| /* | 
 |  *  linux/arch/arm/mm/dma-mapping.c | 
 |  * | 
 |  *  Copyright (C) 2000-2004 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  *  DMA uncached mapping support. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/list.h> | 
 | #include <linux/init.h> | 
 | #include <linux/device.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dma-contiguous.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #include <asm/memory.h> | 
 | #include <asm/highmem.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/sizes.h> | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/dma-iommu.h> | 
 | #include <asm/mach/map.h> | 
 | #include <asm/system_info.h> | 
 | #include <asm/dma-contiguous.h> | 
 |  | 
 | #include "mm.h" | 
 |  | 
 | /* | 
 |  * The DMA API is built upon the notion of "buffer ownership".  A buffer | 
 |  * is either exclusively owned by the CPU (and therefore may be accessed | 
 |  * by it) or exclusively owned by the DMA device.  These helper functions | 
 |  * represent the transitions between these two ownership states. | 
 |  * | 
 |  * Note, however, that on later ARMs, this notion does not work due to | 
 |  * speculative prefetches.  We model our approach on the assumption that | 
 |  * the CPU does do speculative prefetches, which means we clean caches | 
 |  * before transfers and delay cache invalidation until transfer completion. | 
 |  * | 
 |  */ | 
 | static void __dma_page_cpu_to_dev(struct page *, unsigned long, | 
 | 		size_t, enum dma_data_direction); | 
 | static void __dma_page_dev_to_cpu(struct page *, unsigned long, | 
 | 		size_t, enum dma_data_direction); | 
 |  | 
 | /** | 
 |  * arm_dma_map_page - map a portion of a page for streaming DMA | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @page: page that buffer resides in | 
 |  * @offset: offset into page for start of buffer | 
 |  * @size: size of buffer to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Ensure that any data held in the cache is appropriately discarded | 
 |  * or written back. | 
 |  * | 
 |  * The device owns this memory once this call has completed.  The CPU | 
 |  * can regain ownership by calling dma_unmap_page(). | 
 |  */ | 
 | static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page, | 
 | 	     unsigned long offset, size_t size, enum dma_data_direction dir, | 
 | 	     struct dma_attrs *attrs) | 
 | { | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_cpu_to_dev(page, offset, size, dir); | 
 | 	return pfn_to_dma(dev, page_to_pfn(page)) + offset; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page() | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @handle: DMA address of buffer | 
 |  * @size: size of buffer (same as passed to dma_map_page) | 
 |  * @dir: DMA transfer direction (same as passed to dma_map_page) | 
 |  * | 
 |  * Unmap a page streaming mode DMA translation.  The handle and size | 
 |  * must match what was provided in the previous dma_map_page() call. | 
 |  * All other usages are undefined. | 
 |  * | 
 |  * After this call, reads by the CPU to the buffer are guaranteed to see | 
 |  * whatever the device wrote there. | 
 |  */ | 
 | static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle, | 
 | 		size_t size, enum dma_data_direction dir, | 
 | 		struct dma_attrs *attrs) | 
 | { | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)), | 
 | 				      handle & ~PAGE_MASK, size, dir); | 
 | } | 
 |  | 
 | static void arm_dma_sync_single_for_cpu(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned int offset = handle & (PAGE_SIZE - 1); | 
 | 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_dev_to_cpu(page, offset, size, dir); | 
 | } | 
 |  | 
 | static void arm_dma_sync_single_for_device(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned int offset = handle & (PAGE_SIZE - 1); | 
 | 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset)); | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_cpu_to_dev(page, offset, size, dir); | 
 | } | 
 |  | 
 | static int arm_dma_set_mask(struct device *dev, u64 dma_mask); | 
 |  | 
 | struct dma_map_ops arm_dma_ops = { | 
 | 	.alloc			= arm_dma_alloc, | 
 | 	.free			= arm_dma_free, | 
 | 	.mmap			= arm_dma_mmap, | 
 | 	.map_page		= arm_dma_map_page, | 
 | 	.unmap_page		= arm_dma_unmap_page, | 
 | 	.map_sg			= arm_dma_map_sg, | 
 | 	.unmap_sg		= arm_dma_unmap_sg, | 
 | 	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu, | 
 | 	.sync_single_for_device	= arm_dma_sync_single_for_device, | 
 | 	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu, | 
 | 	.sync_sg_for_device	= arm_dma_sync_sg_for_device, | 
 | 	.set_dma_mask		= arm_dma_set_mask, | 
 | }; | 
 | EXPORT_SYMBOL(arm_dma_ops); | 
 |  | 
 | static u64 get_coherent_dma_mask(struct device *dev) | 
 | { | 
 | 	u64 mask = (u64)arm_dma_limit; | 
 |  | 
 | 	if (dev) { | 
 | 		mask = dev->coherent_dma_mask; | 
 |  | 
 | 		/* | 
 | 		 * Sanity check the DMA mask - it must be non-zero, and | 
 | 		 * must be able to be satisfied by a DMA allocation. | 
 | 		 */ | 
 | 		if (mask == 0) { | 
 | 			dev_warn(dev, "coherent DMA mask is unset\n"); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if ((~mask) & (u64)arm_dma_limit) { | 
 | 			dev_warn(dev, "coherent DMA mask %#llx is smaller " | 
 | 				 "than system GFP_DMA mask %#llx\n", | 
 | 				 mask, (u64)arm_dma_limit); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static void __dma_clear_buffer(struct page *page, size_t size) | 
 | { | 
 | 	void *ptr; | 
 | 	/* | 
 | 	 * Ensure that the allocated pages are zeroed, and that any data | 
 | 	 * lurking in the kernel direct-mapped region is invalidated. | 
 | 	 */ | 
 | 	ptr = page_address(page); | 
 | 	if (ptr) { | 
 | 		memset(ptr, 0, size); | 
 | 		dmac_flush_range(ptr, ptr + size); | 
 | 		outer_flush_range(__pa(ptr), __pa(ptr) + size); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a DMA buffer for 'dev' of size 'size' using the | 
 |  * specified gfp mask.  Note that 'size' must be page aligned. | 
 |  */ | 
 | static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) | 
 | { | 
 | 	unsigned long order = get_order(size); | 
 | 	struct page *page, *p, *e; | 
 |  | 
 | 	page = alloc_pages(gfp, order); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Now split the huge page and free the excess pages | 
 | 	 */ | 
 | 	split_page(page, order); | 
 | 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) | 
 | 		__free_page(p); | 
 |  | 
 | 	__dma_clear_buffer(page, size); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a DMA buffer.  'size' must be page aligned. | 
 |  */ | 
 | static void __dma_free_buffer(struct page *page, size_t size) | 
 | { | 
 | 	struct page *e = page + (size >> PAGE_SHIFT); | 
 |  | 
 | 	while (page < e) { | 
 | 		__free_page(page); | 
 | 		page++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | #define CONSISTENT_OFFSET(x)	(((unsigned long)(x) - consistent_base) >> PAGE_SHIFT) | 
 | #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT) | 
 |  | 
 | /* | 
 |  * These are the page tables (2MB each) covering uncached, DMA consistent allocations | 
 |  */ | 
 | static pte_t **consistent_pte; | 
 |  | 
 | #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M | 
 |  | 
 | static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE; | 
 |  | 
 | void __init init_consistent_dma_size(unsigned long size) | 
 | { | 
 | 	unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M); | 
 |  | 
 | 	BUG_ON(consistent_pte); /* Check we're called before DMA region init */ | 
 | 	BUG_ON(base < VMALLOC_END); | 
 |  | 
 | 	/* Grow region to accommodate specified size  */ | 
 | 	if (base < consistent_base) | 
 | 		consistent_base = base; | 
 | } | 
 |  | 
 | #include "vmregion.h" | 
 |  | 
 | static struct arm_vmregion_head consistent_head = { | 
 | 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock), | 
 | 	.vm_list	= LIST_HEAD_INIT(consistent_head.vm_list), | 
 | 	.vm_end		= CONSISTENT_END, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | #error ARM Coherent DMA allocator does not (yet) support huge TLB | 
 | #endif | 
 |  | 
 | /* | 
 |  * Initialise the consistent memory allocation. | 
 |  */ | 
 | static int __init consistent_init(void) | 
 | { | 
 | 	int ret = 0; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 | 	int i = 0; | 
 | 	unsigned long base = consistent_base; | 
 | 	unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU)) | 
 | 		return 0; | 
 |  | 
 | 	consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL); | 
 | 	if (!consistent_pte) { | 
 | 		pr_err("%s: no memory\n", __func__); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END); | 
 | 	consistent_head.vm_start = base; | 
 |  | 
 | 	do { | 
 | 		pgd = pgd_offset(&init_mm, base); | 
 |  | 
 | 		pud = pud_alloc(&init_mm, pgd, base); | 
 | 		if (!pud) { | 
 | 			pr_err("%s: no pud tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		pmd = pmd_alloc(&init_mm, pud, base); | 
 | 		if (!pmd) { | 
 | 			pr_err("%s: no pmd tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 		WARN_ON(!pmd_none(*pmd)); | 
 |  | 
 | 		pte = pte_alloc_kernel(pmd, base); | 
 | 		if (!pte) { | 
 | 			pr_err("%s: no pte tables\n", __func__); | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		consistent_pte[i++] = pte; | 
 | 		base += PMD_SIZE; | 
 | 	} while (base < CONSISTENT_END); | 
 |  | 
 | 	return ret; | 
 | } | 
 | core_initcall(consistent_init); | 
 |  | 
 | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
 | 				     pgprot_t prot, struct page **ret_page); | 
 |  | 
 | static struct arm_vmregion_head coherent_head = { | 
 | 	.vm_lock	= __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock), | 
 | 	.vm_list	= LIST_HEAD_INIT(coherent_head.vm_list), | 
 | }; | 
 |  | 
 | static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8; | 
 |  | 
 | static int __init early_coherent_pool(char *p) | 
 | { | 
 | 	coherent_pool_size = memparse(p, &p); | 
 | 	return 0; | 
 | } | 
 | early_param("coherent_pool", early_coherent_pool); | 
 |  | 
 | /* | 
 |  * Initialise the coherent pool for atomic allocations. | 
 |  */ | 
 | static int __init coherent_init(void) | 
 | { | 
 | 	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel); | 
 | 	size_t size = coherent_pool_size; | 
 | 	struct page *page; | 
 | 	void *ptr; | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_CMA)) | 
 | 		return 0; | 
 |  | 
 | 	ptr = __alloc_from_contiguous(NULL, size, prot, &page); | 
 | 	if (ptr) { | 
 | 		coherent_head.vm_start = (unsigned long) ptr; | 
 | 		coherent_head.vm_end = (unsigned long) ptr + size; | 
 | 		printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n", | 
 | 		       (unsigned)size / 1024); | 
 | 		return 0; | 
 | 	} | 
 | 	printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n", | 
 | 	       (unsigned)size / 1024); | 
 | 	return -ENOMEM; | 
 | } | 
 | /* | 
 |  * CMA is activated by core_initcall, so we must be called after it. | 
 |  */ | 
 | postcore_initcall(coherent_init); | 
 |  | 
 | struct dma_contig_early_reserve { | 
 | 	phys_addr_t base; | 
 | 	unsigned long size; | 
 | }; | 
 |  | 
 | static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; | 
 |  | 
 | static int dma_mmu_remap_num __initdata; | 
 |  | 
 | void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) | 
 | { | 
 | 	dma_mmu_remap[dma_mmu_remap_num].base = base; | 
 | 	dma_mmu_remap[dma_mmu_remap_num].size = size; | 
 | 	dma_mmu_remap_num++; | 
 | } | 
 |  | 
 | void __init dma_contiguous_remap(void) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < dma_mmu_remap_num; i++) { | 
 | 		phys_addr_t start = dma_mmu_remap[i].base; | 
 | 		phys_addr_t end = start + dma_mmu_remap[i].size; | 
 | 		struct map_desc map; | 
 | 		unsigned long addr; | 
 |  | 
 | 		if (end > arm_lowmem_limit) | 
 | 			end = arm_lowmem_limit; | 
 | 		if (start >= end) | 
 | 			return; | 
 |  | 
 | 		map.pfn = __phys_to_pfn(start); | 
 | 		map.virtual = __phys_to_virt(start); | 
 | 		map.length = end - start; | 
 | 		map.type = MT_MEMORY_DMA_READY; | 
 |  | 
 | 		/* | 
 | 		 * Clear previous low-memory mapping | 
 | 		 */ | 
 | 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); | 
 | 		     addr += PMD_SIZE) | 
 | 			pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 		iotable_init(&map, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void * | 
 | __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot, | 
 | 	const void *caller) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	size_t align; | 
 | 	int bit; | 
 |  | 
 | 	if (!consistent_pte) { | 
 | 		pr_err("%s: not initialised\n", __func__); | 
 | 		dump_stack(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Align the virtual region allocation - maximum alignment is | 
 | 	 * a section size, minimum is a page size.  This helps reduce | 
 | 	 * fragmentation of the DMA space, and also prevents allocations | 
 | 	 * smaller than a section from crossing a section boundary. | 
 | 	 */ | 
 | 	bit = fls(size - 1); | 
 | 	if (bit > SECTION_SHIFT) | 
 | 		bit = SECTION_SHIFT; | 
 | 	align = 1 << bit; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a virtual address in the consistent mapping region. | 
 | 	 */ | 
 | 	c = arm_vmregion_alloc(&consistent_head, align, size, | 
 | 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller); | 
 | 	if (c) { | 
 | 		pte_t *pte; | 
 | 		int idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
 | 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
 |  | 
 | 		pte = consistent_pte[idx] + off; | 
 | 		c->priv = page; | 
 |  | 
 | 		do { | 
 | 			BUG_ON(!pte_none(*pte)); | 
 |  | 
 | 			set_pte_ext(pte, mk_pte(page, prot), 0); | 
 | 			page++; | 
 | 			pte++; | 
 | 			off++; | 
 | 			if (off >= PTRS_PER_PTE) { | 
 | 				off = 0; | 
 | 				pte = consistent_pte[++idx]; | 
 | 			} | 
 | 		} while (size -= PAGE_SIZE); | 
 |  | 
 | 		dsb(); | 
 |  | 
 | 		return (void *)c->vm_start; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __dma_free_remap(void *cpu_addr, size_t size) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	unsigned long addr; | 
 | 	pte_t *ptep; | 
 | 	int idx; | 
 | 	u32 off; | 
 |  | 
 | 	c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr); | 
 | 	if (!c) { | 
 | 		pr_err("%s: trying to free invalid coherent area: %p\n", | 
 | 		       __func__, cpu_addr); | 
 | 		dump_stack(); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((c->vm_end - c->vm_start) != size) { | 
 | 		pr_err("%s: freeing wrong coherent size (%ld != %d)\n", | 
 | 		       __func__, c->vm_end - c->vm_start, size); | 
 | 		dump_stack(); | 
 | 		size = c->vm_end - c->vm_start; | 
 | 	} | 
 |  | 
 | 	idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
 | 	off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
 | 	ptep = consistent_pte[idx] + off; | 
 | 	addr = c->vm_start; | 
 | 	do { | 
 | 		pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep); | 
 |  | 
 | 		ptep++; | 
 | 		addr += PAGE_SIZE; | 
 | 		off++; | 
 | 		if (off >= PTRS_PER_PTE) { | 
 | 			off = 0; | 
 | 			ptep = consistent_pte[++idx]; | 
 | 		} | 
 |  | 
 | 		if (pte_none(pte) || !pte_present(pte)) | 
 | 			pr_crit("%s: bad page in kernel page table\n", | 
 | 				__func__); | 
 | 	} while (size -= PAGE_SIZE); | 
 |  | 
 | 	flush_tlb_kernel_range(c->vm_start, c->vm_end); | 
 |  | 
 | 	arm_vmregion_free(&consistent_head, c); | 
 | } | 
 |  | 
 | static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr, | 
 | 			    void *data) | 
 | { | 
 | 	struct page *page = virt_to_page(addr); | 
 | 	pgprot_t prot = *(pgprot_t *)data; | 
 |  | 
 | 	set_pte_ext(pte, mk_pte(page, prot), 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __dma_remap(struct page *page, size_t size, pgprot_t prot) | 
 | { | 
 | 	unsigned long start = (unsigned long) page_address(page); | 
 | 	unsigned end = start + size; | 
 |  | 
 | 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); | 
 | 	dsb(); | 
 | 	flush_tlb_kernel_range(start, end); | 
 | } | 
 |  | 
 | static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, | 
 | 				 pgprot_t prot, struct page **ret_page, | 
 | 				 const void *caller) | 
 | { | 
 | 	struct page *page; | 
 | 	void *ptr; | 
 | 	page = __dma_alloc_buffer(dev, size, gfp); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	ptr = __dma_alloc_remap(page, size, gfp, prot, caller); | 
 | 	if (!ptr) { | 
 | 		__dma_free_buffer(page, size); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	*ret_page = page; | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static void *__alloc_from_pool(struct device *dev, size_t size, | 
 | 			       struct page **ret_page, const void *caller) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	size_t align; | 
 |  | 
 | 	if (!coherent_head.vm_start) { | 
 | 		printk(KERN_ERR "%s: coherent pool not initialised!\n", | 
 | 		       __func__); | 
 | 		dump_stack(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Align the region allocation - allocations from pool are rather | 
 | 	 * small, so align them to their order in pages, minimum is a page | 
 | 	 * size. This helps reduce fragmentation of the DMA space. | 
 | 	 */ | 
 | 	align = PAGE_SIZE << get_order(size); | 
 | 	c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller); | 
 | 	if (c) { | 
 | 		void *ptr = (void *)c->vm_start; | 
 | 		struct page *page = virt_to_page(ptr); | 
 | 		*ret_page = page; | 
 | 		return ptr; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __free_from_pool(void *cpu_addr, size_t size) | 
 | { | 
 | 	unsigned long start = (unsigned long)cpu_addr; | 
 | 	unsigned long end = start + size; | 
 | 	struct arm_vmregion *c; | 
 |  | 
 | 	if (start < coherent_head.vm_start || end > coherent_head.vm_end) | 
 | 		return 0; | 
 |  | 
 | 	c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start); | 
 |  | 
 | 	if ((c->vm_end - c->vm_start) != size) { | 
 | 		printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", | 
 | 		       __func__, c->vm_end - c->vm_start, size); | 
 | 		dump_stack(); | 
 | 		size = c->vm_end - c->vm_start; | 
 | 	} | 
 |  | 
 | 	arm_vmregion_free(&coherent_head, c); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void *__alloc_from_contiguous(struct device *dev, size_t size, | 
 | 				     pgprot_t prot, struct page **ret_page) | 
 | { | 
 | 	unsigned long order = get_order(size); | 
 | 	size_t count = size >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	page = dma_alloc_from_contiguous(dev, count, order); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	__dma_clear_buffer(page, size); | 
 | 	__dma_remap(page, size, prot); | 
 |  | 
 | 	*ret_page = page; | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | static void __free_from_contiguous(struct device *dev, struct page *page, | 
 | 				   size_t size) | 
 | { | 
 | 	__dma_remap(page, size, pgprot_kernel); | 
 | 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot) | 
 | { | 
 | 	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ? | 
 | 			    pgprot_writecombine(prot) : | 
 | 			    pgprot_dmacoherent(prot); | 
 | 	return prot; | 
 | } | 
 |  | 
 | #define nommu() 0 | 
 |  | 
 | #else	/* !CONFIG_MMU */ | 
 |  | 
 | #define nommu() 1 | 
 |  | 
 | #define __get_dma_pgprot(attrs, prot)	__pgprot(0) | 
 | #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL | 
 | #define __alloc_from_pool(dev, size, ret_page, c)		NULL | 
 | #define __alloc_from_contiguous(dev, size, prot, ret)		NULL | 
 | #define __free_from_pool(cpu_addr, size)			0 | 
 | #define __free_from_contiguous(dev, page, size)			do { } while (0) | 
 | #define __dma_free_remap(cpu_addr, size)			do { } while (0) | 
 |  | 
 | #endif	/* CONFIG_MMU */ | 
 |  | 
 | static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, | 
 | 				   struct page **ret_page) | 
 | { | 
 | 	struct page *page; | 
 | 	page = __dma_alloc_buffer(dev, size, gfp); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	*ret_page = page; | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
 | 			 gfp_t gfp, pgprot_t prot, const void *caller) | 
 | { | 
 | 	u64 mask = get_coherent_dma_mask(dev); | 
 | 	struct page *page; | 
 | 	void *addr; | 
 |  | 
 | #ifdef CONFIG_DMA_API_DEBUG | 
 | 	u64 limit = (mask + 1) & ~mask; | 
 | 	if (limit && size >= limit) { | 
 | 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", | 
 | 			size, mask); | 
 | 		return NULL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (!mask) | 
 | 		return NULL; | 
 |  | 
 | 	if (mask < 0xffffffffULL) | 
 | 		gfp |= GFP_DMA; | 
 |  | 
 | 	/* | 
 | 	 * Following is a work-around (a.k.a. hack) to prevent pages | 
 | 	 * with __GFP_COMP being passed to split_page() which cannot | 
 | 	 * handle them.  The real problem is that this flag probably | 
 | 	 * should be 0 on ARM as it is not supported on this | 
 | 	 * platform; see CONFIG_HUGETLBFS. | 
 | 	 */ | 
 | 	gfp &= ~(__GFP_COMP); | 
 |  | 
 | 	*handle = DMA_ERROR_CODE; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (arch_is_coherent() || nommu()) | 
 | 		addr = __alloc_simple_buffer(dev, size, gfp, &page); | 
 | 	else if (!IS_ENABLED(CONFIG_CMA)) | 
 | 		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller); | 
 | 	else if (gfp & GFP_ATOMIC) | 
 | 		addr = __alloc_from_pool(dev, size, &page, caller); | 
 | 	else | 
 | 		addr = __alloc_from_contiguous(dev, size, prot, &page); | 
 |  | 
 | 	if (addr) | 
 | 		*handle = pfn_to_dma(dev, page_to_pfn(page)); | 
 |  | 
 | 	return addr; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate DMA-coherent memory space and return both the kernel remapped | 
 |  * virtual and bus address for that space. | 
 |  */ | 
 | void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, | 
 | 		    gfp_t gfp, struct dma_attrs *attrs) | 
 | { | 
 | 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); | 
 | 	void *memory; | 
 |  | 
 | 	if (dma_alloc_from_coherent(dev, size, handle, &memory)) | 
 | 		return memory; | 
 |  | 
 | 	return __dma_alloc(dev, size, handle, gfp, prot, | 
 | 			   __builtin_return_address(0)); | 
 | } | 
 |  | 
 | /* | 
 |  * Create userspace mapping for the DMA-coherent memory. | 
 |  */ | 
 | int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma, | 
 | 		 void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		 struct dma_attrs *attrs) | 
 | { | 
 | 	int ret = -ENXIO; | 
 | #ifdef CONFIG_MMU | 
 | 	unsigned long pfn = dma_to_pfn(dev, dma_addr); | 
 | 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
 |  | 
 | 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) | 
 | 		return ret; | 
 |  | 
 | 	ret = remap_pfn_range(vma, vma->vm_start, | 
 | 			      pfn + vma->vm_pgoff, | 
 | 			      vma->vm_end - vma->vm_start, | 
 | 			      vma->vm_page_prot); | 
 | #endif	/* CONFIG_MMU */ | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Free a buffer as defined by the above mapping. | 
 |  */ | 
 | void arm_dma_free(struct device *dev, size_t size, void *cpu_addr, | 
 | 		  dma_addr_t handle, struct dma_attrs *attrs) | 
 | { | 
 | 	struct page *page = pfn_to_page(dma_to_pfn(dev, handle)); | 
 |  | 
 | 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) | 
 | 		return; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	if (arch_is_coherent() || nommu()) { | 
 | 		__dma_free_buffer(page, size); | 
 | 	} else if (!IS_ENABLED(CONFIG_CMA)) { | 
 | 		__dma_free_remap(cpu_addr, size); | 
 | 		__dma_free_buffer(page, size); | 
 | 	} else { | 
 | 		if (__free_from_pool(cpu_addr, size)) | 
 | 			return; | 
 | 		/* | 
 | 		 * Non-atomic allocations cannot be freed with IRQs disabled | 
 | 		 */ | 
 | 		WARN_ON(irqs_disabled()); | 
 | 		__free_from_contiguous(dev, page, size); | 
 | 	} | 
 | } | 
 |  | 
 | static void dma_cache_maint_page(struct page *page, unsigned long offset, | 
 | 	size_t size, enum dma_data_direction dir, | 
 | 	void (*op)(const void *, size_t, int)) | 
 | { | 
 | 	/* | 
 | 	 * A single sg entry may refer to multiple physically contiguous | 
 | 	 * pages.  But we still need to process highmem pages individually. | 
 | 	 * If highmem is not configured then the bulk of this loop gets | 
 | 	 * optimized out. | 
 | 	 */ | 
 | 	size_t left = size; | 
 | 	do { | 
 | 		size_t len = left; | 
 | 		void *vaddr; | 
 |  | 
 | 		if (PageHighMem(page)) { | 
 | 			if (len + offset > PAGE_SIZE) { | 
 | 				if (offset >= PAGE_SIZE) { | 
 | 					page += offset / PAGE_SIZE; | 
 | 					offset %= PAGE_SIZE; | 
 | 				} | 
 | 				len = PAGE_SIZE - offset; | 
 | 			} | 
 | 			vaddr = kmap_high_get(page); | 
 | 			if (vaddr) { | 
 | 				vaddr += offset; | 
 | 				op(vaddr, len, dir); | 
 | 				kunmap_high(page); | 
 | 			} else if (cache_is_vipt()) { | 
 | 				/* unmapped pages might still be cached */ | 
 | 				vaddr = kmap_atomic(page); | 
 | 				op(vaddr + offset, len, dir); | 
 | 				kunmap_atomic(vaddr); | 
 | 			} | 
 | 		} else { | 
 | 			vaddr = page_address(page) + offset; | 
 | 			op(vaddr, len, dir); | 
 | 		} | 
 | 		offset = 0; | 
 | 		page++; | 
 | 		left -= len; | 
 | 	} while (left); | 
 | } | 
 |  | 
 | /* | 
 |  * Make an area consistent for devices. | 
 |  * Note: Drivers should NOT use this function directly, as it will break | 
 |  * platforms with CONFIG_DMABOUNCE. | 
 |  * Use the driver DMA support - see dma-mapping.h (dma_sync_*) | 
 |  */ | 
 | static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long paddr; | 
 |  | 
 | 	dma_cache_maint_page(page, off, size, dir, dmac_map_area); | 
 |  | 
 | 	paddr = page_to_phys(page) + off; | 
 | 	if (dir == DMA_FROM_DEVICE) { | 
 | 		outer_inv_range(paddr, paddr + size); | 
 | 	} else { | 
 | 		outer_clean_range(paddr, paddr + size); | 
 | 	} | 
 | 	/* FIXME: non-speculating: flush on bidirectional mappings? */ | 
 | } | 
 |  | 
 | static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, | 
 | 	size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	unsigned long paddr = page_to_phys(page) + off; | 
 |  | 
 | 	/* FIXME: non-speculating: not required */ | 
 | 	/* don't bother invalidating if DMA to device */ | 
 | 	if (dir != DMA_TO_DEVICE) | 
 | 		outer_inv_range(paddr, paddr + size); | 
 |  | 
 | 	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); | 
 |  | 
 | 	/* | 
 | 	 * Mark the D-cache clean for this page to avoid extra flushing. | 
 | 	 */ | 
 | 	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE) | 
 | 		set_bit(PG_dcache_clean, &page->flags); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
 |  * This is the scatter-gather version of the dma_map_single interface. | 
 |  * Here the scatter gather list elements are each tagged with the | 
 |  * appropriate dma address and length.  They are obtained via | 
 |  * sg_dma_{address,length}. | 
 |  * | 
 |  * Device ownership issues as mentioned for dma_map_single are the same | 
 |  * here. | 
 |  */ | 
 | int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	struct scatterlist *s; | 
 | 	int i, j; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
 | 		s->dma_length = s->length; | 
 | #endif | 
 | 		s->dma_address = ops->map_page(dev, sg_page(s), s->offset, | 
 | 						s->length, dir, attrs); | 
 | 		if (dma_mapping_error(dev, s->dma_address)) | 
 | 			goto bad_mapping; | 
 | 	} | 
 | 	return nents; | 
 |  | 
 |  bad_mapping: | 
 | 	for_each_sg(sg, s, i, j) | 
 | 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  * | 
 |  * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
 |  * rules concerning calls here are the same as for dma_unmap_single(). | 
 |  */ | 
 | void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	struct scatterlist *s; | 
 |  | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_dma_sync_sg_for_cpu | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length, | 
 | 					 dir); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_dma_sync_sg_for_device | 
 |  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_map_ops *ops = get_dma_ops(dev); | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		ops->sync_single_for_device(dev, sg_dma_address(s), s->length, | 
 | 					    dir); | 
 | } | 
 |  | 
 | /* | 
 |  * Return whether the given device DMA address mask can be supported | 
 |  * properly.  For example, if your device can only drive the low 24-bits | 
 |  * during bus mastering, then you would pass 0x00ffffff as the mask | 
 |  * to this function. | 
 |  */ | 
 | int dma_supported(struct device *dev, u64 mask) | 
 | { | 
 | 	if (mask < (u64)arm_dma_limit) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(dma_supported); | 
 |  | 
 | static int arm_dma_set_mask(struct device *dev, u64 dma_mask) | 
 | { | 
 | 	if (!dev->dma_mask || !dma_supported(dev, dma_mask)) | 
 | 		return -EIO; | 
 |  | 
 | 	*dev->dma_mask = dma_mask; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define PREALLOC_DMA_DEBUG_ENTRIES	4096 | 
 |  | 
 | static int __init dma_debug_do_init(void) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	arm_vmregion_create_proc("dma-mappings", &consistent_head); | 
 | #endif | 
 | 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); | 
 | 	return 0; | 
 | } | 
 | fs_initcall(dma_debug_do_init); | 
 |  | 
 | #ifdef CONFIG_ARM_DMA_USE_IOMMU | 
 |  | 
 | /* IOMMU */ | 
 |  | 
 | static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, | 
 | 				      size_t size) | 
 | { | 
 | 	unsigned int order = get_order(size); | 
 | 	unsigned int align = 0; | 
 | 	unsigned int count, start; | 
 | 	unsigned long flags; | 
 |  | 
 | 	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) + | 
 | 		 (1 << mapping->order) - 1) >> mapping->order; | 
 |  | 
 | 	if (order > mapping->order) | 
 | 		align = (1 << (order - mapping->order)) - 1; | 
 |  | 
 | 	spin_lock_irqsave(&mapping->lock, flags); | 
 | 	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0, | 
 | 					   count, align); | 
 | 	if (start > mapping->bits) { | 
 | 		spin_unlock_irqrestore(&mapping->lock, flags); | 
 | 		return DMA_ERROR_CODE; | 
 | 	} | 
 |  | 
 | 	bitmap_set(mapping->bitmap, start, count); | 
 | 	spin_unlock_irqrestore(&mapping->lock, flags); | 
 |  | 
 | 	return mapping->base + (start << (mapping->order + PAGE_SHIFT)); | 
 | } | 
 |  | 
 | static inline void __free_iova(struct dma_iommu_mapping *mapping, | 
 | 			       dma_addr_t addr, size_t size) | 
 | { | 
 | 	unsigned int start = (addr - mapping->base) >> | 
 | 			     (mapping->order + PAGE_SHIFT); | 
 | 	unsigned int count = ((size >> PAGE_SHIFT) + | 
 | 			      (1 << mapping->order) - 1) >> mapping->order; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&mapping->lock, flags); | 
 | 	bitmap_clear(mapping->bitmap, start, count); | 
 | 	spin_unlock_irqrestore(&mapping->lock, flags); | 
 | } | 
 |  | 
 | static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp) | 
 | { | 
 | 	struct page **pages; | 
 | 	int count = size >> PAGE_SHIFT; | 
 | 	int array_size = count * sizeof(struct page *); | 
 | 	int i = 0; | 
 |  | 
 | 	if (array_size <= PAGE_SIZE) | 
 | 		pages = kzalloc(array_size, gfp); | 
 | 	else | 
 | 		pages = vzalloc(array_size); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	while (count) { | 
 | 		int j, order = __fls(count); | 
 |  | 
 | 		pages[i] = alloc_pages(gfp | __GFP_NOWARN, order); | 
 | 		while (!pages[i] && order) | 
 | 			pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order); | 
 | 		if (!pages[i]) | 
 | 			goto error; | 
 |  | 
 | 		if (order) | 
 | 			split_page(pages[i], order); | 
 | 		j = 1 << order; | 
 | 		while (--j) | 
 | 			pages[i + j] = pages[i] + j; | 
 |  | 
 | 		__dma_clear_buffer(pages[i], PAGE_SIZE << order); | 
 | 		i += 1 << order; | 
 | 		count -= 1 << order; | 
 | 	} | 
 |  | 
 | 	return pages; | 
 | error: | 
 | 	while (--i) | 
 | 		if (pages[i]) | 
 | 			__free_pages(pages[i], 0); | 
 | 	if (array_size <= PAGE_SIZE) | 
 | 		kfree(pages); | 
 | 	else | 
 | 		vfree(pages); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size) | 
 | { | 
 | 	int count = size >> PAGE_SHIFT; | 
 | 	int array_size = count * sizeof(struct page *); | 
 | 	int i; | 
 | 	for (i = 0; i < count; i++) | 
 | 		if (pages[i]) | 
 | 			__free_pages(pages[i], 0); | 
 | 	if (array_size <= PAGE_SIZE) | 
 | 		kfree(pages); | 
 | 	else | 
 | 		vfree(pages); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Create a CPU mapping for a specified pages | 
 |  */ | 
 | static void * | 
 | __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	size_t align; | 
 | 	size_t count = size >> PAGE_SHIFT; | 
 | 	int bit; | 
 |  | 
 | 	if (!consistent_pte[0]) { | 
 | 		pr_err("%s: not initialised\n", __func__); | 
 | 		dump_stack(); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Align the virtual region allocation - maximum alignment is | 
 | 	 * a section size, minimum is a page size.  This helps reduce | 
 | 	 * fragmentation of the DMA space, and also prevents allocations | 
 | 	 * smaller than a section from crossing a section boundary. | 
 | 	 */ | 
 | 	bit = fls(size - 1); | 
 | 	if (bit > SECTION_SHIFT) | 
 | 		bit = SECTION_SHIFT; | 
 | 	align = 1 << bit; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a virtual address in the consistent mapping region. | 
 | 	 */ | 
 | 	c = arm_vmregion_alloc(&consistent_head, align, size, | 
 | 			    gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL); | 
 | 	if (c) { | 
 | 		pte_t *pte; | 
 | 		int idx = CONSISTENT_PTE_INDEX(c->vm_start); | 
 | 		int i = 0; | 
 | 		u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1); | 
 |  | 
 | 		pte = consistent_pte[idx] + off; | 
 | 		c->priv = pages; | 
 |  | 
 | 		do { | 
 | 			BUG_ON(!pte_none(*pte)); | 
 |  | 
 | 			set_pte_ext(pte, mk_pte(pages[i], prot), 0); | 
 | 			pte++; | 
 | 			off++; | 
 | 			i++; | 
 | 			if (off >= PTRS_PER_PTE) { | 
 | 				off = 0; | 
 | 				pte = consistent_pte[++idx]; | 
 | 			} | 
 | 		} while (i < count); | 
 |  | 
 | 		dsb(); | 
 |  | 
 | 		return (void *)c->vm_start; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Create a mapping in device IO address space for specified pages | 
 |  */ | 
 | static dma_addr_t | 
 | __iommu_create_mapping(struct device *dev, struct page **pages, size_t size) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 | 	dma_addr_t dma_addr, iova; | 
 | 	int i, ret = DMA_ERROR_CODE; | 
 |  | 
 | 	dma_addr = __alloc_iova(mapping, size); | 
 | 	if (dma_addr == DMA_ERROR_CODE) | 
 | 		return dma_addr; | 
 |  | 
 | 	iova = dma_addr; | 
 | 	for (i = 0; i < count; ) { | 
 | 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1; | 
 | 		phys_addr_t phys = page_to_phys(pages[i]); | 
 | 		unsigned int len, j; | 
 |  | 
 | 		for (j = i + 1; j < count; j++, next_pfn++) | 
 | 			if (page_to_pfn(pages[j]) != next_pfn) | 
 | 				break; | 
 |  | 
 | 		len = (j - i) << PAGE_SHIFT; | 
 | 		ret = iommu_map(mapping->domain, iova, phys, len, 0); | 
 | 		if (ret < 0) | 
 | 			goto fail; | 
 | 		iova += len; | 
 | 		i = j; | 
 | 	} | 
 | 	return dma_addr; | 
 | fail: | 
 | 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); | 
 | 	__free_iova(mapping, dma_addr, size); | 
 | 	return DMA_ERROR_CODE; | 
 | } | 
 |  | 
 | static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 |  | 
 | 	/* | 
 | 	 * add optional in-page offset from iova to size and align | 
 | 	 * result to page size | 
 | 	 */ | 
 | 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); | 
 | 	iova &= PAGE_MASK; | 
 |  | 
 | 	iommu_unmap(mapping->domain, iova, size); | 
 | 	__free_iova(mapping, iova, size); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, | 
 | 	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs) | 
 | { | 
 | 	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel); | 
 | 	struct page **pages; | 
 | 	void *addr = NULL; | 
 |  | 
 | 	*handle = DMA_ERROR_CODE; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	pages = __iommu_alloc_buffer(dev, size, gfp); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 |  | 
 | 	*handle = __iommu_create_mapping(dev, pages, size); | 
 | 	if (*handle == DMA_ERROR_CODE) | 
 | 		goto err_buffer; | 
 |  | 
 | 	addr = __iommu_alloc_remap(pages, size, gfp, prot); | 
 | 	if (!addr) | 
 | 		goto err_mapping; | 
 |  | 
 | 	return addr; | 
 |  | 
 | err_mapping: | 
 | 	__iommu_remove_mapping(dev, *handle, size); | 
 | err_buffer: | 
 | 	__iommu_free_buffer(dev, pages, size); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, | 
 | 		    void *cpu_addr, dma_addr_t dma_addr, size_t size, | 
 | 		    struct dma_attrs *attrs) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 |  | 
 | 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); | 
 | 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); | 
 |  | 
 | 	if (c) { | 
 | 		struct page **pages = c->priv; | 
 |  | 
 | 		unsigned long uaddr = vma->vm_start; | 
 | 		unsigned long usize = vma->vm_end - vma->vm_start; | 
 | 		int i = 0; | 
 |  | 
 | 		do { | 
 | 			int ret; | 
 |  | 
 | 			ret = vm_insert_page(vma, uaddr, pages[i++]); | 
 | 			if (ret) { | 
 | 				pr_err("Remapping memory, error: %d\n", ret); | 
 | 				return ret; | 
 | 			} | 
 |  | 
 | 			uaddr += PAGE_SIZE; | 
 | 			usize -= PAGE_SIZE; | 
 | 		} while (usize > 0); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * free a page as defined by the above mapping. | 
 |  * Must not be called with IRQs disabled. | 
 |  */ | 
 | void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, | 
 | 			  dma_addr_t handle, struct dma_attrs *attrs) | 
 | { | 
 | 	struct arm_vmregion *c; | 
 | 	size = PAGE_ALIGN(size); | 
 |  | 
 | 	c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr); | 
 | 	if (c) { | 
 | 		struct page **pages = c->priv; | 
 | 		__dma_free_remap(cpu_addr, size); | 
 | 		__iommu_remove_mapping(dev, handle, size); | 
 | 		__iommu_free_buffer(dev, pages, size); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Map a part of the scatter-gather list into contiguous io address space | 
 |  */ | 
 | static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, | 
 | 			  size_t size, dma_addr_t *handle, | 
 | 			  enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	dma_addr_t iova, iova_base; | 
 | 	int ret = 0; | 
 | 	unsigned int count; | 
 | 	struct scatterlist *s; | 
 |  | 
 | 	size = PAGE_ALIGN(size); | 
 | 	*handle = DMA_ERROR_CODE; | 
 |  | 
 | 	iova_base = iova = __alloc_iova(mapping, size); | 
 | 	if (iova == DMA_ERROR_CODE) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { | 
 | 		phys_addr_t phys = page_to_phys(sg_page(s)); | 
 | 		unsigned int len = PAGE_ALIGN(s->offset + s->length); | 
 |  | 
 | 		if (!arch_is_coherent()) | 
 | 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
 |  | 
 | 		ret = iommu_map(mapping->domain, iova, phys, len, 0); | 
 | 		if (ret < 0) | 
 | 			goto fail; | 
 | 		count += len >> PAGE_SHIFT; | 
 | 		iova += len; | 
 | 	} | 
 | 	*handle = iova_base; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); | 
 | 	__free_iova(mapping, iova_base, size); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
 |  * The scatter gather list elements are merged together (if possible) and | 
 |  * tagged with the appropriate dma address and length. They are obtained via | 
 |  * sg_dma_{address,length}. | 
 |  */ | 
 | int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		     enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct scatterlist *s = sg, *dma = sg, *start = sg; | 
 | 	int i, count = 0; | 
 | 	unsigned int offset = s->offset; | 
 | 	unsigned int size = s->offset + s->length; | 
 | 	unsigned int max = dma_get_max_seg_size(dev); | 
 |  | 
 | 	for (i = 1; i < nents; i++) { | 
 | 		s = sg_next(s); | 
 |  | 
 | 		s->dma_address = DMA_ERROR_CODE; | 
 | 		s->dma_length = 0; | 
 |  | 
 | 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { | 
 | 			if (__map_sg_chunk(dev, start, size, &dma->dma_address, | 
 | 			    dir) < 0) | 
 | 				goto bad_mapping; | 
 |  | 
 | 			dma->dma_address += offset; | 
 | 			dma->dma_length = size - offset; | 
 |  | 
 | 			size = offset = s->offset; | 
 | 			start = s; | 
 | 			dma = sg_next(dma); | 
 | 			count += 1; | 
 | 		} | 
 | 		size += s->length; | 
 | 	} | 
 | 	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0) | 
 | 		goto bad_mapping; | 
 |  | 
 | 	dma->dma_address += offset; | 
 | 	dma->dma_length = size - offset; | 
 |  | 
 | 	return count+1; | 
 |  | 
 | bad_mapping: | 
 | 	for_each_sg(sg, s, count, i) | 
 | 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to unmap (same as was passed to dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  * | 
 |  * Unmap a set of streaming mode DMA translations.  Again, CPU access | 
 |  * rules concerning calls here are the same as for dma_unmap_single(). | 
 |  */ | 
 | void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 			enum dma_data_direction dir, struct dma_attrs *attrs) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		if (sg_dma_len(s)) | 
 | 			__iommu_remove_mapping(dev, sg_dma_address(s), | 
 | 					       sg_dma_len(s)); | 
 | 		if (!arch_is_coherent()) | 
 | 			__dma_page_dev_to_cpu(sg_page(s), s->offset, | 
 | 					      s->length, dir); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_sync_sg_for_cpu | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		if (!arch_is_coherent()) | 
 | 			__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_sync_sg_for_device | 
 |  * @dev: valid struct device pointer | 
 |  * @sg: list of buffers | 
 |  * @nents: number of buffers to map (returned from dma_map_sg) | 
 |  * @dir: DMA transfer direction (same as was passed to dma_map_sg) | 
 |  */ | 
 | void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, | 
 | 			int nents, enum dma_data_direction dir) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) | 
 | 		if (!arch_is_coherent()) | 
 | 			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * arm_iommu_map_page | 
 |  * @dev: valid struct device pointer | 
 |  * @page: page that buffer resides in | 
 |  * @offset: offset into page for start of buffer | 
 |  * @size: size of buffer to map | 
 |  * @dir: DMA transfer direction | 
 |  * | 
 |  * IOMMU aware version of arm_dma_map_page() | 
 |  */ | 
 | static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, | 
 | 	     unsigned long offset, size_t size, enum dma_data_direction dir, | 
 | 	     struct dma_attrs *attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	dma_addr_t dma_addr; | 
 | 	int ret, len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_cpu_to_dev(page, offset, size, dir); | 
 |  | 
 | 	dma_addr = __alloc_iova(mapping, len); | 
 | 	if (dma_addr == DMA_ERROR_CODE) | 
 | 		return dma_addr; | 
 |  | 
 | 	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0); | 
 | 	if (ret < 0) | 
 | 		goto fail; | 
 |  | 
 | 	return dma_addr + offset; | 
 | fail: | 
 | 	__free_iova(mapping, dma_addr, len); | 
 | 	return DMA_ERROR_CODE; | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_unmap_page | 
 |  * @dev: valid struct device pointer | 
 |  * @handle: DMA address of buffer | 
 |  * @size: size of buffer (same as passed to dma_map_page) | 
 |  * @dir: DMA transfer direction (same as passed to dma_map_page) | 
 |  * | 
 |  * IOMMU aware version of arm_dma_unmap_page() | 
 |  */ | 
 | static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, | 
 | 		size_t size, enum dma_data_direction dir, | 
 | 		struct dma_attrs *attrs) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 	int offset = handle & ~PAGE_MASK; | 
 | 	int len = PAGE_ALIGN(size + offset); | 
 |  | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_dev_to_cpu(page, offset, size, dir); | 
 |  | 
 | 	iommu_unmap(mapping->domain, iova, len); | 
 | 	__free_iova(mapping, iova, len); | 
 | } | 
 |  | 
 | static void arm_iommu_sync_single_for_cpu(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 	unsigned int offset = handle & ~PAGE_MASK; | 
 |  | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	if (!arch_is_coherent()) | 
 | 		__dma_page_dev_to_cpu(page, offset, size, dir); | 
 | } | 
 |  | 
 | static void arm_iommu_sync_single_for_device(struct device *dev, | 
 | 		dma_addr_t handle, size_t size, enum dma_data_direction dir) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = dev->archdata.mapping; | 
 | 	dma_addr_t iova = handle & PAGE_MASK; | 
 | 	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); | 
 | 	unsigned int offset = handle & ~PAGE_MASK; | 
 |  | 
 | 	if (!iova) | 
 | 		return; | 
 |  | 
 | 	__dma_page_cpu_to_dev(page, offset, size, dir); | 
 | } | 
 |  | 
 | struct dma_map_ops iommu_ops = { | 
 | 	.alloc		= arm_iommu_alloc_attrs, | 
 | 	.free		= arm_iommu_free_attrs, | 
 | 	.mmap		= arm_iommu_mmap_attrs, | 
 |  | 
 | 	.map_page		= arm_iommu_map_page, | 
 | 	.unmap_page		= arm_iommu_unmap_page, | 
 | 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu, | 
 | 	.sync_single_for_device	= arm_iommu_sync_single_for_device, | 
 |  | 
 | 	.map_sg			= arm_iommu_map_sg, | 
 | 	.unmap_sg		= arm_iommu_unmap_sg, | 
 | 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu, | 
 | 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device, | 
 | }; | 
 |  | 
 | /** | 
 |  * arm_iommu_create_mapping | 
 |  * @bus: pointer to the bus holding the client device (for IOMMU calls) | 
 |  * @base: start address of the valid IO address space | 
 |  * @size: size of the valid IO address space | 
 |  * @order: accuracy of the IO addresses allocations | 
 |  * | 
 |  * Creates a mapping structure which holds information about used/unused | 
 |  * IO address ranges, which is required to perform memory allocation and | 
 |  * mapping with IOMMU aware functions. | 
 |  * | 
 |  * The client device need to be attached to the mapping with | 
 |  * arm_iommu_attach_device function. | 
 |  */ | 
 | struct dma_iommu_mapping * | 
 | arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size, | 
 | 			 int order) | 
 | { | 
 | 	unsigned int count = size >> (PAGE_SHIFT + order); | 
 | 	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long); | 
 | 	struct dma_iommu_mapping *mapping; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	if (!count) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); | 
 | 	if (!mapping) | 
 | 		goto err; | 
 |  | 
 | 	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL); | 
 | 	if (!mapping->bitmap) | 
 | 		goto err2; | 
 |  | 
 | 	mapping->base = base; | 
 | 	mapping->bits = BITS_PER_BYTE * bitmap_size; | 
 | 	mapping->order = order; | 
 | 	spin_lock_init(&mapping->lock); | 
 |  | 
 | 	mapping->domain = iommu_domain_alloc(bus); | 
 | 	if (!mapping->domain) | 
 | 		goto err3; | 
 |  | 
 | 	kref_init(&mapping->kref); | 
 | 	return mapping; | 
 | err3: | 
 | 	kfree(mapping->bitmap); | 
 | err2: | 
 | 	kfree(mapping); | 
 | err: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void release_iommu_mapping(struct kref *kref) | 
 | { | 
 | 	struct dma_iommu_mapping *mapping = | 
 | 		container_of(kref, struct dma_iommu_mapping, kref); | 
 |  | 
 | 	iommu_domain_free(mapping->domain); | 
 | 	kfree(mapping->bitmap); | 
 | 	kfree(mapping); | 
 | } | 
 |  | 
 | void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	if (mapping) | 
 | 		kref_put(&mapping->kref, release_iommu_mapping); | 
 | } | 
 |  | 
 | /** | 
 |  * arm_iommu_attach_device | 
 |  * @dev: valid struct device pointer | 
 |  * @mapping: io address space mapping structure (returned from | 
 |  *	arm_iommu_create_mapping) | 
 |  * | 
 |  * Attaches specified io address space mapping to the provided device, | 
 |  * this replaces the dma operations (dma_map_ops pointer) with the | 
 |  * IOMMU aware version. More than one client might be attached to | 
 |  * the same io address space mapping. | 
 |  */ | 
 | int arm_iommu_attach_device(struct device *dev, | 
 | 			    struct dma_iommu_mapping *mapping) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = iommu_attach_device(mapping->domain, dev); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	kref_get(&mapping->kref); | 
 | 	dev->archdata.mapping = mapping; | 
 | 	set_dma_ops(dev, &iommu_ops); | 
 |  | 
 | 	pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif |