 
 | 		     "nop\n\t" | 
 | 		     ".balign 4\n\t" | 
 | 		     "1:  .long 2f\n\t" | 
 | 		     "2:\n" : "=&r" (temp_pc) : "r" (exec_offset)); | 
 |  | 
 | 	/* | 
 | 	 * We know there will be >=1 iteration, so write as do-while to avoid | 
 | 	 * pointless nead-of-loop check for 0 iterations. | 
 | 	 */ | 
 | 	do { | 
 | 		ea = base_addr + PAGE_SIZE; | 
 | 		a = base_addr; | 
 | 		p = phys; | 
 |  | 
 | 		do { | 
 | 			*(volatile unsigned long *)a = p; | 
 | 			/* | 
 | 			 * Next line: intentionally not p+32, saves an add, p | 
 | 			 * will do since only the cache tag bits need to | 
 | 			 * match. | 
 | 			 */ | 
 | 			*(volatile unsigned long *)(a+32) = p; | 
 | 			a += 64; | 
 | 			p += 64; | 
 | 		} while (a < ea); | 
 |  | 
 | 		base_addr += way_incr; | 
 | 	} while (--way_count != 0); | 
 | } | 
 |  | 
 | extern void __weak sh4__flush_region_init(void); | 
 |  | 
 | /* | 
 |  * SH-4 has virtually indexed and physically tagged cache. | 
 |  */ | 
 | void __init sh4_cache_init(void) | 
 | { | 
 | 	printk("PVR=%08x CVR=%08x PRR=%08x\n", | 
 | 		__raw_readl(CCN_PVR), | 
 | 		__raw_readl(CCN_CVR), | 
 | 		__raw_readl(CCN_PRR)); | 
 |  | 
 | 	local_flush_icache_range	= sh4_flush_icache_range; | 
 | 	local_flush_dcache_page		= sh4_flush_dcache_page; | 
 | 	local_flush_cache_all		= sh4_flush_cache_all; | 
 | 	local_flush_cache_mm		= sh4_flush_cache_mm; | 
 | 	local_flush_cache_dup_mm	= sh4_flush_cache_mm; | 
 | 	local_flush_cache_page		= sh4_flush_cache_page; | 
 | 	local_flush_cache_range		= sh4_flush_cache_range; | 
 |  | 
 | 	sh4__flush_region_init(); | 
 | } |