| /* | 
 |  *  linux/mm/swap.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file contains the default values for the operation of the | 
 |  * Linux VM subsystem. Fine-tuning documentation can be found in | 
 |  * Documentation/sysctl/vm.txt. | 
 |  * Started 18.12.91 | 
 |  * Swap aging added 23.2.95, Stephen Tweedie. | 
 |  * Buffermem limits added 12.3.98, Rik van Riel. | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/init.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mm_inline.h> | 
 | #include <linux/percpu_counter.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/memcontrol.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 | /* How many pages do we try to swap or page in/out together? */ | 
 | int page_cluster; | 
 |  | 
 | static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); | 
 | static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); | 
 | static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs); | 
 |  | 
 | /* | 
 |  * This path almost never happens for VM activity - pages are normally | 
 |  * freed via pagevecs.  But it gets used by networking. | 
 |  */ | 
 | static void __page_cache_release(struct page *page) | 
 | { | 
 | 	if (PageLRU(page)) { | 
 | 		struct zone *zone = page_zone(page); | 
 | 		struct lruvec *lruvec; | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 		VM_BUG_ON(!PageLRU(page)); | 
 | 		__ClearPageLRU(page); | 
 | 		del_page_from_lru_list(page, lruvec, page_off_lru(page)); | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void __put_single_page(struct page *page) | 
 | { | 
 | 	__page_cache_release(page); | 
 | 	free_hot_cold_page(page, 0); | 
 | } | 
 |  | 
 | static void __put_compound_page(struct page *page) | 
 | { | 
 | 	compound_page_dtor *dtor; | 
 |  | 
 | 	__page_cache_release(page); | 
 | 	dtor = get_compound_page_dtor(page); | 
 | 	(*dtor)(page); | 
 | } | 
 |  | 
 | static void put_compound_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageTail(page))) { | 
 | 		/* __split_huge_page_refcount can run under us */ | 
 | 		struct page *page_head = compound_trans_head(page); | 
 |  | 
 | 		if (likely(page != page_head && | 
 | 			   get_page_unless_zero(page_head))) { | 
 | 			unsigned long flags; | 
 |  | 
 | 			/* | 
 | 			 * THP can not break up slab pages so avoid taking | 
 | 			 * compound_lock().  Slab performs non-atomic bit ops | 
 | 			 * on page->flags for better performance.  In particular | 
 | 			 * slab_unlock() in slub used to be a hot path.  It is | 
 | 			 * still hot on arches that do not support | 
 | 			 * this_cpu_cmpxchg_double(). | 
 | 			 */ | 
 | 			if (PageSlab(page_head)) { | 
 | 				if (PageTail(page)) { | 
 | 					if (put_page_testzero(page_head)) | 
 | 						VM_BUG_ON(1); | 
 |  | 
 | 					atomic_dec(&page->_mapcount); | 
 | 					goto skip_lock_tail; | 
 | 				} else | 
 | 					goto skip_lock; | 
 | 			} | 
 | 			/* | 
 | 			 * page_head wasn't a dangling pointer but it | 
 | 			 * may not be a head page anymore by the time | 
 | 			 * we obtain the lock. That is ok as long as it | 
 | 			 * can't be freed from under us. | 
 | 			 */ | 
 | 			flags = compound_lock_irqsave(page_head); | 
 | 			if (unlikely(!PageTail(page))) { | 
 | 				/* __split_huge_page_refcount run before us */ | 
 | 				compound_unlock_irqrestore(page_head, flags); | 
 | skip_lock: | 
 | 				if (put_page_testzero(page_head)) | 
 | 					__put_single_page(page_head); | 
 | out_put_single: | 
 | 				if (put_page_testzero(page)) | 
 | 					__put_single_page(page); | 
 | 				return; | 
 | 			} | 
 | 			VM_BUG_ON(page_head != page->first_page); | 
 | 			/* | 
 | 			 * We can release the refcount taken by | 
 | 			 * get_page_unless_zero() now that | 
 | 			 * __split_huge_page_refcount() is blocked on | 
 | 			 * the compound_lock. | 
 | 			 */ | 
 | 			if (put_page_testzero(page_head)) | 
 | 				VM_BUG_ON(1); | 
 | 			/* __split_huge_page_refcount will wait now */ | 
 | 			VM_BUG_ON(page_mapcount(page) <= 0); | 
 | 			atomic_dec(&page->_mapcount); | 
 | 			VM_BUG_ON(atomic_read(&page_head->_count) <= 0); | 
 | 			VM_BUG_ON(atomic_read(&page->_count) != 0); | 
 | 			compound_unlock_irqrestore(page_head, flags); | 
 |  | 
 | skip_lock_tail: | 
 | 			if (put_page_testzero(page_head)) { | 
 | 				if (PageHead(page_head)) | 
 | 					__put_compound_page(page_head); | 
 | 				else | 
 | 					__put_single_page(page_head); | 
 | 			} | 
 | 		} else { | 
 | 			/* page_head is a dangling pointer */ | 
 | 			VM_BUG_ON(PageTail(page)); | 
 | 			goto out_put_single; | 
 | 		} | 
 | 	} else if (put_page_testzero(page)) { | 
 | 		if (PageHead(page)) | 
 | 			__put_compound_page(page); | 
 | 		else | 
 | 			__put_single_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | void put_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageCompound(page))) | 
 | 		put_compound_page(page); | 
 | 	else if (put_page_testzero(page)) | 
 | 		__put_single_page(page); | 
 | } | 
 | EXPORT_SYMBOL(put_page); | 
 |  | 
 | /* | 
 |  * This function is exported but must not be called by anything other | 
 |  * than get_page(). It implements the slow path of get_page(). | 
 |  */ | 
 | bool __get_page_tail(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * This takes care of get_page() if run on a tail page | 
 | 	 * returned by one of the get_user_pages/follow_page variants. | 
 | 	 * get_user_pages/follow_page itself doesn't need the compound | 
 | 	 * lock because it runs __get_page_tail_foll() under the | 
 | 	 * proper PT lock that already serializes against | 
 | 	 * split_huge_page(). | 
 | 	 */ | 
 | 	unsigned long flags; | 
 | 	bool got = false; | 
 | 	struct page *page_head = compound_trans_head(page); | 
 |  | 
 | 	if (likely(page != page_head && get_page_unless_zero(page_head))) { | 
 |  | 
 | 		/* Ref to put_compound_page() comment. */ | 
 | 		if (PageSlab(page_head)) { | 
 | 			if (likely(PageTail(page))) { | 
 | 				__get_page_tail_foll(page, false); | 
 | 				return true; | 
 | 			} else { | 
 | 				put_page(page_head); | 
 | 				return false; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * page_head wasn't a dangling pointer but it | 
 | 		 * may not be a head page anymore by the time | 
 | 		 * we obtain the lock. That is ok as long as it | 
 | 		 * can't be freed from under us. | 
 | 		 */ | 
 | 		flags = compound_lock_irqsave(page_head); | 
 | 		/* here __split_huge_page_refcount won't run anymore */ | 
 | 		if (likely(PageTail(page))) { | 
 | 			__get_page_tail_foll(page, false); | 
 | 			got = true; | 
 | 		} | 
 | 		compound_unlock_irqrestore(page_head, flags); | 
 | 		if (unlikely(!got)) | 
 | 			put_page(page_head); | 
 | 	} | 
 | 	return got; | 
 | } | 
 | EXPORT_SYMBOL(__get_page_tail); | 
 |  | 
 | /** | 
 |  * put_pages_list() - release a list of pages | 
 |  * @pages: list of pages threaded on page->lru | 
 |  * | 
 |  * Release a list of pages which are strung together on page.lru.  Currently | 
 |  * used by read_cache_pages() and related error recovery code. | 
 |  */ | 
 | void put_pages_list(struct list_head *pages) | 
 | { | 
 | 	while (!list_empty(pages)) { | 
 | 		struct page *victim; | 
 |  | 
 | 		victim = list_entry(pages->prev, struct page, lru); | 
 | 		list_del(&victim->lru); | 
 | 		page_cache_release(victim); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(put_pages_list); | 
 |  | 
 | /* | 
 |  * get_kernel_pages() - pin kernel pages in memory | 
 |  * @kiov:	An array of struct kvec structures | 
 |  * @nr_segs:	number of segments to pin | 
 |  * @write:	pinning for read/write, currently ignored | 
 |  * @pages:	array that receives pointers to the pages pinned. | 
 |  *		Should be at least nr_segs long. | 
 |  * | 
 |  * Returns number of pages pinned. This may be fewer than the number | 
 |  * requested. If nr_pages is 0 or negative, returns 0. If no pages | 
 |  * were pinned, returns -errno. Each page returned must be released | 
 |  * with a put_page() call when it is finished with. | 
 |  */ | 
 | int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write, | 
 | 		struct page **pages) | 
 | { | 
 | 	int seg; | 
 |  | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE)) | 
 | 			return seg; | 
 |  | 
 | 		pages[seg] = kmap_to_page(kiov[seg].iov_base); | 
 | 		page_cache_get(pages[seg]); | 
 | 	} | 
 |  | 
 | 	return seg; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_kernel_pages); | 
 |  | 
 | /* | 
 |  * get_kernel_page() - pin a kernel page in memory | 
 |  * @start:	starting kernel address | 
 |  * @write:	pinning for read/write, currently ignored | 
 |  * @pages:	array that receives pointer to the page pinned. | 
 |  *		Must be at least nr_segs long. | 
 |  * | 
 |  * Returns 1 if page is pinned. If the page was not pinned, returns | 
 |  * -errno. The page returned must be released with a put_page() call | 
 |  * when it is finished with. | 
 |  */ | 
 | int get_kernel_page(unsigned long start, int write, struct page **pages) | 
 | { | 
 | 	const struct kvec kiov = { | 
 | 		.iov_base = (void *)start, | 
 | 		.iov_len = PAGE_SIZE | 
 | 	}; | 
 |  | 
 | 	return get_kernel_pages(&kiov, 1, write, pages); | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_kernel_page); | 
 |  | 
 | static void pagevec_lru_move_fn(struct pagevec *pvec, | 
 | 	void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg), | 
 | 	void *arg) | 
 | { | 
 | 	int i; | 
 | 	struct zone *zone = NULL; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long flags = 0; | 
 |  | 
 | 	for (i = 0; i < pagevec_count(pvec); i++) { | 
 | 		struct page *page = pvec->pages[i]; | 
 | 		struct zone *pagezone = page_zone(page); | 
 |  | 
 | 		if (pagezone != zone) { | 
 | 			if (zone) | 
 | 				spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 			zone = pagezone; | 
 | 			spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 		} | 
 |  | 
 | 		lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 		(*move_fn)(page, lruvec, arg); | 
 | 	} | 
 | 	if (zone) | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 	release_pages(pvec->pages, pvec->nr, pvec->cold); | 
 | 	pagevec_reinit(pvec); | 
 | } | 
 |  | 
 | static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec, | 
 | 				 void *arg) | 
 | { | 
 | 	int *pgmoved = arg; | 
 |  | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		enum lru_list lru = page_lru_base_type(page); | 
 | 		list_move_tail(&page->lru, &lruvec->lists[lru]); | 
 | 		(*pgmoved)++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * pagevec_move_tail() must be called with IRQ disabled. | 
 |  * Otherwise this may cause nasty races. | 
 |  */ | 
 | static void pagevec_move_tail(struct pagevec *pvec) | 
 | { | 
 | 	int pgmoved = 0; | 
 |  | 
 | 	pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved); | 
 | 	__count_vm_events(PGROTATED, pgmoved); | 
 | } | 
 |  | 
 | /* | 
 |  * Writeback is about to end against a page which has been marked for immediate | 
 |  * reclaim.  If it still appears to be reclaimable, move it to the tail of the | 
 |  * inactive list. | 
 |  */ | 
 | void rotate_reclaimable_page(struct page *page) | 
 | { | 
 | 	if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && | 
 | 	    !PageUnevictable(page) && PageLRU(page)) { | 
 | 		struct pagevec *pvec; | 
 | 		unsigned long flags; | 
 |  | 
 | 		page_cache_get(page); | 
 | 		local_irq_save(flags); | 
 | 		pvec = &__get_cpu_var(lru_rotate_pvecs); | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_move_tail(pvec); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 | } | 
 |  | 
 | static void update_page_reclaim_stat(struct lruvec *lruvec, | 
 | 				     int file, int rotated) | 
 | { | 
 | 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | 
 |  | 
 | 	reclaim_stat->recent_scanned[file]++; | 
 | 	if (rotated) | 
 | 		reclaim_stat->recent_rotated[file]++; | 
 | } | 
 |  | 
 | static void __activate_page(struct page *page, struct lruvec *lruvec, | 
 | 			    void *arg) | 
 | { | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		int file = page_is_file_cache(page); | 
 | 		int lru = page_lru_base_type(page); | 
 |  | 
 | 		del_page_from_lru_list(page, lruvec, lru); | 
 | 		SetPageActive(page); | 
 | 		lru += LRU_ACTIVE; | 
 | 		add_page_to_lru_list(page, lruvec, lru); | 
 |  | 
 | 		__count_vm_event(PGACTIVATE); | 
 | 		update_page_reclaim_stat(lruvec, file, 1); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs); | 
 |  | 
 | static void activate_page_drain(int cpu) | 
 | { | 
 | 	struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu); | 
 |  | 
 | 	if (pagevec_count(pvec)) | 
 | 		pagevec_lru_move_fn(pvec, __activate_page, NULL); | 
 | } | 
 |  | 
 | void activate_page(struct page *page) | 
 | { | 
 | 	if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { | 
 | 		struct pagevec *pvec = &get_cpu_var(activate_page_pvecs); | 
 |  | 
 | 		page_cache_get(page); | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_lru_move_fn(pvec, __activate_page, NULL); | 
 | 		put_cpu_var(activate_page_pvecs); | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | static inline void activate_page_drain(int cpu) | 
 | { | 
 | } | 
 |  | 
 | void activate_page(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 |  | 
 | 	spin_lock_irq(&zone->lru_lock); | 
 | 	__activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL); | 
 | 	spin_unlock_irq(&zone->lru_lock); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Mark a page as having seen activity. | 
 |  * | 
 |  * inactive,unreferenced	->	inactive,referenced | 
 |  * inactive,referenced		->	active,unreferenced | 
 |  * active,unreferenced		->	active,referenced | 
 |  */ | 
 | void mark_page_accessed(struct page *page) | 
 | { | 
 | 	if (!PageActive(page) && !PageUnevictable(page) && | 
 | 			PageReferenced(page) && PageLRU(page)) { | 
 | 		activate_page(page); | 
 | 		ClearPageReferenced(page); | 
 | 	} else if (!PageReferenced(page)) { | 
 | 		SetPageReferenced(page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(mark_page_accessed); | 
 |  | 
 | void __lru_cache_add(struct page *page, enum lru_list lru) | 
 | { | 
 | 	struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; | 
 |  | 
 | 	page_cache_get(page); | 
 | 	if (!pagevec_add(pvec, page)) | 
 | 		__pagevec_lru_add(pvec, lru); | 
 | 	put_cpu_var(lru_add_pvecs); | 
 | } | 
 | EXPORT_SYMBOL(__lru_cache_add); | 
 |  | 
 | /** | 
 |  * lru_cache_add_lru - add a page to a page list | 
 |  * @page: the page to be added to the LRU. | 
 |  * @lru: the LRU list to which the page is added. | 
 |  */ | 
 | void lru_cache_add_lru(struct page *page, enum lru_list lru) | 
 | { | 
 | 	if (PageActive(page)) { | 
 | 		VM_BUG_ON(PageUnevictable(page)); | 
 | 		ClearPageActive(page); | 
 | 	} else if (PageUnevictable(page)) { | 
 | 		VM_BUG_ON(PageActive(page)); | 
 | 		ClearPageUnevictable(page); | 
 | 	} | 
 |  | 
 | 	VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); | 
 | 	__lru_cache_add(page, lru); | 
 | } | 
 |  | 
 | /** | 
 |  * add_page_to_unevictable_list - add a page to the unevictable list | 
 |  * @page:  the page to be added to the unevictable list | 
 |  * | 
 |  * Add page directly to its zone's unevictable list.  To avoid races with | 
 |  * tasks that might be making the page evictable, through eg. munlock, | 
 |  * munmap or exit, while it's not on the lru, we want to add the page | 
 |  * while it's locked or otherwise "invisible" to other tasks.  This is | 
 |  * difficult to do when using the pagevec cache, so bypass that. | 
 |  */ | 
 | void add_page_to_unevictable_list(struct page *page) | 
 | { | 
 | 	struct zone *zone = page_zone(page); | 
 | 	struct lruvec *lruvec; | 
 |  | 
 | 	spin_lock_irq(&zone->lru_lock); | 
 | 	lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 	SetPageUnevictable(page); | 
 | 	SetPageLRU(page); | 
 | 	add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); | 
 | 	spin_unlock_irq(&zone->lru_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * If the page can not be invalidated, it is moved to the | 
 |  * inactive list to speed up its reclaim.  It is moved to the | 
 |  * head of the list, rather than the tail, to give the flusher | 
 |  * threads some time to write it out, as this is much more | 
 |  * effective than the single-page writeout from reclaim. | 
 |  * | 
 |  * If the page isn't page_mapped and dirty/writeback, the page | 
 |  * could reclaim asap using PG_reclaim. | 
 |  * | 
 |  * 1. active, mapped page -> none | 
 |  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim | 
 |  * 3. inactive, mapped page -> none | 
 |  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim | 
 |  * 5. inactive, clean -> inactive, tail | 
 |  * 6. Others -> none | 
 |  * | 
 |  * In 4, why it moves inactive's head, the VM expects the page would | 
 |  * be write it out by flusher threads as this is much more effective | 
 |  * than the single-page writeout from reclaim. | 
 |  */ | 
 | static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec, | 
 | 			      void *arg) | 
 | { | 
 | 	int lru, file; | 
 | 	bool active; | 
 |  | 
 | 	if (!PageLRU(page)) | 
 | 		return; | 
 |  | 
 | 	if (PageUnevictable(page)) | 
 | 		return; | 
 |  | 
 | 	/* Some processes are using the page */ | 
 | 	if (page_mapped(page)) | 
 | 		return; | 
 |  | 
 | 	active = PageActive(page); | 
 | 	file = page_is_file_cache(page); | 
 | 	lru = page_lru_base_type(page); | 
 |  | 
 | 	del_page_from_lru_list(page, lruvec, lru + active); | 
 | 	ClearPageActive(page); | 
 | 	ClearPageReferenced(page); | 
 | 	add_page_to_lru_list(page, lruvec, lru); | 
 |  | 
 | 	if (PageWriteback(page) || PageDirty(page)) { | 
 | 		/* | 
 | 		 * PG_reclaim could be raced with end_page_writeback | 
 | 		 * It can make readahead confusing.  But race window | 
 | 		 * is _really_ small and  it's non-critical problem. | 
 | 		 */ | 
 | 		SetPageReclaim(page); | 
 | 	} else { | 
 | 		/* | 
 | 		 * The page's writeback ends up during pagevec | 
 | 		 * We moves tha page into tail of inactive. | 
 | 		 */ | 
 | 		list_move_tail(&page->lru, &lruvec->lists[lru]); | 
 | 		__count_vm_event(PGROTATED); | 
 | 	} | 
 |  | 
 | 	if (active) | 
 | 		__count_vm_event(PGDEACTIVATE); | 
 | 	update_page_reclaim_stat(lruvec, file, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Drain pages out of the cpu's pagevecs. | 
 |  * Either "cpu" is the current CPU, and preemption has already been | 
 |  * disabled; or "cpu" is being hot-unplugged, and is already dead. | 
 |  */ | 
 | void lru_add_drain_cpu(int cpu) | 
 | { | 
 | 	struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); | 
 | 	struct pagevec *pvec; | 
 | 	int lru; | 
 |  | 
 | 	for_each_lru(lru) { | 
 | 		pvec = &pvecs[lru - LRU_BASE]; | 
 | 		if (pagevec_count(pvec)) | 
 | 			__pagevec_lru_add(pvec, lru); | 
 | 	} | 
 |  | 
 | 	pvec = &per_cpu(lru_rotate_pvecs, cpu); | 
 | 	if (pagevec_count(pvec)) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* No harm done if a racing interrupt already did this */ | 
 | 		local_irq_save(flags); | 
 | 		pagevec_move_tail(pvec); | 
 | 		local_irq_restore(flags); | 
 | 	} | 
 |  | 
 | 	pvec = &per_cpu(lru_deactivate_pvecs, cpu); | 
 | 	if (pagevec_count(pvec)) | 
 | 		pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); | 
 |  | 
 | 	activate_page_drain(cpu); | 
 | } | 
 |  | 
 | /** | 
 |  * deactivate_page - forcefully deactivate a page | 
 |  * @page: page to deactivate | 
 |  * | 
 |  * This function hints the VM that @page is a good reclaim candidate, | 
 |  * for example if its invalidation fails due to the page being dirty | 
 |  * or under writeback. | 
 |  */ | 
 | void deactivate_page(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * In a workload with many unevictable page such as mprotect, unevictable | 
 | 	 * page deactivation for accelerating reclaim is pointless. | 
 | 	 */ | 
 | 	if (PageUnevictable(page)) | 
 | 		return; | 
 |  | 
 | 	if (likely(get_page_unless_zero(page))) { | 
 | 		struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs); | 
 |  | 
 | 		if (!pagevec_add(pvec, page)) | 
 | 			pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL); | 
 | 		put_cpu_var(lru_deactivate_pvecs); | 
 | 	} | 
 | } | 
 |  | 
 | void lru_add_drain(void) | 
 | { | 
 | 	lru_add_drain_cpu(get_cpu()); | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | static void lru_add_drain_per_cpu(struct work_struct *dummy) | 
 | { | 
 | 	lru_add_drain(); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns 0 for success | 
 |  */ | 
 | int lru_add_drain_all(void) | 
 | { | 
 | 	return schedule_on_each_cpu(lru_add_drain_per_cpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Batched page_cache_release().  Decrement the reference count on all the | 
 |  * passed pages.  If it fell to zero then remove the page from the LRU and | 
 |  * free it. | 
 |  * | 
 |  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it | 
 |  * for the remainder of the operation. | 
 |  * | 
 |  * The locking in this function is against shrink_inactive_list(): we recheck | 
 |  * the page count inside the lock to see whether shrink_inactive_list() | 
 |  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list() | 
 |  * will free it. | 
 |  */ | 
 | void release_pages(struct page **pages, int nr, int cold) | 
 | { | 
 | 	int i; | 
 | 	LIST_HEAD(pages_to_free); | 
 | 	struct zone *zone = NULL; | 
 | 	struct lruvec *lruvec; | 
 | 	unsigned long uninitialized_var(flags); | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		struct page *page = pages[i]; | 
 |  | 
 | 		if (unlikely(PageCompound(page))) { | 
 | 			if (zone) { | 
 | 				spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 | 				zone = NULL; | 
 | 			} | 
 | 			put_compound_page(page); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (!put_page_testzero(page)) | 
 | 			continue; | 
 |  | 
 | 		if (PageLRU(page)) { | 
 | 			struct zone *pagezone = page_zone(page); | 
 |  | 
 | 			if (pagezone != zone) { | 
 | 				if (zone) | 
 | 					spin_unlock_irqrestore(&zone->lru_lock, | 
 | 									flags); | 
 | 				zone = pagezone; | 
 | 				spin_lock_irqsave(&zone->lru_lock, flags); | 
 | 			} | 
 |  | 
 | 			lruvec = mem_cgroup_page_lruvec(page, zone); | 
 | 			VM_BUG_ON(!PageLRU(page)); | 
 | 			__ClearPageLRU(page); | 
 | 			del_page_from_lru_list(page, lruvec, page_off_lru(page)); | 
 | 		} | 
 |  | 
 | 		list_add(&page->lru, &pages_to_free); | 
 | 	} | 
 | 	if (zone) | 
 | 		spin_unlock_irqrestore(&zone->lru_lock, flags); | 
 |  | 
 | 	free_hot_cold_page_list(&pages_to_free, cold); | 
 | } | 
 | EXPORT_SYMBOL(release_pages); | 
 |  | 
 | /* | 
 |  * The pages which we're about to release may be in the deferred lru-addition | 
 |  * queues.  That would prevent them from really being freed right now.  That's | 
 |  * OK from a correctness point of view but is inefficient - those pages may be | 
 |  * cache-warm and we want to give them back to the page allocator ASAP. | 
 |  * | 
 |  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add() | 
 |  * and __pagevec_lru_add_active() call release_pages() directly to avoid | 
 |  * mutual recursion. | 
 |  */ | 
 | void __pagevec_release(struct pagevec *pvec) | 
 | { | 
 | 	lru_add_drain(); | 
 | 	release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); | 
 | 	pagevec_reinit(pvec); | 
 | } | 
 | EXPORT_SYMBOL(__pagevec_release); | 
 |  | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | /* used by __split_huge_page_refcount() */ | 
 | void lru_add_page_tail(struct page *page, struct page *page_tail, | 
 | 		       struct lruvec *lruvec) | 
 | { | 
 | 	int uninitialized_var(active); | 
 | 	enum lru_list lru; | 
 | 	const int file = 0; | 
 |  | 
 | 	VM_BUG_ON(!PageHead(page)); | 
 | 	VM_BUG_ON(PageCompound(page_tail)); | 
 | 	VM_BUG_ON(PageLRU(page_tail)); | 
 | 	VM_BUG_ON(NR_CPUS != 1 && | 
 | 		  !spin_is_locked(&lruvec_zone(lruvec)->lru_lock)); | 
 |  | 
 | 	SetPageLRU(page_tail); | 
 |  | 
 | 	if (page_evictable(page_tail, NULL)) { | 
 | 		if (PageActive(page)) { | 
 | 			SetPageActive(page_tail); | 
 | 			active = 1; | 
 | 			lru = LRU_ACTIVE_ANON; | 
 | 		} else { | 
 | 			active = 0; | 
 | 			lru = LRU_INACTIVE_ANON; | 
 | 		} | 
 | 	} else { | 
 | 		SetPageUnevictable(page_tail); | 
 | 		lru = LRU_UNEVICTABLE; | 
 | 	} | 
 |  | 
 | 	if (likely(PageLRU(page))) | 
 | 		list_add_tail(&page_tail->lru, &page->lru); | 
 | 	else { | 
 | 		struct list_head *list_head; | 
 | 		/* | 
 | 		 * Head page has not yet been counted, as an hpage, | 
 | 		 * so we must account for each subpage individually. | 
 | 		 * | 
 | 		 * Use the standard add function to put page_tail on the list, | 
 | 		 * but then correct its position so they all end up in order. | 
 | 		 */ | 
 | 		add_page_to_lru_list(page_tail, lruvec, lru); | 
 | 		list_head = page_tail->lru.prev; | 
 | 		list_move_tail(&page_tail->lru, list_head); | 
 | 	} | 
 |  | 
 | 	if (!PageUnevictable(page)) | 
 | 		update_page_reclaim_stat(lruvec, file, active); | 
 | } | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
 |  | 
 | static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, | 
 | 				 void *arg) | 
 | { | 
 | 	enum lru_list lru = (enum lru_list)arg; | 
 | 	int file = is_file_lru(lru); | 
 | 	int active = is_active_lru(lru); | 
 |  | 
 | 	VM_BUG_ON(PageActive(page)); | 
 | 	VM_BUG_ON(PageUnevictable(page)); | 
 | 	VM_BUG_ON(PageLRU(page)); | 
 |  | 
 | 	SetPageLRU(page); | 
 | 	if (active) | 
 | 		SetPageActive(page); | 
 | 	add_page_to_lru_list(page, lruvec, lru); | 
 | 	update_page_reclaim_stat(lruvec, file, active); | 
 | } | 
 |  | 
 | /* | 
 |  * Add the passed pages to the LRU, then drop the caller's refcount | 
 |  * on them.  Reinitialises the caller's pagevec. | 
 |  */ | 
 | void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) | 
 | { | 
 | 	VM_BUG_ON(is_unevictable_lru(lru)); | 
 |  | 
 | 	pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru); | 
 | } | 
 | EXPORT_SYMBOL(__pagevec_lru_add); | 
 |  | 
 | /** | 
 |  * pagevec_lookup - gang pagecache lookup | 
 |  * @pvec:	Where the resulting pages are placed | 
 |  * @mapping:	The address_space to search | 
 |  * @start:	The starting page index | 
 |  * @nr_pages:	The maximum number of pages | 
 |  * | 
 |  * pagevec_lookup() will search for and return a group of up to @nr_pages pages | 
 |  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a | 
 |  * reference against the pages in @pvec. | 
 |  * | 
 |  * The search returns a group of mapping-contiguous pages with ascending | 
 |  * indexes.  There may be holes in the indices due to not-present pages. | 
 |  * | 
 |  * pagevec_lookup() returns the number of pages which were found. | 
 |  */ | 
 | unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, | 
 | 		pgoff_t start, unsigned nr_pages) | 
 | { | 
 | 	pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); | 
 | 	return pagevec_count(pvec); | 
 | } | 
 | EXPORT_SYMBOL(pagevec_lookup); | 
 |  | 
 | unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, | 
 | 		pgoff_t *index, int tag, unsigned nr_pages) | 
 | { | 
 | 	pvec->nr = find_get_pages_tag(mapping, index, tag, | 
 | 					nr_pages, pvec->pages); | 
 | 	return pagevec_count(pvec); | 
 | } | 
 | EXPORT_SYMBOL(pagevec_lookup_tag); | 
 |  | 
 | /* | 
 |  * Perform any setup for the swap system | 
 |  */ | 
 | void __init swap_setup(void) | 
 | { | 
 | 	unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); | 
 |  | 
 | #ifdef CONFIG_SWAP | 
 | 	bdi_init(swapper_space.backing_dev_info); | 
 | #endif | 
 |  | 
 | 	/* Use a smaller cluster for small-memory machines */ | 
 | 	if (megs < 16) | 
 | 		page_cluster = 2; | 
 | 	else | 
 | 		page_cluster = 3; | 
 | 	/* | 
 | 	 * Right now other parts of the system means that we | 
 | 	 * _really_ don't want to cluster much more | 
 | 	 */ | 
 | } |