|  | /* | 
|  | *  Copyright (C) 2009  Red Hat, Inc. | 
|  | * | 
|  | *  This work is licensed under the terms of the GNU GPL, version 2. See | 
|  | *  the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mmu_notifier.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/khugepaged.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/mman.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * By default transparent hugepage support is enabled for all mappings | 
|  | * and khugepaged scans all mappings. Defrag is only invoked by | 
|  | * khugepaged hugepage allocations and by page faults inside | 
|  | * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived | 
|  | * allocations. | 
|  | */ | 
|  | unsigned long transparent_hugepage_flags __read_mostly = | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS | 
|  | (1<<TRANSPARENT_HUGEPAGE_FLAG)| | 
|  | #endif | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE | 
|  | (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| | 
|  | #endif | 
|  | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| | 
|  | (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  |  | 
|  | /* default scan 8*512 pte (or vmas) every 30 second */ | 
|  | static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; | 
|  | static unsigned int khugepaged_pages_collapsed; | 
|  | static unsigned int khugepaged_full_scans; | 
|  | static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; | 
|  | /* during fragmentation poll the hugepage allocator once every minute */ | 
|  | static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; | 
|  | static struct task_struct *khugepaged_thread __read_mostly; | 
|  | static DEFINE_MUTEX(khugepaged_mutex); | 
|  | static DEFINE_SPINLOCK(khugepaged_mm_lock); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); | 
|  | /* | 
|  | * default collapse hugepages if there is at least one pte mapped like | 
|  | * it would have happened if the vma was large enough during page | 
|  | * fault. | 
|  | */ | 
|  | static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; | 
|  |  | 
|  | static int khugepaged(void *none); | 
|  | static int mm_slots_hash_init(void); | 
|  | static int khugepaged_slab_init(void); | 
|  | static void khugepaged_slab_free(void); | 
|  |  | 
|  | #define MM_SLOTS_HASH_HEADS 1024 | 
|  | static struct hlist_head *mm_slots_hash __read_mostly; | 
|  | static struct kmem_cache *mm_slot_cache __read_mostly; | 
|  |  | 
|  | /** | 
|  | * struct mm_slot - hash lookup from mm to mm_slot | 
|  | * @hash: hash collision list | 
|  | * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head | 
|  | * @mm: the mm that this information is valid for | 
|  | */ | 
|  | struct mm_slot { | 
|  | struct hlist_node hash; | 
|  | struct list_head mm_node; | 
|  | struct mm_struct *mm; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct khugepaged_scan - cursor for scanning | 
|  | * @mm_head: the head of the mm list to scan | 
|  | * @mm_slot: the current mm_slot we are scanning | 
|  | * @address: the next address inside that to be scanned | 
|  | * | 
|  | * There is only the one khugepaged_scan instance of this cursor structure. | 
|  | */ | 
|  | struct khugepaged_scan { | 
|  | struct list_head mm_head; | 
|  | struct mm_slot *mm_slot; | 
|  | unsigned long address; | 
|  | }; | 
|  | static struct khugepaged_scan khugepaged_scan = { | 
|  | .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int set_recommended_min_free_kbytes(void) | 
|  | { | 
|  | struct zone *zone; | 
|  | int nr_zones = 0; | 
|  | unsigned long recommended_min; | 
|  | extern int min_free_kbytes; | 
|  |  | 
|  | if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags) && | 
|  | !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags)) | 
|  | return 0; | 
|  |  | 
|  | for_each_populated_zone(zone) | 
|  | nr_zones++; | 
|  |  | 
|  | /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ | 
|  | recommended_min = pageblock_nr_pages * nr_zones * 2; | 
|  |  | 
|  | /* | 
|  | * Make sure that on average at least two pageblocks are almost free | 
|  | * of another type, one for a migratetype to fall back to and a | 
|  | * second to avoid subsequent fallbacks of other types There are 3 | 
|  | * MIGRATE_TYPES we care about. | 
|  | */ | 
|  | recommended_min += pageblock_nr_pages * nr_zones * | 
|  | MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; | 
|  |  | 
|  | /* don't ever allow to reserve more than 5% of the lowmem */ | 
|  | recommended_min = min(recommended_min, | 
|  | (unsigned long) nr_free_buffer_pages() / 20); | 
|  | recommended_min <<= (PAGE_SHIFT-10); | 
|  |  | 
|  | if (recommended_min > min_free_kbytes) | 
|  | min_free_kbytes = recommended_min; | 
|  | setup_per_zone_wmarks(); | 
|  | return 0; | 
|  | } | 
|  | late_initcall(set_recommended_min_free_kbytes); | 
|  |  | 
|  | static int start_khugepaged(void) | 
|  | { | 
|  | int err = 0; | 
|  | if (khugepaged_enabled()) { | 
|  | int wakeup; | 
|  | if (unlikely(!mm_slot_cache || !mm_slots_hash)) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | mutex_lock(&khugepaged_mutex); | 
|  | if (!khugepaged_thread) | 
|  | khugepaged_thread = kthread_run(khugepaged, NULL, | 
|  | "khugepaged"); | 
|  | if (unlikely(IS_ERR(khugepaged_thread))) { | 
|  | printk(KERN_ERR | 
|  | "khugepaged: kthread_run(khugepaged) failed\n"); | 
|  | err = PTR_ERR(khugepaged_thread); | 
|  | khugepaged_thread = NULL; | 
|  | } | 
|  | wakeup = !list_empty(&khugepaged_scan.mm_head); | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  | if (wakeup) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | set_recommended_min_free_kbytes(); | 
|  | } else | 
|  | /* wakeup to exit */ | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  |  | 
|  | static ssize_t double_flag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf, | 
|  | enum transparent_hugepage_flag enabled, | 
|  | enum transparent_hugepage_flag req_madv) | 
|  | { | 
|  | if (test_bit(enabled, &transparent_hugepage_flags)) { | 
|  | VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); | 
|  | return sprintf(buf, "[always] madvise never\n"); | 
|  | } else if (test_bit(req_madv, &transparent_hugepage_flags)) | 
|  | return sprintf(buf, "always [madvise] never\n"); | 
|  | else | 
|  | return sprintf(buf, "always madvise [never]\n"); | 
|  | } | 
|  | static ssize_t double_flag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count, | 
|  | enum transparent_hugepage_flag enabled, | 
|  | enum transparent_hugepage_flag req_madv) | 
|  | { | 
|  | if (!memcmp("always", buf, | 
|  | min(sizeof("always")-1, count))) { | 
|  | set_bit(enabled, &transparent_hugepage_flags); | 
|  | clear_bit(req_madv, &transparent_hugepage_flags); | 
|  | } else if (!memcmp("madvise", buf, | 
|  | min(sizeof("madvise")-1, count))) { | 
|  | clear_bit(enabled, &transparent_hugepage_flags); | 
|  | set_bit(req_madv, &transparent_hugepage_flags); | 
|  | } else if (!memcmp("never", buf, | 
|  | min(sizeof("never")-1, count))) { | 
|  | clear_bit(enabled, &transparent_hugepage_flags); | 
|  | clear_bit(req_madv, &transparent_hugepage_flags); | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t enabled_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return double_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_FLAG, | 
|  | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | 
|  | } | 
|  | static ssize_t enabled_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = double_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_FLAG, | 
|  | TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); | 
|  |  | 
|  | if (ret > 0) { | 
|  | int err = start_khugepaged(); | 
|  | if (err) | 
|  | ret = err; | 
|  | } | 
|  |  | 
|  | if (ret > 0 && | 
|  | (test_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags) || | 
|  | test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags))) | 
|  | set_recommended_min_free_kbytes(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | static struct kobj_attribute enabled_attr = | 
|  | __ATTR(enabled, 0644, enabled_show, enabled_store); | 
|  |  | 
|  | static ssize_t single_flag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf, | 
|  | enum transparent_hugepage_flag flag) | 
|  | { | 
|  | return sprintf(buf, "%d\n", | 
|  | !!test_bit(flag, &transparent_hugepage_flags)); | 
|  | } | 
|  |  | 
|  | static ssize_t single_flag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count, | 
|  | enum transparent_hugepage_flag flag) | 
|  | { | 
|  | unsigned long value; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 10, &value); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | if (value > 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (value) | 
|  | set_bit(flag, &transparent_hugepage_flags); | 
|  | else | 
|  | clear_bit(flag, &transparent_hugepage_flags); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently defrag only disables __GFP_NOWAIT for allocation. A blind | 
|  | * __GFP_REPEAT is too aggressive, it's never worth swapping tons of | 
|  | * memory just to allocate one more hugepage. | 
|  | */ | 
|  | static ssize_t defrag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return double_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | 
|  | } | 
|  | static ssize_t defrag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return double_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); | 
|  | } | 
|  | static struct kobj_attribute defrag_attr = | 
|  | __ATTR(defrag, 0644, defrag_show, defrag_store); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | static ssize_t debug_cow_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
|  | } | 
|  | static ssize_t debug_cow_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return single_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); | 
|  | } | 
|  | static struct kobj_attribute debug_cow_attr = | 
|  | __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); | 
|  | #endif /* CONFIG_DEBUG_VM */ | 
|  |  | 
|  | static struct attribute *hugepage_attr[] = { | 
|  | &enabled_attr.attr, | 
|  | &defrag_attr.attr, | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | &debug_cow_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group hugepage_attr_group = { | 
|  | .attrs = hugepage_attr, | 
|  | }; | 
|  |  | 
|  | static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned long msecs; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &msecs); | 
|  | if (err || msecs > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_scan_sleep_millisecs = msecs; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute scan_sleep_millisecs_attr = | 
|  | __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, | 
|  | scan_sleep_millisecs_store); | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); | 
|  | } | 
|  |  | 
|  | static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned long msecs; | 
|  | int err; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &msecs); | 
|  | if (err || msecs > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_alloc_sleep_millisecs = msecs; | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute alloc_sleep_millisecs_attr = | 
|  | __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, | 
|  | alloc_sleep_millisecs_store); | 
|  |  | 
|  | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_pages_to_scan); | 
|  | } | 
|  | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long pages; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &pages); | 
|  | if (err || !pages || pages > UINT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_pages_to_scan = pages; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute pages_to_scan_attr = | 
|  | __ATTR(pages_to_scan, 0644, pages_to_scan_show, | 
|  | pages_to_scan_store); | 
|  |  | 
|  | static ssize_t pages_collapsed_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_pages_collapsed); | 
|  | } | 
|  | static struct kobj_attribute pages_collapsed_attr = | 
|  | __ATTR_RO(pages_collapsed); | 
|  |  | 
|  | static ssize_t full_scans_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_full_scans); | 
|  | } | 
|  | static struct kobj_attribute full_scans_attr = | 
|  | __ATTR_RO(full_scans); | 
|  |  | 
|  | static ssize_t khugepaged_defrag_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return single_flag_show(kobj, attr, buf, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static ssize_t khugepaged_defrag_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return single_flag_store(kobj, attr, buf, count, | 
|  | TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); | 
|  | } | 
|  | static struct kobj_attribute khugepaged_defrag_attr = | 
|  | __ATTR(defrag, 0644, khugepaged_defrag_show, | 
|  | khugepaged_defrag_store); | 
|  |  | 
|  | /* | 
|  | * max_ptes_none controls if khugepaged should collapse hugepages over | 
|  | * any unmapped ptes in turn potentially increasing the memory | 
|  | * footprint of the vmas. When max_ptes_none is 0 khugepaged will not | 
|  | * reduce the available free memory in the system as it | 
|  | * runs. Increasing max_ptes_none will instead potentially reduce the | 
|  | * free memory in the system during the khugepaged scan. | 
|  | */ | 
|  | static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", khugepaged_max_ptes_none); | 
|  | } | 
|  | static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | int err; | 
|  | unsigned long max_ptes_none; | 
|  |  | 
|  | err = strict_strtoul(buf, 10, &max_ptes_none); | 
|  | if (err || max_ptes_none > HPAGE_PMD_NR-1) | 
|  | return -EINVAL; | 
|  |  | 
|  | khugepaged_max_ptes_none = max_ptes_none; | 
|  |  | 
|  | return count; | 
|  | } | 
|  | static struct kobj_attribute khugepaged_max_ptes_none_attr = | 
|  | __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, | 
|  | khugepaged_max_ptes_none_store); | 
|  |  | 
|  | static struct attribute *khugepaged_attr[] = { | 
|  | &khugepaged_defrag_attr.attr, | 
|  | &khugepaged_max_ptes_none_attr.attr, | 
|  | &pages_to_scan_attr.attr, | 
|  | &pages_collapsed_attr.attr, | 
|  | &full_scans_attr.attr, | 
|  | &scan_sleep_millisecs_attr.attr, | 
|  | &alloc_sleep_millisecs_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group khugepaged_attr_group = { | 
|  | .attrs = khugepaged_attr, | 
|  | .name = "khugepaged", | 
|  | }; | 
|  |  | 
|  | static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); | 
|  | if (unlikely(!*hugepage_kobj)) { | 
|  | printk(KERN_ERR "hugepage: failed kobject create\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); | 
|  | if (err) { | 
|  | printk(KERN_ERR "hugepage: failed register hugeage group\n"); | 
|  | goto delete_obj; | 
|  | } | 
|  |  | 
|  | err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); | 
|  | if (err) { | 
|  | printk(KERN_ERR "hugepage: failed register hugeage group\n"); | 
|  | goto remove_hp_group; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | remove_hp_group: | 
|  | sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); | 
|  | delete_obj: | 
|  | kobject_put(*hugepage_kobj); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
|  | { | 
|  | sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); | 
|  | sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); | 
|  | kobject_put(hugepage_kobj); | 
|  | } | 
|  | #else | 
|  | static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SYSFS */ | 
|  |  | 
|  | static int __init hugepage_init(void) | 
|  | { | 
|  | int err; | 
|  | struct kobject *hugepage_kobj; | 
|  |  | 
|  | if (!has_transparent_hugepage()) { | 
|  | transparent_hugepage_flags = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | err = hugepage_init_sysfs(&hugepage_kobj); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = khugepaged_slab_init(); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | err = mm_slots_hash_init(); | 
|  | if (err) { | 
|  | khugepaged_slab_free(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By default disable transparent hugepages on smaller systems, | 
|  | * where the extra memory used could hurt more than TLB overhead | 
|  | * is likely to save.  The admin can still enable it through /sys. | 
|  | */ | 
|  | if (totalram_pages < (512 << (20 - PAGE_SHIFT))) | 
|  | transparent_hugepage_flags = 0; | 
|  |  | 
|  | start_khugepaged(); | 
|  |  | 
|  | set_recommended_min_free_kbytes(); | 
|  |  | 
|  | return 0; | 
|  | out: | 
|  | hugepage_exit_sysfs(hugepage_kobj); | 
|  | return err; | 
|  | } | 
|  | module_init(hugepage_init) | 
|  |  | 
|  | static int __init setup_transparent_hugepage(char *str) | 
|  | { | 
|  | int ret = 0; | 
|  | if (!str) | 
|  | goto out; | 
|  | if (!strcmp(str, "always")) { | 
|  | set_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "madvise")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } else if (!strcmp(str, "never")) { | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, | 
|  | &transparent_hugepage_flags); | 
|  | ret = 1; | 
|  | } | 
|  | out: | 
|  | if (!ret) | 
|  | printk(KERN_WARNING | 
|  | "transparent_hugepage= cannot parse, ignored\n"); | 
|  | return ret; | 
|  | } | 
|  | __setup("transparent_hugepage=", setup_transparent_hugepage); | 
|  |  | 
|  | static void prepare_pmd_huge_pte(pgtable_t pgtable, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | assert_spin_locked(&mm->page_table_lock); | 
|  |  | 
|  | /* FIFO */ | 
|  | if (!mm->pmd_huge_pte) | 
|  | INIT_LIST_HEAD(&pgtable->lru); | 
|  | else | 
|  | list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); | 
|  | mm->pmd_huge_pte = pgtable; | 
|  | } | 
|  |  | 
|  | static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) | 
|  | { | 
|  | if (likely(vma->vm_flags & VM_WRITE)) | 
|  | pmd = pmd_mkwrite(pmd); | 
|  | return pmd; | 
|  | } | 
|  |  | 
|  | static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long haddr, pmd_t *pmd, | 
|  | struct page *page) | 
|  | { | 
|  | pgtable_t pgtable; | 
|  |  | 
|  | VM_BUG_ON(!PageCompound(page)); | 
|  | pgtable = pte_alloc_one(mm, haddr); | 
|  | if (unlikely(!pgtable)) | 
|  | return VM_FAULT_OOM; | 
|  |  | 
|  | clear_huge_page(page, haddr, HPAGE_PMD_NR); | 
|  | __SetPageUptodate(page); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (unlikely(!pmd_none(*pmd))) { | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | mem_cgroup_uncharge_page(page); | 
|  | put_page(page); | 
|  | pte_free(mm, pgtable); | 
|  | } else { | 
|  | pmd_t entry; | 
|  | entry = mk_pmd(page, vma->vm_page_prot); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | entry = pmd_mkhuge(entry); | 
|  | /* | 
|  | * The spinlocking to take the lru_lock inside | 
|  | * page_add_new_anon_rmap() acts as a full memory | 
|  | * barrier to be sure clear_huge_page writes become | 
|  | * visible after the set_pmd_at() write. | 
|  | */ | 
|  | page_add_new_anon_rmap(page, vma, haddr); | 
|  | set_pmd_at(mm, haddr, pmd, entry); | 
|  | prepare_pmd_huge_pte(pgtable, mm); | 
|  | add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
|  | mm->nr_ptes++; | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) | 
|  | { | 
|  | return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; | 
|  | } | 
|  |  | 
|  | static inline struct page *alloc_hugepage_vma(int defrag, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long haddr, int nd, | 
|  | gfp_t extra_gfp) | 
|  | { | 
|  | return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), | 
|  | HPAGE_PMD_ORDER, vma, haddr, nd); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | static inline struct page *alloc_hugepage(int defrag) | 
|  | { | 
|  | return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), | 
|  | HPAGE_PMD_ORDER); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmd, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned long haddr = address & HPAGE_PMD_MASK; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { | 
|  | if (unlikely(anon_vma_prepare(vma))) | 
|  | return VM_FAULT_OOM; | 
|  | if (unlikely(khugepaged_enter(vma))) | 
|  | return VM_FAULT_OOM; | 
|  | page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), | 
|  | vma, haddr, numa_node_id(), 0); | 
|  | if (unlikely(!page)) { | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | goto out; | 
|  | } | 
|  | count_vm_event(THP_FAULT_ALLOC); | 
|  | if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  | if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, | 
|  | page))) { | 
|  | mem_cgroup_uncharge_page(page); | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * Use __pte_alloc instead of pte_alloc_map, because we can't | 
|  | * run pte_offset_map on the pmd, if an huge pmd could | 
|  | * materialize from under us from a different thread. | 
|  | */ | 
|  | if (unlikely(__pte_alloc(mm, vma, pmd, address))) | 
|  | return VM_FAULT_OOM; | 
|  | /* if an huge pmd materialized from under us just retry later */ | 
|  | if (unlikely(pmd_trans_huge(*pmd))) | 
|  | return 0; | 
|  | /* | 
|  | * A regular pmd is established and it can't morph into a huge pmd | 
|  | * from under us anymore at this point because we hold the mmap_sem | 
|  | * read mode and khugepaged takes it in write mode. So now it's | 
|  | * safe to run pte_offset_map(). | 
|  | */ | 
|  | pte = pte_offset_map(pmd, address); | 
|  | return handle_pte_fault(mm, vma, address, pte, pmd, flags); | 
|  | } | 
|  |  | 
|  | int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
|  | pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | struct page *src_page; | 
|  | pmd_t pmd; | 
|  | pgtable_t pgtable; | 
|  | int ret; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pgtable = pte_alloc_one(dst_mm, addr); | 
|  | if (unlikely(!pgtable)) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&dst_mm->page_table_lock); | 
|  | spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | ret = -EAGAIN; | 
|  | pmd = *src_pmd; | 
|  | if (unlikely(!pmd_trans_huge(pmd))) { | 
|  | pte_free(dst_mm, pgtable); | 
|  | goto out_unlock; | 
|  | } | 
|  | if (unlikely(pmd_trans_splitting(pmd))) { | 
|  | /* split huge page running from under us */ | 
|  | spin_unlock(&src_mm->page_table_lock); | 
|  | spin_unlock(&dst_mm->page_table_lock); | 
|  | pte_free(dst_mm, pgtable); | 
|  |  | 
|  | wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ | 
|  | goto out; | 
|  | } | 
|  | src_page = pmd_page(pmd); | 
|  | VM_BUG_ON(!PageHead(src_page)); | 
|  | get_page(src_page); | 
|  | page_dup_rmap(src_page); | 
|  | add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); | 
|  |  | 
|  | pmdp_set_wrprotect(src_mm, addr, src_pmd); | 
|  | pmd = pmd_mkold(pmd_wrprotect(pmd)); | 
|  | set_pmd_at(dst_mm, addr, dst_pmd, pmd); | 
|  | prepare_pmd_huge_pte(pgtable, dst_mm); | 
|  | dst_mm->nr_ptes++; | 
|  |  | 
|  | ret = 0; | 
|  | out_unlock: | 
|  | spin_unlock(&src_mm->page_table_lock); | 
|  | spin_unlock(&dst_mm->page_table_lock); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* no "address" argument so destroys page coloring of some arch */ | 
|  | pgtable_t get_pmd_huge_pte(struct mm_struct *mm) | 
|  | { | 
|  | pgtable_t pgtable; | 
|  |  | 
|  | assert_spin_locked(&mm->page_table_lock); | 
|  |  | 
|  | /* FIFO */ | 
|  | pgtable = mm->pmd_huge_pte; | 
|  | if (list_empty(&pgtable->lru)) | 
|  | mm->pmd_huge_pte = NULL; | 
|  | else { | 
|  | mm->pmd_huge_pte = list_entry(pgtable->lru.next, | 
|  | struct page, lru); | 
|  | list_del(&pgtable->lru); | 
|  | } | 
|  | return pgtable; | 
|  | } | 
|  |  | 
|  | static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pmd_t *pmd, pmd_t orig_pmd, | 
|  | struct page *page, | 
|  | unsigned long haddr) | 
|  | { | 
|  | pgtable_t pgtable; | 
|  | pmd_t _pmd; | 
|  | int ret = 0, i; | 
|  | struct page **pages; | 
|  |  | 
|  | pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, | 
|  | GFP_KERNEL); | 
|  | if (unlikely(!pages)) { | 
|  | ret |= VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | | 
|  | __GFP_OTHER_NODE, | 
|  | vma, address, page_to_nid(page)); | 
|  | if (unlikely(!pages[i] || | 
|  | mem_cgroup_newpage_charge(pages[i], mm, | 
|  | GFP_KERNEL))) { | 
|  | if (pages[i]) | 
|  | put_page(pages[i]); | 
|  | mem_cgroup_uncharge_start(); | 
|  | while (--i >= 0) { | 
|  | mem_cgroup_uncharge_page(pages[i]); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | mem_cgroup_uncharge_end(); | 
|  | kfree(pages); | 
|  | ret |= VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | copy_user_highpage(pages[i], page + i, | 
|  | haddr + PAGE_SIZE * i, vma); | 
|  | __SetPageUptodate(pages[i]); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (unlikely(!pmd_same(*pmd, orig_pmd))) | 
|  | goto out_free_pages; | 
|  | VM_BUG_ON(!PageHead(page)); | 
|  |  | 
|  | pmdp_clear_flush_notify(vma, haddr, pmd); | 
|  | /* leave pmd empty until pte is filled */ | 
|  |  | 
|  | pgtable = get_pmd_huge_pte(mm); | 
|  | pmd_populate(mm, &_pmd, pgtable); | 
|  |  | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { | 
|  | pte_t *pte, entry; | 
|  | entry = mk_pte(pages[i], vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | page_add_new_anon_rmap(pages[i], vma, haddr); | 
|  | pte = pte_offset_map(&_pmd, haddr); | 
|  | VM_BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, haddr, pte, entry); | 
|  | pte_unmap(pte); | 
|  | } | 
|  | kfree(pages); | 
|  |  | 
|  | smp_wmb(); /* make pte visible before pmd */ | 
|  | pmd_populate(mm, pmd, pgtable); | 
|  | page_remove_rmap(page); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | ret |= VM_FAULT_WRITE; | 
|  | put_page(page); | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  |  | 
|  | out_free_pages: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | mem_cgroup_uncharge_start(); | 
|  | for (i = 0; i < HPAGE_PMD_NR; i++) { | 
|  | mem_cgroup_uncharge_page(pages[i]); | 
|  | put_page(pages[i]); | 
|  | } | 
|  | mem_cgroup_uncharge_end(); | 
|  | kfree(pages); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmd, pmd_t orig_pmd) | 
|  | { | 
|  | int ret = 0; | 
|  | struct page *page, *new_page; | 
|  | unsigned long haddr; | 
|  |  | 
|  | VM_BUG_ON(!vma->anon_vma); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (unlikely(!pmd_same(*pmd, orig_pmd))) | 
|  | goto out_unlock; | 
|  |  | 
|  | page = pmd_page(orig_pmd); | 
|  | VM_BUG_ON(!PageCompound(page) || !PageHead(page)); | 
|  | haddr = address & HPAGE_PMD_MASK; | 
|  | if (page_mapcount(page) == 1) { | 
|  | pmd_t entry; | 
|  | entry = pmd_mkyoung(orig_pmd); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1)) | 
|  | update_mmu_cache(vma, address, entry); | 
|  | ret |= VM_FAULT_WRITE; | 
|  | goto out_unlock; | 
|  | } | 
|  | get_page(page); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | if (transparent_hugepage_enabled(vma) && | 
|  | !transparent_hugepage_debug_cow()) | 
|  | new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), | 
|  | vma, haddr, numa_node_id(), 0); | 
|  | else | 
|  | new_page = NULL; | 
|  |  | 
|  | if (unlikely(!new_page)) { | 
|  | count_vm_event(THP_FAULT_FALLBACK); | 
|  | ret = do_huge_pmd_wp_page_fallback(mm, vma, address, | 
|  | pmd, orig_pmd, page, haddr); | 
|  | if (ret & VM_FAULT_OOM) | 
|  | split_huge_page(page); | 
|  | put_page(page); | 
|  | goto out; | 
|  | } | 
|  | count_vm_event(THP_FAULT_ALLOC); | 
|  |  | 
|  | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { | 
|  | put_page(new_page); | 
|  | split_huge_page(page); | 
|  | put_page(page); | 
|  | ret |= VM_FAULT_OOM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); | 
|  | __SetPageUptodate(new_page); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | put_page(page); | 
|  | if (unlikely(!pmd_same(*pmd, orig_pmd))) { | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | mem_cgroup_uncharge_page(new_page); | 
|  | put_page(new_page); | 
|  | goto out; | 
|  | } else { | 
|  | pmd_t entry; | 
|  | VM_BUG_ON(!PageHead(page)); | 
|  | entry = mk_pmd(new_page, vma->vm_page_prot); | 
|  | entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); | 
|  | entry = pmd_mkhuge(entry); | 
|  | pmdp_clear_flush_notify(vma, haddr, pmd); | 
|  | page_add_new_anon_rmap(new_page, vma, haddr); | 
|  | set_pmd_at(mm, haddr, pmd, entry); | 
|  | update_mmu_cache(vma, address, entry); | 
|  | page_remove_rmap(page); | 
|  | put_page(page); | 
|  | ret |= VM_FAULT_WRITE; | 
|  | } | 
|  | out_unlock: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct page *follow_trans_huge_pmd(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pmd_t *pmd, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct page *page = NULL; | 
|  |  | 
|  | assert_spin_locked(&mm->page_table_lock); | 
|  |  | 
|  | if (flags & FOLL_WRITE && !pmd_write(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | page = pmd_page(*pmd); | 
|  | VM_BUG_ON(!PageHead(page)); | 
|  | if (flags & FOLL_TOUCH) { | 
|  | pmd_t _pmd; | 
|  | /* | 
|  | * We should set the dirty bit only for FOLL_WRITE but | 
|  | * for now the dirty bit in the pmd is meaningless. | 
|  | * And if the dirty bit will become meaningful and | 
|  | * we'll only set it with FOLL_WRITE, an atomic | 
|  | * set_bit will be required on the pmd to set the | 
|  | * young bit, instead of the current set_pmd_at. | 
|  | */ | 
|  | _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); | 
|  | set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); | 
|  | } | 
|  | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | 
|  | VM_BUG_ON(!PageCompound(page)); | 
|  | if (flags & FOLL_GET) | 
|  | get_page_foll(page); | 
|  |  | 
|  | out: | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
|  | pmd_t *pmd, unsigned long addr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (__pmd_trans_huge_lock(pmd, vma) == 1) { | 
|  | struct page *page; | 
|  | pgtable_t pgtable; | 
|  | pgtable = get_pmd_huge_pte(tlb->mm); | 
|  | page = pmd_page(*pmd); | 
|  | pmd_clear(pmd); | 
|  | tlb_remove_pmd_tlb_entry(tlb, pmd, addr); | 
|  | page_remove_rmap(page); | 
|  | VM_BUG_ON(page_mapcount(page) < 0); | 
|  | add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); | 
|  | VM_BUG_ON(!PageHead(page)); | 
|  | tlb->mm->nr_ptes--; | 
|  | spin_unlock(&tlb->mm->page_table_lock); | 
|  | tlb_remove_page(tlb, page); | 
|  | pte_free(tlb->mm, pgtable); | 
|  | ret = 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned char *vec) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (__pmd_trans_huge_lock(pmd, vma) == 1) { | 
|  | /* | 
|  | * All logical pages in the range are present | 
|  | * if backed by a huge page. | 
|  | */ | 
|  | spin_unlock(&vma->vm_mm->page_table_lock); | 
|  | memset(vec, 1, (end - addr) >> PAGE_SHIFT); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, | 
|  | unsigned long old_addr, | 
|  | unsigned long new_addr, unsigned long old_end, | 
|  | pmd_t *old_pmd, pmd_t *new_pmd) | 
|  | { | 
|  | int ret = 0; | 
|  | pmd_t pmd; | 
|  |  | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  |  | 
|  | if ((old_addr & ~HPAGE_PMD_MASK) || | 
|  | (new_addr & ~HPAGE_PMD_MASK) || | 
|  | old_end - old_addr < HPAGE_PMD_SIZE || | 
|  | (new_vma->vm_flags & VM_NOHUGEPAGE)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * The destination pmd shouldn't be established, free_pgtables() | 
|  | * should have release it. | 
|  | */ | 
|  | if (WARN_ON(!pmd_none(*new_pmd))) { | 
|  | VM_BUG_ON(pmd_trans_huge(*new_pmd)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = __pmd_trans_huge_lock(old_pmd, vma); | 
|  | if (ret == 1) { | 
|  | pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); | 
|  | VM_BUG_ON(!pmd_none(*new_pmd)); | 
|  | set_pmd_at(mm, new_addr, new_pmd, pmd); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, | 
|  | unsigned long addr, pgprot_t newprot) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | int ret = 0; | 
|  |  | 
|  | if (__pmd_trans_huge_lock(pmd, vma) == 1) { | 
|  | pmd_t entry; | 
|  | entry = pmdp_get_and_clear(mm, addr, pmd); | 
|  | entry = pmd_modify(entry, newprot); | 
|  | set_pmd_at(mm, addr, pmd, entry); | 
|  | spin_unlock(&vma->vm_mm->page_table_lock); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 1 if a given pmd maps a stable (not under splitting) thp. | 
|  | * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. | 
|  | * | 
|  | * Note that if it returns 1, this routine returns without unlocking page | 
|  | * table locks. So callers must unlock them. | 
|  | */ | 
|  | int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) | 
|  | { | 
|  | spin_lock(&vma->vm_mm->page_table_lock); | 
|  | if (likely(pmd_trans_huge(*pmd))) { | 
|  | if (unlikely(pmd_trans_splitting(*pmd))) { | 
|  | spin_unlock(&vma->vm_mm->page_table_lock); | 
|  | wait_split_huge_page(vma->anon_vma, pmd); | 
|  | return -1; | 
|  | } else { | 
|  | /* Thp mapped by 'pmd' is stable, so we can | 
|  | * handle it as it is. */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | spin_unlock(&vma->vm_mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pmd_t *page_check_address_pmd(struct page *page, | 
|  | struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | enum page_check_address_pmd_flag flag) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd, *ret = NULL; | 
|  |  | 
|  | if (address & ~HPAGE_PMD_MASK) | 
|  | goto out; | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (pmd_none(*pmd)) | 
|  | goto out; | 
|  | if (pmd_page(*pmd) != page) | 
|  | goto out; | 
|  | /* | 
|  | * split_vma() may create temporary aliased mappings. There is | 
|  | * no risk as long as all huge pmd are found and have their | 
|  | * splitting bit set before __split_huge_page_refcount | 
|  | * runs. Finding the same huge pmd more than once during the | 
|  | * same rmap walk is not a problem. | 
|  | */ | 
|  | if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && | 
|  | pmd_trans_splitting(*pmd)) | 
|  | goto out; | 
|  | if (pmd_trans_huge(*pmd)) { | 
|  | VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && | 
|  | !pmd_trans_splitting(*pmd)); | 
|  | ret = pmd; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __split_huge_page_splitting(struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pmd_t *pmd; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | pmd = page_check_address_pmd(page, mm, address, | 
|  | PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); | 
|  | if (pmd) { | 
|  | /* | 
|  | * We can't temporarily set the pmd to null in order | 
|  | * to split it, the pmd must remain marked huge at all | 
|  | * times or the VM won't take the pmd_trans_huge paths | 
|  | * and it won't wait on the anon_vma->root->mutex to | 
|  | * serialize against split_huge_page*. | 
|  | */ | 
|  | pmdp_splitting_flush_notify(vma, address, pmd); | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __split_huge_page_refcount(struct page *page) | 
|  | { | 
|  | int i; | 
|  | struct zone *zone = page_zone(page); | 
|  | struct lruvec *lruvec; | 
|  | int tail_count = 0; | 
|  |  | 
|  | /* prevent PageLRU to go away from under us, and freeze lru stats */ | 
|  | spin_lock_irq(&zone->lru_lock); | 
|  | lruvec = mem_cgroup_page_lruvec(page, zone); | 
|  |  | 
|  | compound_lock(page); | 
|  | /* complete memcg works before add pages to LRU */ | 
|  | mem_cgroup_split_huge_fixup(page); | 
|  |  | 
|  | for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { | 
|  | struct page *page_tail = page + i; | 
|  |  | 
|  | /* tail_page->_mapcount cannot change */ | 
|  | BUG_ON(page_mapcount(page_tail) < 0); | 
|  | tail_count += page_mapcount(page_tail); | 
|  | /* check for overflow */ | 
|  | BUG_ON(tail_count < 0); | 
|  | BUG_ON(atomic_read(&page_tail->_count) != 0); | 
|  | /* | 
|  | * tail_page->_count is zero and not changing from | 
|  | * under us. But get_page_unless_zero() may be running | 
|  | * from under us on the tail_page. If we used | 
|  | * atomic_set() below instead of atomic_add(), we | 
|  | * would then run atomic_set() concurrently with | 
|  | * get_page_unless_zero(), and atomic_set() is | 
|  | * implemented in C not using locked ops. spin_unlock | 
|  | * on x86 sometime uses locked ops because of PPro | 
|  | * errata 66, 92, so unless somebody can guarantee | 
|  | * atomic_set() here would be safe on all archs (and | 
|  | * not only on x86), it's safer to use atomic_add(). | 
|  | */ | 
|  | atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, | 
|  | &page_tail->_count); | 
|  |  | 
|  | /* after clearing PageTail the gup refcount can be released */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * retain hwpoison flag of the poisoned tail page: | 
|  | *   fix for the unsuitable process killed on Guest Machine(KVM) | 
|  | *   by the memory-failure. | 
|  | */ | 
|  | page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; | 
|  | page_tail->flags |= (page->flags & | 
|  | ((1L << PG_referenced) | | 
|  | (1L << PG_swapbacked) | | 
|  | (1L << PG_mlocked) | | 
|  | (1L << PG_uptodate))); | 
|  | page_tail->flags |= (1L << PG_dirty); | 
|  |  | 
|  | /* clear PageTail before overwriting first_page */ | 
|  | smp_wmb(); | 
|  |  | 
|  | /* | 
|  | * __split_huge_page_splitting() already set the | 
|  | * splitting bit in all pmd that could map this | 
|  | * hugepage, that will ensure no CPU can alter the | 
|  | * mapcount on the head page. The mapcount is only | 
|  | * accounted in the head page and it has to be | 
|  | * transferred to all tail pages in the below code. So | 
|  | * for this code to be safe, the split the mapcount | 
|  | * can't change. But that doesn't mean userland can't | 
|  | * keep changing and reading the page contents while | 
|  | * we transfer the mapcount, so the pmd splitting | 
|  | * status is achieved setting a reserved bit in the | 
|  | * pmd, not by clearing the present bit. | 
|  | */ | 
|  | page_tail->_mapcount = page->_mapcount; | 
|  |  | 
|  | BUG_ON(page_tail->mapping); | 
|  | page_tail->mapping = page->mapping; | 
|  |  | 
|  | page_tail->index = page->index + i; | 
|  |  | 
|  | BUG_ON(!PageAnon(page_tail)); | 
|  | BUG_ON(!PageUptodate(page_tail)); | 
|  | BUG_ON(!PageDirty(page_tail)); | 
|  | BUG_ON(!PageSwapBacked(page_tail)); | 
|  |  | 
|  | lru_add_page_tail(page, page_tail, lruvec); | 
|  | } | 
|  | atomic_sub(tail_count, &page->_count); | 
|  | BUG_ON(atomic_read(&page->_count) <= 0); | 
|  |  | 
|  | __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); | 
|  | __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); | 
|  |  | 
|  | ClearPageCompound(page); | 
|  | compound_unlock(page); | 
|  | spin_unlock_irq(&zone->lru_lock); | 
|  |  | 
|  | for (i = 1; i < HPAGE_PMD_NR; i++) { | 
|  | struct page *page_tail = page + i; | 
|  | BUG_ON(page_count(page_tail) <= 0); | 
|  | /* | 
|  | * Tail pages may be freed if there wasn't any mapping | 
|  | * like if add_to_swap() is running on a lru page that | 
|  | * had its mapping zapped. And freeing these pages | 
|  | * requires taking the lru_lock so we do the put_page | 
|  | * of the tail pages after the split is complete. | 
|  | */ | 
|  | put_page(page_tail); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only the head page (now become a regular page) is required | 
|  | * to be pinned by the caller. | 
|  | */ | 
|  | BUG_ON(page_count(page) <= 0); | 
|  | } | 
|  |  | 
|  | static int __split_huge_page_map(struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | pmd_t *pmd, _pmd; | 
|  | int ret = 0, i; | 
|  | pgtable_t pgtable; | 
|  | unsigned long haddr; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | pmd = page_check_address_pmd(page, mm, address, | 
|  | PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); | 
|  | if (pmd) { | 
|  | pgtable = get_pmd_huge_pte(mm); | 
|  | pmd_populate(mm, &_pmd, pgtable); | 
|  |  | 
|  | for (i = 0, haddr = address; i < HPAGE_PMD_NR; | 
|  | i++, haddr += PAGE_SIZE) { | 
|  | pte_t *pte, entry; | 
|  | BUG_ON(PageCompound(page+i)); | 
|  | entry = mk_pte(page + i, vma->vm_page_prot); | 
|  | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
|  | if (!pmd_write(*pmd)) | 
|  | entry = pte_wrprotect(entry); | 
|  | else | 
|  | BUG_ON(page_mapcount(page) != 1); | 
|  | if (!pmd_young(*pmd)) | 
|  | entry = pte_mkold(entry); | 
|  | pte = pte_offset_map(&_pmd, haddr); | 
|  | BUG_ON(!pte_none(*pte)); | 
|  | set_pte_at(mm, haddr, pte, entry); | 
|  | pte_unmap(pte); | 
|  | } | 
|  |  | 
|  | smp_wmb(); /* make pte visible before pmd */ | 
|  | /* | 
|  | * Up to this point the pmd is present and huge and | 
|  | * userland has the whole access to the hugepage | 
|  | * during the split (which happens in place). If we | 
|  | * overwrite the pmd with the not-huge version | 
|  | * pointing to the pte here (which of course we could | 
|  | * if all CPUs were bug free), userland could trigger | 
|  | * a small page size TLB miss on the small sized TLB | 
|  | * while the hugepage TLB entry is still established | 
|  | * in the huge TLB. Some CPU doesn't like that. See | 
|  | * http://support.amd.com/us/Processor_TechDocs/41322.pdf, | 
|  | * Erratum 383 on page 93. Intel should be safe but is | 
|  | * also warns that it's only safe if the permission | 
|  | * and cache attributes of the two entries loaded in | 
|  | * the two TLB is identical (which should be the case | 
|  | * here). But it is generally safer to never allow | 
|  | * small and huge TLB entries for the same virtual | 
|  | * address to be loaded simultaneously. So instead of | 
|  | * doing "pmd_populate(); flush_tlb_range();" we first | 
|  | * mark the current pmd notpresent (atomically because | 
|  | * here the pmd_trans_huge and pmd_trans_splitting | 
|  | * must remain set at all times on the pmd until the | 
|  | * split is complete for this pmd), then we flush the | 
|  | * SMP TLB and finally we write the non-huge version | 
|  | * of the pmd entry with pmd_populate. | 
|  | */ | 
|  | set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); | 
|  | flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); | 
|  | pmd_populate(mm, pmd, pgtable); | 
|  | ret = 1; | 
|  | } | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* must be called with anon_vma->root->mutex hold */ | 
|  | static void __split_huge_page(struct page *page, | 
|  | struct anon_vma *anon_vma) | 
|  | { | 
|  | int mapcount, mapcount2; | 
|  | struct anon_vma_chain *avc; | 
|  |  | 
|  | BUG_ON(!PageHead(page)); | 
|  | BUG_ON(PageTail(page)); | 
|  |  | 
|  | mapcount = 0; | 
|  | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long addr = vma_address(page, vma); | 
|  | BUG_ON(is_vma_temporary_stack(vma)); | 
|  | if (addr == -EFAULT) | 
|  | continue; | 
|  | mapcount += __split_huge_page_splitting(page, vma, addr); | 
|  | } | 
|  | /* | 
|  | * It is critical that new vmas are added to the tail of the | 
|  | * anon_vma list. This guarantes that if copy_huge_pmd() runs | 
|  | * and establishes a child pmd before | 
|  | * __split_huge_page_splitting() freezes the parent pmd (so if | 
|  | * we fail to prevent copy_huge_pmd() from running until the | 
|  | * whole __split_huge_page() is complete), we will still see | 
|  | * the newly established pmd of the child later during the | 
|  | * walk, to be able to set it as pmd_trans_splitting too. | 
|  | */ | 
|  | if (mapcount != page_mapcount(page)) | 
|  | printk(KERN_ERR "mapcount %d page_mapcount %d\n", | 
|  | mapcount, page_mapcount(page)); | 
|  | BUG_ON(mapcount != page_mapcount(page)); | 
|  |  | 
|  | __split_huge_page_refcount(page); | 
|  |  | 
|  | mapcount2 = 0; | 
|  | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 
|  | struct vm_area_struct *vma = avc->vma; | 
|  | unsigned long addr = vma_address(page, vma); | 
|  | BUG_ON(is_vma_temporary_stack(vma)); | 
|  | if (addr == -EFAULT) | 
|  | continue; | 
|  | mapcount2 += __split_huge_page_map(page, vma, addr); | 
|  | } | 
|  | if (mapcount != mapcount2) | 
|  | printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", | 
|  | mapcount, mapcount2, page_mapcount(page)); | 
|  | BUG_ON(mapcount != mapcount2); | 
|  | } | 
|  |  | 
|  | int split_huge_page(struct page *page) | 
|  | { | 
|  | struct anon_vma *anon_vma; | 
|  | int ret = 1; | 
|  |  | 
|  | BUG_ON(!PageAnon(page)); | 
|  | anon_vma = page_lock_anon_vma(page); | 
|  | if (!anon_vma) | 
|  | goto out; | 
|  | ret = 0; | 
|  | if (!PageCompound(page)) | 
|  | goto out_unlock; | 
|  |  | 
|  | BUG_ON(!PageSwapBacked(page)); | 
|  | __split_huge_page(page, anon_vma); | 
|  | count_vm_event(THP_SPLIT); | 
|  |  | 
|  | BUG_ON(PageCompound(page)); | 
|  | out_unlock: | 
|  | page_unlock_anon_vma(anon_vma); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \ | 
|  | VM_HUGETLB|VM_SHARED|VM_MAYSHARE) | 
|  |  | 
|  | int hugepage_madvise(struct vm_area_struct *vma, | 
|  | unsigned long *vm_flags, int advice) | 
|  | { | 
|  | switch (advice) { | 
|  | case MADV_HUGEPAGE: | 
|  | /* | 
|  | * Be somewhat over-protective like KSM for now! | 
|  | */ | 
|  | if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) | 
|  | return -EINVAL; | 
|  | *vm_flags &= ~VM_NOHUGEPAGE; | 
|  | *vm_flags |= VM_HUGEPAGE; | 
|  | /* | 
|  | * If the vma become good for khugepaged to scan, | 
|  | * register it here without waiting a page fault that | 
|  | * may not happen any time soon. | 
|  | */ | 
|  | if (unlikely(khugepaged_enter_vma_merge(vma))) | 
|  | return -ENOMEM; | 
|  | break; | 
|  | case MADV_NOHUGEPAGE: | 
|  | /* | 
|  | * Be somewhat over-protective like KSM for now! | 
|  | */ | 
|  | if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) | 
|  | return -EINVAL; | 
|  | *vm_flags &= ~VM_HUGEPAGE; | 
|  | *vm_flags |= VM_NOHUGEPAGE; | 
|  | /* | 
|  | * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning | 
|  | * this vma even if we leave the mm registered in khugepaged if | 
|  | * it got registered before VM_NOHUGEPAGE was set. | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __init khugepaged_slab_init(void) | 
|  | { | 
|  | mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", | 
|  | sizeof(struct mm_slot), | 
|  | __alignof__(struct mm_slot), 0, NULL); | 
|  | if (!mm_slot_cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init khugepaged_slab_free(void) | 
|  | { | 
|  | kmem_cache_destroy(mm_slot_cache); | 
|  | mm_slot_cache = NULL; | 
|  | } | 
|  |  | 
|  | static inline struct mm_slot *alloc_mm_slot(void) | 
|  | { | 
|  | if (!mm_slot_cache)	/* initialization failed */ | 
|  | return NULL; | 
|  | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
|  | { | 
|  | kmem_cache_free(mm_slot_cache, mm_slot); | 
|  | } | 
|  |  | 
|  | static int __init mm_slots_hash_init(void) | 
|  | { | 
|  | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | 
|  | GFP_KERNEL); | 
|  | if (!mm_slots_hash) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void __init mm_slots_hash_free(void) | 
|  | { | 
|  | kfree(mm_slots_hash); | 
|  | mm_slots_hash = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | struct hlist_head *bucket; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 
|  | % MM_SLOTS_HASH_HEADS]; | 
|  | hlist_for_each_entry(mm_slot, node, bucket, hash) { | 
|  | if (mm == mm_slot->mm) | 
|  | return mm_slot; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
|  | struct mm_slot *mm_slot) | 
|  | { | 
|  | struct hlist_head *bucket; | 
|  |  | 
|  | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 
|  | % MM_SLOTS_HASH_HEADS]; | 
|  | mm_slot->mm = mm; | 
|  | hlist_add_head(&mm_slot->hash, bucket); | 
|  | } | 
|  |  | 
|  | static inline int khugepaged_test_exit(struct mm_struct *mm) | 
|  | { | 
|  | return atomic_read(&mm->mm_users) == 0; | 
|  | } | 
|  |  | 
|  | int __khugepaged_enter(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | int wakeup; | 
|  |  | 
|  | mm_slot = alloc_mm_slot(); | 
|  | if (!mm_slot) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* __khugepaged_exit() must not run from under us */ | 
|  | VM_BUG_ON(khugepaged_test_exit(mm)); | 
|  | if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { | 
|  | free_mm_slot(mm_slot); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | insert_to_mm_slots_hash(mm, mm_slot); | 
|  | /* | 
|  | * Insert just behind the scanning cursor, to let the area settle | 
|  | * down a little. | 
|  | */ | 
|  | wakeup = list_empty(&khugepaged_scan.mm_head); | 
|  | list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | atomic_inc(&mm->mm_count); | 
|  | if (wakeup) | 
|  | wake_up_interruptible(&khugepaged_wait); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int khugepaged_enter_vma_merge(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long hstart, hend; | 
|  | if (!vma->anon_vma) | 
|  | /* | 
|  | * Not yet faulted in so we will register later in the | 
|  | * page fault if needed. | 
|  | */ | 
|  | return 0; | 
|  | if (vma->vm_ops) | 
|  | /* khugepaged not yet working on file or special mappings */ | 
|  | return 0; | 
|  | /* | 
|  | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be | 
|  | * true too, verify it here. | 
|  | */ | 
|  | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (hstart < hend) | 
|  | return khugepaged_enter(vma); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __khugepaged_exit(struct mm_struct *mm) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | int free = 0; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | mm_slot = get_mm_slot(mm); | 
|  | if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { | 
|  | hlist_del(&mm_slot->hash); | 
|  | list_del(&mm_slot->mm_node); | 
|  | free = 1; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | if (free) { | 
|  | clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
|  | free_mm_slot(mm_slot); | 
|  | mmdrop(mm); | 
|  | } else if (mm_slot) { | 
|  | /* | 
|  | * This is required to serialize against | 
|  | * khugepaged_test_exit() (which is guaranteed to run | 
|  | * under mmap sem read mode). Stop here (after we | 
|  | * return all pagetables will be destroyed) until | 
|  | * khugepaged has finished working on the pagetables | 
|  | * under the mmap_sem. | 
|  | */ | 
|  | down_write(&mm->mmap_sem); | 
|  | up_write(&mm->mmap_sem); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_pte_page(struct page *page) | 
|  | { | 
|  | /* 0 stands for page_is_file_cache(page) == false */ | 
|  | dec_zone_page_state(page, NR_ISOLATED_ANON + 0); | 
|  | unlock_page(page); | 
|  | putback_lru_page(page); | 
|  | } | 
|  |  | 
|  | static void release_pte_pages(pte_t *pte, pte_t *_pte) | 
|  | { | 
|  | while (--_pte >= pte) { | 
|  | pte_t pteval = *_pte; | 
|  | if (!pte_none(pteval)) | 
|  | release_pte_page(pte_page(pteval)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void release_all_pte_pages(pte_t *pte) | 
|  | { | 
|  | release_pte_pages(pte, pte + HPAGE_PMD_NR); | 
|  | } | 
|  |  | 
|  | static int __collapse_huge_page_isolate(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pte_t *pte) | 
|  | { | 
|  | struct page *page; | 
|  | pte_t *_pte; | 
|  | int referenced = 0, isolated = 0, none = 0; | 
|  | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; | 
|  | _pte++, address += PAGE_SIZE) { | 
|  | pte_t pteval = *_pte; | 
|  | if (pte_none(pteval)) { | 
|  | if (++none <= khugepaged_max_ptes_none) | 
|  | continue; | 
|  | else { | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | if (!pte_present(pteval) || !pte_write(pteval)) { | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | page = vm_normal_page(vma, address, pteval); | 
|  | if (unlikely(!page)) { | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | VM_BUG_ON(PageCompound(page)); | 
|  | BUG_ON(!PageAnon(page)); | 
|  | VM_BUG_ON(!PageSwapBacked(page)); | 
|  |  | 
|  | /* cannot use mapcount: can't collapse if there's a gup pin */ | 
|  | if (page_count(page) != 1) { | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * We can do it before isolate_lru_page because the | 
|  | * page can't be freed from under us. NOTE: PG_lock | 
|  | * is needed to serialize against split_huge_page | 
|  | * when invoked from the VM. | 
|  | */ | 
|  | if (!trylock_page(page)) { | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * Isolate the page to avoid collapsing an hugepage | 
|  | * currently in use by the VM. | 
|  | */ | 
|  | if (isolate_lru_page(page)) { | 
|  | unlock_page(page); | 
|  | release_pte_pages(pte, _pte); | 
|  | goto out; | 
|  | } | 
|  | /* 0 stands for page_is_file_cache(page) == false */ | 
|  | inc_zone_page_state(page, NR_ISOLATED_ANON + 0); | 
|  | VM_BUG_ON(!PageLocked(page)); | 
|  | VM_BUG_ON(PageLRU(page)); | 
|  |  | 
|  | /* If there is no mapped pte young don't collapse the page */ | 
|  | if (pte_young(pteval) || PageReferenced(page) || | 
|  | mmu_notifier_test_young(vma->vm_mm, address)) | 
|  | referenced = 1; | 
|  | } | 
|  | if (unlikely(!referenced)) | 
|  | release_all_pte_pages(pte); | 
|  | else | 
|  | isolated = 1; | 
|  | out: | 
|  | return isolated; | 
|  | } | 
|  |  | 
|  | static void __collapse_huge_page_copy(pte_t *pte, struct page *page, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | spinlock_t *ptl) | 
|  | { | 
|  | pte_t *_pte; | 
|  | for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { | 
|  | pte_t pteval = *_pte; | 
|  | struct page *src_page; | 
|  |  | 
|  | if (pte_none(pteval)) { | 
|  | clear_user_highpage(page, address); | 
|  | add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); | 
|  | } else { | 
|  | src_page = pte_page(pteval); | 
|  | copy_user_highpage(page, src_page, address, vma); | 
|  | VM_BUG_ON(page_mapcount(src_page) != 1); | 
|  | VM_BUG_ON(page_count(src_page) != 2); | 
|  | release_pte_page(src_page); | 
|  | /* | 
|  | * ptl mostly unnecessary, but preempt has to | 
|  | * be disabled to update the per-cpu stats | 
|  | * inside page_remove_rmap(). | 
|  | */ | 
|  | spin_lock(ptl); | 
|  | /* | 
|  | * paravirt calls inside pte_clear here are | 
|  | * superfluous. | 
|  | */ | 
|  | pte_clear(vma->vm_mm, address, _pte); | 
|  | page_remove_rmap(src_page); | 
|  | spin_unlock(ptl); | 
|  | free_page_and_swap_cache(src_page); | 
|  | } | 
|  |  | 
|  | address += PAGE_SIZE; | 
|  | page++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void collapse_huge_page(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | struct page **hpage, | 
|  | struct vm_area_struct *vma, | 
|  | int node) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd, _pmd; | 
|  | pte_t *pte; | 
|  | pgtable_t pgtable; | 
|  | struct page *new_page; | 
|  | spinlock_t *ptl; | 
|  | int isolated; | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  | #ifndef CONFIG_NUMA | 
|  | up_read(&mm->mmap_sem); | 
|  | VM_BUG_ON(!*hpage); | 
|  | new_page = *hpage; | 
|  | #else | 
|  | VM_BUG_ON(*hpage); | 
|  | /* | 
|  | * Allocate the page while the vma is still valid and under | 
|  | * the mmap_sem read mode so there is no memory allocation | 
|  | * later when we take the mmap_sem in write mode. This is more | 
|  | * friendly behavior (OTOH it may actually hide bugs) to | 
|  | * filesystems in userland with daemons allocating memory in | 
|  | * the userland I/O paths.  Allocating memory with the | 
|  | * mmap_sem in read mode is good idea also to allow greater | 
|  | * scalability. | 
|  | */ | 
|  | new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address, | 
|  | node, __GFP_OTHER_NODE); | 
|  |  | 
|  | /* | 
|  | * After allocating the hugepage, release the mmap_sem read lock in | 
|  | * preparation for taking it in write mode. | 
|  | */ | 
|  | up_read(&mm->mmap_sem); | 
|  | if (unlikely(!new_page)) { | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | *hpage = ERR_PTR(-ENOMEM); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { | 
|  | #ifdef CONFIG_NUMA | 
|  | put_page(new_page); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent all access to pagetables with the exception of | 
|  | * gup_fast later hanlded by the ptep_clear_flush and the VM | 
|  | * handled by the anon_vma lock + PG_lock. | 
|  | */ | 
|  | down_write(&mm->mmap_sem); | 
|  | if (unlikely(khugepaged_test_exit(mm))) | 
|  | goto out; | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (address < hstart || address + HPAGE_PMD_SIZE > hend) | 
|  | goto out; | 
|  |  | 
|  | if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || | 
|  | (vma->vm_flags & VM_NOHUGEPAGE)) | 
|  | goto out; | 
|  |  | 
|  | if (!vma->anon_vma || vma->vm_ops) | 
|  | goto out; | 
|  | if (is_vma_temporary_stack(vma)) | 
|  | goto out; | 
|  | /* | 
|  | * If is_pfn_mapping() is true is_learn_pfn_mapping() must be | 
|  | * true too, verify it here. | 
|  | */ | 
|  | VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | /* pmd can't go away or become huge under us */ | 
|  | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | anon_vma_lock(vma->anon_vma); | 
|  |  | 
|  | pte = pte_offset_map(pmd, address); | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); /* probably unnecessary */ | 
|  | /* | 
|  | * After this gup_fast can't run anymore. This also removes | 
|  | * any huge TLB entry from the CPU so we won't allow | 
|  | * huge and small TLB entries for the same virtual address | 
|  | * to avoid the risk of CPU bugs in that area. | 
|  | */ | 
|  | _pmd = pmdp_clear_flush_notify(vma, address, pmd); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | spin_lock(ptl); | 
|  | isolated = __collapse_huge_page_isolate(vma, address, pte); | 
|  | spin_unlock(ptl); | 
|  |  | 
|  | if (unlikely(!isolated)) { | 
|  | pte_unmap(pte); | 
|  | spin_lock(&mm->page_table_lock); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | set_pmd_at(mm, address, pmd, _pmd); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | anon_vma_unlock(vma->anon_vma); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All pages are isolated and locked so anon_vma rmap | 
|  | * can't run anymore. | 
|  | */ | 
|  | anon_vma_unlock(vma->anon_vma); | 
|  |  | 
|  | __collapse_huge_page_copy(pte, new_page, vma, address, ptl); | 
|  | pte_unmap(pte); | 
|  | __SetPageUptodate(new_page); | 
|  | pgtable = pmd_pgtable(_pmd); | 
|  | VM_BUG_ON(page_count(pgtable) != 1); | 
|  | VM_BUG_ON(page_mapcount(pgtable) != 0); | 
|  |  | 
|  | _pmd = mk_pmd(new_page, vma->vm_page_prot); | 
|  | _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); | 
|  | _pmd = pmd_mkhuge(_pmd); | 
|  |  | 
|  | /* | 
|  | * spin_lock() below is not the equivalent of smp_wmb(), so | 
|  | * this is needed to avoid the copy_huge_page writes to become | 
|  | * visible after the set_pmd_at() write. | 
|  | */ | 
|  | smp_wmb(); | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | BUG_ON(!pmd_none(*pmd)); | 
|  | page_add_new_anon_rmap(new_page, vma, address); | 
|  | set_pmd_at(mm, address, pmd, _pmd); | 
|  | update_mmu_cache(vma, address, _pmd); | 
|  | prepare_pmd_huge_pte(pgtable, mm); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | *hpage = NULL; | 
|  | #endif | 
|  | khugepaged_pages_collapsed++; | 
|  | out_up_write: | 
|  | up_write(&mm->mmap_sem); | 
|  | return; | 
|  |  | 
|  | out: | 
|  | mem_cgroup_uncharge_page(new_page); | 
|  | #ifdef CONFIG_NUMA | 
|  | put_page(new_page); | 
|  | #endif | 
|  | goto out_up_write; | 
|  | } | 
|  |  | 
|  | static int khugepaged_scan_pmd(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | struct page **hpage) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte, *_pte; | 
|  | int ret = 0, referenced = 0, none = 0; | 
|  | struct page *page; | 
|  | unsigned long _address; | 
|  | spinlock_t *ptl; | 
|  | int node = -1; | 
|  |  | 
|  | VM_BUG_ON(address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; | 
|  | _pte++, _address += PAGE_SIZE) { | 
|  | pte_t pteval = *_pte; | 
|  | if (pte_none(pteval)) { | 
|  | if (++none <= khugepaged_max_ptes_none) | 
|  | continue; | 
|  | else | 
|  | goto out_unmap; | 
|  | } | 
|  | if (!pte_present(pteval) || !pte_write(pteval)) | 
|  | goto out_unmap; | 
|  | page = vm_normal_page(vma, _address, pteval); | 
|  | if (unlikely(!page)) | 
|  | goto out_unmap; | 
|  | /* | 
|  | * Chose the node of the first page. This could | 
|  | * be more sophisticated and look at more pages, | 
|  | * but isn't for now. | 
|  | */ | 
|  | if (node == -1) | 
|  | node = page_to_nid(page); | 
|  | VM_BUG_ON(PageCompound(page)); | 
|  | if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) | 
|  | goto out_unmap; | 
|  | /* cannot use mapcount: can't collapse if there's a gup pin */ | 
|  | if (page_count(page) != 1) | 
|  | goto out_unmap; | 
|  | if (pte_young(pteval) || PageReferenced(page) || | 
|  | mmu_notifier_test_young(vma->vm_mm, address)) | 
|  | referenced = 1; | 
|  | } | 
|  | if (referenced) | 
|  | ret = 1; | 
|  | out_unmap: | 
|  | pte_unmap_unlock(pte, ptl); | 
|  | if (ret) | 
|  | /* collapse_huge_page will return with the mmap_sem released */ | 
|  | collapse_huge_page(mm, address, hpage, vma, node); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void collect_mm_slot(struct mm_slot *mm_slot) | 
|  | { | 
|  | struct mm_struct *mm = mm_slot->mm; | 
|  |  | 
|  | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
|  |  | 
|  | if (khugepaged_test_exit(mm)) { | 
|  | /* free mm_slot */ | 
|  | hlist_del(&mm_slot->hash); | 
|  | list_del(&mm_slot->mm_node); | 
|  |  | 
|  | /* | 
|  | * Not strictly needed because the mm exited already. | 
|  | * | 
|  | * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); | 
|  | */ | 
|  |  | 
|  | /* khugepaged_mm_lock actually not necessary for the below */ | 
|  | free_mm_slot(mm_slot); | 
|  | mmdrop(mm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int khugepaged_scan_mm_slot(unsigned int pages, | 
|  | struct page **hpage) | 
|  | __releases(&khugepaged_mm_lock) | 
|  | __acquires(&khugepaged_mm_lock) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | int progress = 0; | 
|  |  | 
|  | VM_BUG_ON(!pages); | 
|  | VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); | 
|  |  | 
|  | if (khugepaged_scan.mm_slot) | 
|  | mm_slot = khugepaged_scan.mm_slot; | 
|  | else { | 
|  | mm_slot = list_entry(khugepaged_scan.mm_head.next, | 
|  | struct mm_slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | khugepaged_scan.mm_slot = mm_slot; | 
|  | } | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | mm = mm_slot->mm; | 
|  | down_read(&mm->mmap_sem); | 
|  | if (unlikely(khugepaged_test_exit(mm))) | 
|  | vma = NULL; | 
|  | else | 
|  | vma = find_vma(mm, khugepaged_scan.address); | 
|  |  | 
|  | progress++; | 
|  | for (; vma; vma = vma->vm_next) { | 
|  | unsigned long hstart, hend; | 
|  |  | 
|  | cond_resched(); | 
|  | if (unlikely(khugepaged_test_exit(mm))) { | 
|  | progress++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((!(vma->vm_flags & VM_HUGEPAGE) && | 
|  | !khugepaged_always()) || | 
|  | (vma->vm_flags & VM_NOHUGEPAGE)) { | 
|  | skip: | 
|  | progress++; | 
|  | continue; | 
|  | } | 
|  | if (!vma->anon_vma || vma->vm_ops) | 
|  | goto skip; | 
|  | if (is_vma_temporary_stack(vma)) | 
|  | goto skip; | 
|  | /* | 
|  | * If is_pfn_mapping() is true is_learn_pfn_mapping() | 
|  | * must be true too, verify it here. | 
|  | */ | 
|  | VM_BUG_ON(is_linear_pfn_mapping(vma) || | 
|  | vma->vm_flags & VM_NO_THP); | 
|  |  | 
|  | hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; | 
|  | hend = vma->vm_end & HPAGE_PMD_MASK; | 
|  | if (hstart >= hend) | 
|  | goto skip; | 
|  | if (khugepaged_scan.address > hend) | 
|  | goto skip; | 
|  | if (khugepaged_scan.address < hstart) | 
|  | khugepaged_scan.address = hstart; | 
|  | VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); | 
|  |  | 
|  | while (khugepaged_scan.address < hend) { | 
|  | int ret; | 
|  | cond_resched(); | 
|  | if (unlikely(khugepaged_test_exit(mm))) | 
|  | goto breakouterloop; | 
|  |  | 
|  | VM_BUG_ON(khugepaged_scan.address < hstart || | 
|  | khugepaged_scan.address + HPAGE_PMD_SIZE > | 
|  | hend); | 
|  | ret = khugepaged_scan_pmd(mm, vma, | 
|  | khugepaged_scan.address, | 
|  | hpage); | 
|  | /* move to next address */ | 
|  | khugepaged_scan.address += HPAGE_PMD_SIZE; | 
|  | progress += HPAGE_PMD_NR; | 
|  | if (ret) | 
|  | /* we released mmap_sem so break loop */ | 
|  | goto breakouterloop_mmap_sem; | 
|  | if (progress >= pages) | 
|  | goto breakouterloop; | 
|  | } | 
|  | } | 
|  | breakouterloop: | 
|  | up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ | 
|  | breakouterloop_mmap_sem: | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); | 
|  | /* | 
|  | * Release the current mm_slot if this mm is about to die, or | 
|  | * if we scanned all vmas of this mm. | 
|  | */ | 
|  | if (khugepaged_test_exit(mm) || !vma) { | 
|  | /* | 
|  | * Make sure that if mm_users is reaching zero while | 
|  | * khugepaged runs here, khugepaged_exit will find | 
|  | * mm_slot not pointing to the exiting mm. | 
|  | */ | 
|  | if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { | 
|  | khugepaged_scan.mm_slot = list_entry( | 
|  | mm_slot->mm_node.next, | 
|  | struct mm_slot, mm_node); | 
|  | khugepaged_scan.address = 0; | 
|  | } else { | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | khugepaged_full_scans++; | 
|  | } | 
|  |  | 
|  | collect_mm_slot(mm_slot); | 
|  | } | 
|  |  | 
|  | return progress; | 
|  | } | 
|  |  | 
|  | static int khugepaged_has_work(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) && | 
|  | khugepaged_enabled(); | 
|  | } | 
|  |  | 
|  | static int khugepaged_wait_event(void) | 
|  | { | 
|  | return !list_empty(&khugepaged_scan.mm_head) || | 
|  | !khugepaged_enabled(); | 
|  | } | 
|  |  | 
|  | static void khugepaged_do_scan(struct page **hpage) | 
|  | { | 
|  | unsigned int progress = 0, pass_through_head = 0; | 
|  | unsigned int pages = khugepaged_pages_to_scan; | 
|  |  | 
|  | barrier(); /* write khugepaged_pages_to_scan to local stack */ | 
|  |  | 
|  | while (progress < pages) { | 
|  | cond_resched(); | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | if (!*hpage) { | 
|  | *hpage = alloc_hugepage(khugepaged_defrag()); | 
|  | if (unlikely(!*hpage)) { | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | break; | 
|  | } | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | } | 
|  | #else | 
|  | if (IS_ERR(*hpage)) | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | if (unlikely(kthread_should_stop() || freezing(current))) | 
|  | break; | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | if (!khugepaged_scan.mm_slot) | 
|  | pass_through_head++; | 
|  | if (khugepaged_has_work() && | 
|  | pass_through_head < 2) | 
|  | progress += khugepaged_scan_mm_slot(pages - progress, | 
|  | hpage); | 
|  | else | 
|  | progress = pages; | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void khugepaged_alloc_sleep(void) | 
|  | { | 
|  | wait_event_freezable_timeout(khugepaged_wait, false, | 
|  | msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_NUMA | 
|  | static struct page *khugepaged_alloc_hugepage(void) | 
|  | { | 
|  | struct page *hpage; | 
|  |  | 
|  | do { | 
|  | hpage = alloc_hugepage(khugepaged_defrag()); | 
|  | if (!hpage) { | 
|  | count_vm_event(THP_COLLAPSE_ALLOC_FAILED); | 
|  | khugepaged_alloc_sleep(); | 
|  | } else | 
|  | count_vm_event(THP_COLLAPSE_ALLOC); | 
|  | } while (unlikely(!hpage) && | 
|  | likely(khugepaged_enabled())); | 
|  | return hpage; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void khugepaged_loop(void) | 
|  | { | 
|  | struct page *hpage; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | hpage = NULL; | 
|  | #endif | 
|  | while (likely(khugepaged_enabled())) { | 
|  | #ifndef CONFIG_NUMA | 
|  | hpage = khugepaged_alloc_hugepage(); | 
|  | if (unlikely(!hpage)) | 
|  | break; | 
|  | #else | 
|  | if (IS_ERR(hpage)) { | 
|  | khugepaged_alloc_sleep(); | 
|  | hpage = NULL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | khugepaged_do_scan(&hpage); | 
|  | #ifndef CONFIG_NUMA | 
|  | if (hpage) | 
|  | put_page(hpage); | 
|  | #endif | 
|  | try_to_freeze(); | 
|  | if (unlikely(kthread_should_stop())) | 
|  | break; | 
|  | if (khugepaged_has_work()) { | 
|  | if (!khugepaged_scan_sleep_millisecs) | 
|  | continue; | 
|  | wait_event_freezable_timeout(khugepaged_wait, false, | 
|  | msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); | 
|  | } else if (khugepaged_enabled()) | 
|  | wait_event_freezable(khugepaged_wait, | 
|  | khugepaged_wait_event()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int khugepaged(void *none) | 
|  | { | 
|  | struct mm_slot *mm_slot; | 
|  |  | 
|  | set_freezable(); | 
|  | set_user_nice(current, 19); | 
|  |  | 
|  | /* serialize with start_khugepaged() */ | 
|  | mutex_lock(&khugepaged_mutex); | 
|  |  | 
|  | for (;;) { | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  | VM_BUG_ON(khugepaged_thread != current); | 
|  | khugepaged_loop(); | 
|  | VM_BUG_ON(khugepaged_thread != current); | 
|  |  | 
|  | mutex_lock(&khugepaged_mutex); | 
|  | if (!khugepaged_enabled()) | 
|  | break; | 
|  | if (unlikely(kthread_should_stop())) | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_lock(&khugepaged_mm_lock); | 
|  | mm_slot = khugepaged_scan.mm_slot; | 
|  | khugepaged_scan.mm_slot = NULL; | 
|  | if (mm_slot) | 
|  | collect_mm_slot(mm_slot); | 
|  | spin_unlock(&khugepaged_mm_lock); | 
|  |  | 
|  | khugepaged_thread = NULL; | 
|  | mutex_unlock(&khugepaged_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (unlikely(!pmd_trans_huge(*pmd))) { | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return; | 
|  | } | 
|  | page = pmd_page(*pmd); | 
|  | VM_BUG_ON(!page_count(page)); | 
|  | get_page(page); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  |  | 
|  | split_huge_page(page); | 
|  |  | 
|  | put_page(page); | 
|  | BUG_ON(pmd_trans_huge(*pmd)); | 
|  | } | 
|  |  | 
|  | static void split_huge_page_address(struct mm_struct *mm, | 
|  | unsigned long address) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); | 
|  |  | 
|  | pgd = pgd_offset(mm, address); | 
|  | if (!pgd_present(*pgd)) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud_present(*pud)) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd_present(*pmd)) | 
|  | return; | 
|  | /* | 
|  | * Caller holds the mmap_sem write mode, so a huge pmd cannot | 
|  | * materialize from under us. | 
|  | */ | 
|  | split_huge_page_pmd(mm, pmd); | 
|  | } | 
|  |  | 
|  | void __vma_adjust_trans_huge(struct vm_area_struct *vma, | 
|  | unsigned long start, | 
|  | unsigned long end, | 
|  | long adjust_next) | 
|  | { | 
|  | /* | 
|  | * If the new start address isn't hpage aligned and it could | 
|  | * previously contain an hugepage: check if we need to split | 
|  | * an huge pmd. | 
|  | */ | 
|  | if (start & ~HPAGE_PMD_MASK && | 
|  | (start & HPAGE_PMD_MASK) >= vma->vm_start && | 
|  | (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
|  | split_huge_page_address(vma->vm_mm, start); | 
|  |  | 
|  | /* | 
|  | * If the new end address isn't hpage aligned and it could | 
|  | * previously contain an hugepage: check if we need to split | 
|  | * an huge pmd. | 
|  | */ | 
|  | if (end & ~HPAGE_PMD_MASK && | 
|  | (end & HPAGE_PMD_MASK) >= vma->vm_start && | 
|  | (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) | 
|  | split_huge_page_address(vma->vm_mm, end); | 
|  |  | 
|  | /* | 
|  | * If we're also updating the vma->vm_next->vm_start, if the new | 
|  | * vm_next->vm_start isn't page aligned and it could previously | 
|  | * contain an hugepage: check if we need to split an huge pmd. | 
|  | */ | 
|  | if (adjust_next > 0) { | 
|  | struct vm_area_struct *next = vma->vm_next; | 
|  | unsigned long nstart = next->vm_start; | 
|  | nstart += adjust_next << PAGE_SHIFT; | 
|  | if (nstart & ~HPAGE_PMD_MASK && | 
|  | (nstart & HPAGE_PMD_MASK) >= next->vm_start && | 
|  | (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) | 
|  | split_huge_page_address(next->vm_mm, nstart); | 
|  | } | 
|  | } |