|  | /* | 
|  | * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | 
|  | * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. | 
|  | * | 
|  | * Authors: | 
|  | *    Paul Mackerras <paulus@au1.ibm.com> | 
|  | *    Alexander Graf <agraf@suse.de> | 
|  | *    Kevin Wolf <mail@kevin-wolf.de> | 
|  | * | 
|  | * Description: KVM functions specific to running on Book 3S | 
|  | * processors in hypervisor mode (specifically POWER7 and later). | 
|  | * | 
|  | * This file is derived from arch/powerpc/kvm/book3s.c, | 
|  | * by Alexander Graf <agraf@suse.de>. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License, version 2, as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/anon_inodes.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/page-flags.h> | 
|  |  | 
|  | #include <asm/reg.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/kvm_ppc.h> | 
|  | #include <asm/kvm_book3s.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/lppaca.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/cputhreads.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/hvcall.h> | 
|  | #include <asm/switch_to.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/hugetlb.h> | 
|  |  | 
|  | /* #define EXIT_DEBUG */ | 
|  | /* #define EXIT_DEBUG_SIMPLE */ | 
|  | /* #define EXIT_DEBUG_INT */ | 
|  |  | 
|  | static void kvmppc_end_cede(struct kvm_vcpu *vcpu); | 
|  | static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu); | 
|  |  | 
|  | void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct kvmppc_vcore *vc = vcpu->arch.vcore; | 
|  |  | 
|  | local_paca->kvm_hstate.kvm_vcpu = vcpu; | 
|  | local_paca->kvm_hstate.kvm_vcore = vc; | 
|  | if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) | 
|  | vc->stolen_tb += mftb() - vc->preempt_tb; | 
|  | } | 
|  |  | 
|  | void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvmppc_vcore *vc = vcpu->arch.vcore; | 
|  |  | 
|  | if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) | 
|  | vc->preempt_tb = mftb(); | 
|  | } | 
|  |  | 
|  | void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) | 
|  | { | 
|  | vcpu->arch.shregs.msr = msr; | 
|  | kvmppc_end_cede(vcpu); | 
|  | } | 
|  |  | 
|  | void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) | 
|  | { | 
|  | vcpu->arch.pvr = pvr; | 
|  | } | 
|  |  | 
|  | void kvmppc_dump_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); | 
|  | pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n", | 
|  | vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); | 
|  | for (r = 0; r < 16; ++r) | 
|  | pr_err("r%2d = %.16lx  r%d = %.16lx\n", | 
|  | r, kvmppc_get_gpr(vcpu, r), | 
|  | r+16, kvmppc_get_gpr(vcpu, r+16)); | 
|  | pr_err("ctr = %.16lx  lr  = %.16lx\n", | 
|  | vcpu->arch.ctr, vcpu->arch.lr); | 
|  | pr_err("srr0 = %.16llx srr1 = %.16llx\n", | 
|  | vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); | 
|  | pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", | 
|  | vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); | 
|  | pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", | 
|  | vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); | 
|  | pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n", | 
|  | vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); | 
|  | pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); | 
|  | pr_err("fault dar = %.16lx dsisr = %.8x\n", | 
|  | vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); | 
|  | pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); | 
|  | for (r = 0; r < vcpu->arch.slb_max; ++r) | 
|  | pr_err("  ESID = %.16llx VSID = %.16llx\n", | 
|  | vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); | 
|  | pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", | 
|  | vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, | 
|  | vcpu->arch.last_inst); | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) | 
|  | { | 
|  | int r; | 
|  | struct kvm_vcpu *v, *ret = NULL; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | kvm_for_each_vcpu(r, v, kvm) { | 
|  | if (v->vcpu_id == id) { | 
|  | ret = v; | 
|  | break; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&kvm->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) | 
|  | { | 
|  | vpa->shared_proc = 1; | 
|  | vpa->yield_count = 1; | 
|  | } | 
|  |  | 
|  | /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ | 
|  | struct reg_vpa { | 
|  | u32 dummy; | 
|  | union { | 
|  | u16 hword; | 
|  | u32 word; | 
|  | } length; | 
|  | }; | 
|  |  | 
|  | static int vpa_is_registered(struct kvmppc_vpa *vpap) | 
|  | { | 
|  | if (vpap->update_pending) | 
|  | return vpap->next_gpa != 0; | 
|  | return vpap->pinned_addr != NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, | 
|  | unsigned long flags, | 
|  | unsigned long vcpuid, unsigned long vpa) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | unsigned long len, nb; | 
|  | void *va; | 
|  | struct kvm_vcpu *tvcpu; | 
|  | int err; | 
|  | int subfunc; | 
|  | struct kvmppc_vpa *vpap; | 
|  |  | 
|  | tvcpu = kvmppc_find_vcpu(kvm, vcpuid); | 
|  | if (!tvcpu) | 
|  | return H_PARAMETER; | 
|  |  | 
|  | subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; | 
|  | if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || | 
|  | subfunc == H_VPA_REG_SLB) { | 
|  | /* Registering new area - address must be cache-line aligned */ | 
|  | if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) | 
|  | return H_PARAMETER; | 
|  |  | 
|  | /* convert logical addr to kernel addr and read length */ | 
|  | va = kvmppc_pin_guest_page(kvm, vpa, &nb); | 
|  | if (va == NULL) | 
|  | return H_PARAMETER; | 
|  | if (subfunc == H_VPA_REG_VPA) | 
|  | len = ((struct reg_vpa *)va)->length.hword; | 
|  | else | 
|  | len = ((struct reg_vpa *)va)->length.word; | 
|  | kvmppc_unpin_guest_page(kvm, va); | 
|  |  | 
|  | /* Check length */ | 
|  | if (len > nb || len < sizeof(struct reg_vpa)) | 
|  | return H_PARAMETER; | 
|  | } else { | 
|  | vpa = 0; | 
|  | len = 0; | 
|  | } | 
|  |  | 
|  | err = H_PARAMETER; | 
|  | vpap = NULL; | 
|  | spin_lock(&tvcpu->arch.vpa_update_lock); | 
|  |  | 
|  | switch (subfunc) { | 
|  | case H_VPA_REG_VPA:		/* register VPA */ | 
|  | if (len < sizeof(struct lppaca)) | 
|  | break; | 
|  | vpap = &tvcpu->arch.vpa; | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case H_VPA_REG_DTL:		/* register DTL */ | 
|  | if (len < sizeof(struct dtl_entry)) | 
|  | break; | 
|  | len -= len % sizeof(struct dtl_entry); | 
|  |  | 
|  | /* Check that they have previously registered a VPA */ | 
|  | err = H_RESOURCE; | 
|  | if (!vpa_is_registered(&tvcpu->arch.vpa)) | 
|  | break; | 
|  |  | 
|  | vpap = &tvcpu->arch.dtl; | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case H_VPA_REG_SLB:		/* register SLB shadow buffer */ | 
|  | /* Check that they have previously registered a VPA */ | 
|  | err = H_RESOURCE; | 
|  | if (!vpa_is_registered(&tvcpu->arch.vpa)) | 
|  | break; | 
|  |  | 
|  | vpap = &tvcpu->arch.slb_shadow; | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case H_VPA_DEREG_VPA:		/* deregister VPA */ | 
|  | /* Check they don't still have a DTL or SLB buf registered */ | 
|  | err = H_RESOURCE; | 
|  | if (vpa_is_registered(&tvcpu->arch.dtl) || | 
|  | vpa_is_registered(&tvcpu->arch.slb_shadow)) | 
|  | break; | 
|  |  | 
|  | vpap = &tvcpu->arch.vpa; | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case H_VPA_DEREG_DTL:		/* deregister DTL */ | 
|  | vpap = &tvcpu->arch.dtl; | 
|  | err = 0; | 
|  | break; | 
|  |  | 
|  | case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */ | 
|  | vpap = &tvcpu->arch.slb_shadow; | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (vpap) { | 
|  | vpap->next_gpa = vpa; | 
|  | vpap->len = len; | 
|  | vpap->update_pending = 1; | 
|  | } | 
|  |  | 
|  | spin_unlock(&tvcpu->arch.vpa_update_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | void *va; | 
|  | unsigned long nb; | 
|  | unsigned long gpa; | 
|  |  | 
|  | /* | 
|  | * We need to pin the page pointed to by vpap->next_gpa, | 
|  | * but we can't call kvmppc_pin_guest_page under the lock | 
|  | * as it does get_user_pages() and down_read().  So we | 
|  | * have to drop the lock, pin the page, then get the lock | 
|  | * again and check that a new area didn't get registered | 
|  | * in the meantime. | 
|  | */ | 
|  | for (;;) { | 
|  | gpa = vpap->next_gpa; | 
|  | spin_unlock(&vcpu->arch.vpa_update_lock); | 
|  | va = NULL; | 
|  | nb = 0; | 
|  | if (gpa) | 
|  | va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb); | 
|  | spin_lock(&vcpu->arch.vpa_update_lock); | 
|  | if (gpa == vpap->next_gpa) | 
|  | break; | 
|  | /* sigh... unpin that one and try again */ | 
|  | if (va) | 
|  | kvmppc_unpin_guest_page(kvm, va); | 
|  | } | 
|  |  | 
|  | vpap->update_pending = 0; | 
|  | if (va && nb < vpap->len) { | 
|  | /* | 
|  | * If it's now too short, it must be that userspace | 
|  | * has changed the mappings underlying guest memory, | 
|  | * so unregister the region. | 
|  | */ | 
|  | kvmppc_unpin_guest_page(kvm, va); | 
|  | va = NULL; | 
|  | } | 
|  | if (vpap->pinned_addr) | 
|  | kvmppc_unpin_guest_page(kvm, vpap->pinned_addr); | 
|  | vpap->pinned_addr = va; | 
|  | if (va) | 
|  | vpap->pinned_end = va + vpap->len; | 
|  | } | 
|  |  | 
|  | static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | spin_lock(&vcpu->arch.vpa_update_lock); | 
|  | if (vcpu->arch.vpa.update_pending) { | 
|  | kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); | 
|  | init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); | 
|  | } | 
|  | if (vcpu->arch.dtl.update_pending) { | 
|  | kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); | 
|  | vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; | 
|  | vcpu->arch.dtl_index = 0; | 
|  | } | 
|  | if (vcpu->arch.slb_shadow.update_pending) | 
|  | kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); | 
|  | spin_unlock(&vcpu->arch.vpa_update_lock); | 
|  | } | 
|  |  | 
|  | static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, | 
|  | struct kvmppc_vcore *vc) | 
|  | { | 
|  | struct dtl_entry *dt; | 
|  | struct lppaca *vpa; | 
|  | unsigned long old_stolen; | 
|  |  | 
|  | dt = vcpu->arch.dtl_ptr; | 
|  | vpa = vcpu->arch.vpa.pinned_addr; | 
|  | old_stolen = vcpu->arch.stolen_logged; | 
|  | vcpu->arch.stolen_logged = vc->stolen_tb; | 
|  | if (!dt || !vpa) | 
|  | return; | 
|  | memset(dt, 0, sizeof(struct dtl_entry)); | 
|  | dt->dispatch_reason = 7; | 
|  | dt->processor_id = vc->pcpu + vcpu->arch.ptid; | 
|  | dt->timebase = mftb(); | 
|  | dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen; | 
|  | dt->srr0 = kvmppc_get_pc(vcpu); | 
|  | dt->srr1 = vcpu->arch.shregs.msr; | 
|  | ++dt; | 
|  | if (dt == vcpu->arch.dtl.pinned_end) | 
|  | dt = vcpu->arch.dtl.pinned_addr; | 
|  | vcpu->arch.dtl_ptr = dt; | 
|  | /* order writing *dt vs. writing vpa->dtl_idx */ | 
|  | smp_wmb(); | 
|  | vpa->dtl_idx = ++vcpu->arch.dtl_index; | 
|  | } | 
|  |  | 
|  | int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long req = kvmppc_get_gpr(vcpu, 3); | 
|  | unsigned long target, ret = H_SUCCESS; | 
|  | struct kvm_vcpu *tvcpu; | 
|  |  | 
|  | switch (req) { | 
|  | case H_ENTER: | 
|  | ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), | 
|  | kvmppc_get_gpr(vcpu, 5), | 
|  | kvmppc_get_gpr(vcpu, 6), | 
|  | kvmppc_get_gpr(vcpu, 7)); | 
|  | break; | 
|  | case H_CEDE: | 
|  | break; | 
|  | case H_PROD: | 
|  | target = kvmppc_get_gpr(vcpu, 4); | 
|  | tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); | 
|  | if (!tvcpu) { | 
|  | ret = H_PARAMETER; | 
|  | break; | 
|  | } | 
|  | tvcpu->arch.prodded = 1; | 
|  | smp_mb(); | 
|  | if (vcpu->arch.ceded) { | 
|  | if (waitqueue_active(&vcpu->wq)) { | 
|  | wake_up_interruptible(&vcpu->wq); | 
|  | vcpu->stat.halt_wakeup++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case H_CONFER: | 
|  | break; | 
|  | case H_REGISTER_VPA: | 
|  | ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), | 
|  | kvmppc_get_gpr(vcpu, 5), | 
|  | kvmppc_get_gpr(vcpu, 6)); | 
|  | break; | 
|  | default: | 
|  | return RESUME_HOST; | 
|  | } | 
|  | kvmppc_set_gpr(vcpu, 3, ret); | 
|  | vcpu->arch.hcall_needed = 0; | 
|  | return RESUME_GUEST; | 
|  | } | 
|  |  | 
|  | static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, | 
|  | struct task_struct *tsk) | 
|  | { | 
|  | int r = RESUME_HOST; | 
|  |  | 
|  | vcpu->stat.sum_exits++; | 
|  |  | 
|  | run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | run->ready_for_interrupt_injection = 1; | 
|  | switch (vcpu->arch.trap) { | 
|  | /* We're good on these - the host merely wanted to get our attention */ | 
|  | case BOOK3S_INTERRUPT_HV_DECREMENTER: | 
|  | vcpu->stat.dec_exits++; | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_EXTERNAL: | 
|  | vcpu->stat.ext_intr_exits++; | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_PERFMON: | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_PROGRAM: | 
|  | { | 
|  | ulong flags; | 
|  | /* | 
|  | * Normally program interrupts are delivered directly | 
|  | * to the guest by the hardware, but we can get here | 
|  | * as a result of a hypervisor emulation interrupt | 
|  | * (e40) getting turned into a 700 by BML RTAS. | 
|  | */ | 
|  | flags = vcpu->arch.shregs.msr & 0x1f0000ull; | 
|  | kvmppc_core_queue_program(vcpu, flags); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | case BOOK3S_INTERRUPT_SYSCALL: | 
|  | { | 
|  | /* hcall - punt to userspace */ | 
|  | int i; | 
|  |  | 
|  | if (vcpu->arch.shregs.msr & MSR_PR) { | 
|  | /* sc 1 from userspace - reflect to guest syscall */ | 
|  | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | } | 
|  | run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); | 
|  | for (i = 0; i < 9; ++i) | 
|  | run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); | 
|  | run->exit_reason = KVM_EXIT_PAPR_HCALL; | 
|  | vcpu->arch.hcall_needed = 1; | 
|  | r = RESUME_HOST; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * We get these next two if the guest accesses a page which it thinks | 
|  | * it has mapped but which is not actually present, either because | 
|  | * it is for an emulated I/O device or because the corresonding | 
|  | * host page has been paged out.  Any other HDSI/HISI interrupts | 
|  | * have been handled already. | 
|  | */ | 
|  | case BOOK3S_INTERRUPT_H_DATA_STORAGE: | 
|  | r = kvmppc_book3s_hv_page_fault(run, vcpu, | 
|  | vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); | 
|  | break; | 
|  | case BOOK3S_INTERRUPT_H_INST_STORAGE: | 
|  | r = kvmppc_book3s_hv_page_fault(run, vcpu, | 
|  | kvmppc_get_pc(vcpu), 0); | 
|  | break; | 
|  | /* | 
|  | * This occurs if the guest executes an illegal instruction. | 
|  | * We just generate a program interrupt to the guest, since | 
|  | * we don't emulate any guest instructions at this stage. | 
|  | */ | 
|  | case BOOK3S_INTERRUPT_H_EMUL_ASSIST: | 
|  | kvmppc_core_queue_program(vcpu, 0x80000); | 
|  | r = RESUME_GUEST; | 
|  | break; | 
|  | default: | 
|  | kvmppc_dump_regs(vcpu); | 
|  | printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", | 
|  | vcpu->arch.trap, kvmppc_get_pc(vcpu), | 
|  | vcpu->arch.shregs.msr); | 
|  | r = RESUME_HOST; | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | sregs->pvr = vcpu->arch.pvr; | 
|  |  | 
|  | memset(sregs, 0, sizeof(struct kvm_sregs)); | 
|  | for (i = 0; i < vcpu->arch.slb_max; i++) { | 
|  | sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; | 
|  | sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
|  | struct kvm_sregs *sregs) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | kvmppc_set_pvr(vcpu, sregs->pvr); | 
|  |  | 
|  | j = 0; | 
|  | for (i = 0; i < vcpu->arch.slb_nr; i++) { | 
|  | if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { | 
|  | vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; | 
|  | vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | vcpu->arch.slb_max = j; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) | 
|  | { | 
|  | int r = -EINVAL; | 
|  |  | 
|  | switch (reg->id) { | 
|  | case KVM_REG_PPC_HIOR: | 
|  | r = put_user(0, (u64 __user *)reg->addr); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) | 
|  | { | 
|  | int r = -EINVAL; | 
|  |  | 
|  | switch (reg->id) { | 
|  | case KVM_REG_PPC_HIOR: | 
|  | { | 
|  | u64 hior; | 
|  | /* Only allow this to be set to zero */ | 
|  | r = get_user(hior, (u64 __user *)reg->addr); | 
|  | if (!r && (hior != 0)) | 
|  | r = -EINVAL; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvmppc_core_check_processor_compat(void) | 
|  | { | 
|  | if (cpu_has_feature(CPU_FTR_HVMODE)) | 
|  | return 0; | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | struct kvm_vcpu *vcpu; | 
|  | int err = -EINVAL; | 
|  | int core; | 
|  | struct kvmppc_vcore *vcore; | 
|  |  | 
|  | core = id / threads_per_core; | 
|  | if (core >= KVM_MAX_VCORES) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | if (!vcpu) | 
|  | goto out; | 
|  |  | 
|  | err = kvm_vcpu_init(vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_vcpu; | 
|  |  | 
|  | vcpu->arch.shared = &vcpu->arch.shregs; | 
|  | vcpu->arch.last_cpu = -1; | 
|  | vcpu->arch.mmcr[0] = MMCR0_FC; | 
|  | vcpu->arch.ctrl = CTRL_RUNLATCH; | 
|  | /* default to host PVR, since we can't spoof it */ | 
|  | vcpu->arch.pvr = mfspr(SPRN_PVR); | 
|  | kvmppc_set_pvr(vcpu, vcpu->arch.pvr); | 
|  | spin_lock_init(&vcpu->arch.vpa_update_lock); | 
|  |  | 
|  | kvmppc_mmu_book3s_hv_init(vcpu); | 
|  |  | 
|  | /* | 
|  | * We consider the vcpu stopped until we see the first run ioctl for it. | 
|  | */ | 
|  | vcpu->arch.state = KVMPPC_VCPU_STOPPED; | 
|  |  | 
|  | init_waitqueue_head(&vcpu->arch.cpu_run); | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | vcore = kvm->arch.vcores[core]; | 
|  | if (!vcore) { | 
|  | vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); | 
|  | if (vcore) { | 
|  | INIT_LIST_HEAD(&vcore->runnable_threads); | 
|  | spin_lock_init(&vcore->lock); | 
|  | init_waitqueue_head(&vcore->wq); | 
|  | vcore->preempt_tb = mftb(); | 
|  | } | 
|  | kvm->arch.vcores[core] = vcore; | 
|  | } | 
|  | mutex_unlock(&kvm->lock); | 
|  |  | 
|  | if (!vcore) | 
|  | goto free_vcpu; | 
|  |  | 
|  | spin_lock(&vcore->lock); | 
|  | ++vcore->num_threads; | 
|  | spin_unlock(&vcore->lock); | 
|  | vcpu->arch.vcore = vcore; | 
|  | vcpu->arch.stolen_logged = vcore->stolen_tb; | 
|  |  | 
|  | vcpu->arch.cpu_type = KVM_CPU_3S_64; | 
|  | kvmppc_sanity_check(vcpu); | 
|  |  | 
|  | return vcpu; | 
|  |  | 
|  | free_vcpu: | 
|  | kmem_cache_free(kvm_vcpu_cache, vcpu); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | spin_lock(&vcpu->arch.vpa_update_lock); | 
|  | if (vcpu->arch.dtl.pinned_addr) | 
|  | kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr); | 
|  | if (vcpu->arch.slb_shadow.pinned_addr) | 
|  | kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr); | 
|  | if (vcpu->arch.vpa.pinned_addr) | 
|  | kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr); | 
|  | spin_unlock(&vcpu->arch.vpa_update_lock); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, vcpu); | 
|  | } | 
|  |  | 
|  | static void kvmppc_set_timer(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long dec_nsec, now; | 
|  |  | 
|  | now = get_tb(); | 
|  | if (now > vcpu->arch.dec_expires) { | 
|  | /* decrementer has already gone negative */ | 
|  | kvmppc_core_queue_dec(vcpu); | 
|  | kvmppc_core_prepare_to_enter(vcpu); | 
|  | return; | 
|  | } | 
|  | dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC | 
|  | / tb_ticks_per_sec; | 
|  | hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), | 
|  | HRTIMER_MODE_REL); | 
|  | vcpu->arch.timer_running = 1; | 
|  | } | 
|  |  | 
|  | static void kvmppc_end_cede(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.ceded = 0; | 
|  | if (vcpu->arch.timer_running) { | 
|  | hrtimer_try_to_cancel(&vcpu->arch.dec_timer); | 
|  | vcpu->arch.timer_running = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); | 
|  | extern void xics_wake_cpu(int cpu); | 
|  |  | 
|  | static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, | 
|  | struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_vcpu *v; | 
|  |  | 
|  | if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) | 
|  | return; | 
|  | vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; | 
|  | --vc->n_runnable; | 
|  | ++vc->n_busy; | 
|  | /* decrement the physical thread id of each following vcpu */ | 
|  | v = vcpu; | 
|  | list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) | 
|  | --v->arch.ptid; | 
|  | list_del(&vcpu->arch.run_list); | 
|  | } | 
|  |  | 
|  | static int kvmppc_grab_hwthread(int cpu) | 
|  | { | 
|  | struct paca_struct *tpaca; | 
|  | long timeout = 1000; | 
|  |  | 
|  | tpaca = &paca[cpu]; | 
|  |  | 
|  | /* Ensure the thread won't go into the kernel if it wakes */ | 
|  | tpaca->kvm_hstate.hwthread_req = 1; | 
|  |  | 
|  | /* | 
|  | * If the thread is already executing in the kernel (e.g. handling | 
|  | * a stray interrupt), wait for it to get back to nap mode. | 
|  | * The smp_mb() is to ensure that our setting of hwthread_req | 
|  | * is visible before we look at hwthread_state, so if this | 
|  | * races with the code at system_reset_pSeries and the thread | 
|  | * misses our setting of hwthread_req, we are sure to see its | 
|  | * setting of hwthread_state, and vice versa. | 
|  | */ | 
|  | smp_mb(); | 
|  | while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { | 
|  | if (--timeout <= 0) { | 
|  | pr_err("KVM: couldn't grab cpu %d\n", cpu); | 
|  | return -EBUSY; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvmppc_release_hwthread(int cpu) | 
|  | { | 
|  | struct paca_struct *tpaca; | 
|  |  | 
|  | tpaca = &paca[cpu]; | 
|  | tpaca->kvm_hstate.hwthread_req = 0; | 
|  | tpaca->kvm_hstate.kvm_vcpu = NULL; | 
|  | } | 
|  |  | 
|  | static void kvmppc_start_thread(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu; | 
|  | struct paca_struct *tpaca; | 
|  | struct kvmppc_vcore *vc = vcpu->arch.vcore; | 
|  |  | 
|  | if (vcpu->arch.timer_running) { | 
|  | hrtimer_try_to_cancel(&vcpu->arch.dec_timer); | 
|  | vcpu->arch.timer_running = 0; | 
|  | } | 
|  | cpu = vc->pcpu + vcpu->arch.ptid; | 
|  | tpaca = &paca[cpu]; | 
|  | tpaca->kvm_hstate.kvm_vcpu = vcpu; | 
|  | tpaca->kvm_hstate.kvm_vcore = vc; | 
|  | tpaca->kvm_hstate.napping = 0; | 
|  | vcpu->cpu = vc->pcpu; | 
|  | smp_wmb(); | 
|  | #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) | 
|  | if (vcpu->arch.ptid) { | 
|  | kvmppc_grab_hwthread(cpu); | 
|  | xics_wake_cpu(cpu); | 
|  | ++vc->n_woken; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | HMT_low(); | 
|  | i = 0; | 
|  | while (vc->nap_count < vc->n_woken) { | 
|  | if (++i >= 1000000) { | 
|  | pr_err("kvmppc_wait_for_nap timeout %d %d\n", | 
|  | vc->nap_count, vc->n_woken); | 
|  | break; | 
|  | } | 
|  | cpu_relax(); | 
|  | } | 
|  | HMT_medium(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that we are on thread 0 and that any other threads in | 
|  | * this core are off-line. | 
|  | */ | 
|  | static int on_primary_thread(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | int thr = cpu_thread_in_core(cpu); | 
|  |  | 
|  | if (thr) | 
|  | return 0; | 
|  | while (++thr < threads_per_core) | 
|  | if (cpu_online(cpu + thr)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Run a set of guest threads on a physical core. | 
|  | * Called with vc->lock held. | 
|  | */ | 
|  | static int kvmppc_run_core(struct kvmppc_vcore *vc) | 
|  | { | 
|  | struct kvm_vcpu *vcpu, *vcpu0, *vnext; | 
|  | long ret; | 
|  | u64 now; | 
|  | int ptid, i, need_vpa_update; | 
|  |  | 
|  | /* don't start if any threads have a signal pending */ | 
|  | need_vpa_update = 0; | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { | 
|  | if (signal_pending(vcpu->arch.run_task)) | 
|  | return 0; | 
|  | need_vpa_update |= vcpu->arch.vpa.update_pending | | 
|  | vcpu->arch.slb_shadow.update_pending | | 
|  | vcpu->arch.dtl.update_pending; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize *vc, in particular vc->vcore_state, so we can | 
|  | * drop the vcore lock if necessary. | 
|  | */ | 
|  | vc->n_woken = 0; | 
|  | vc->nap_count = 0; | 
|  | vc->entry_exit_count = 0; | 
|  | vc->vcore_state = VCORE_RUNNING; | 
|  | vc->in_guest = 0; | 
|  | vc->napping_threads = 0; | 
|  |  | 
|  | /* | 
|  | * Updating any of the vpas requires calling kvmppc_pin_guest_page, | 
|  | * which can't be called with any spinlocks held. | 
|  | */ | 
|  | if (need_vpa_update) { | 
|  | spin_unlock(&vc->lock); | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) | 
|  | kvmppc_update_vpas(vcpu); | 
|  | spin_lock(&vc->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure we are running on thread 0, and that | 
|  | * secondary threads are offline. | 
|  | * XXX we should also block attempts to bring any | 
|  | * secondary threads online. | 
|  | */ | 
|  | if (threads_per_core > 1 && !on_primary_thread()) { | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) | 
|  | vcpu->arch.ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assign physical thread IDs, first to non-ceded vcpus | 
|  | * and then to ceded ones. | 
|  | */ | 
|  | ptid = 0; | 
|  | vcpu0 = NULL; | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { | 
|  | if (!vcpu->arch.ceded) { | 
|  | if (!ptid) | 
|  | vcpu0 = vcpu; | 
|  | vcpu->arch.ptid = ptid++; | 
|  | } | 
|  | } | 
|  | if (!vcpu0) | 
|  | return 0;		/* nothing to run */ | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) | 
|  | if (vcpu->arch.ceded) | 
|  | vcpu->arch.ptid = ptid++; | 
|  |  | 
|  | vc->stolen_tb += mftb() - vc->preempt_tb; | 
|  | vc->pcpu = smp_processor_id(); | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { | 
|  | kvmppc_start_thread(vcpu); | 
|  | kvmppc_create_dtl_entry(vcpu, vc); | 
|  | } | 
|  | /* Grab any remaining hw threads so they can't go into the kernel */ | 
|  | for (i = ptid; i < threads_per_core; ++i) | 
|  | kvmppc_grab_hwthread(vc->pcpu + i); | 
|  |  | 
|  | preempt_disable(); | 
|  | spin_unlock(&vc->lock); | 
|  |  | 
|  | kvm_guest_enter(); | 
|  | __kvmppc_vcore_entry(NULL, vcpu0); | 
|  | for (i = 0; i < threads_per_core; ++i) | 
|  | kvmppc_release_hwthread(vc->pcpu + i); | 
|  |  | 
|  | spin_lock(&vc->lock); | 
|  | /* disable sending of IPIs on virtual external irqs */ | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) | 
|  | vcpu->cpu = -1; | 
|  | /* wait for secondary threads to finish writing their state to memory */ | 
|  | if (vc->nap_count < vc->n_woken) | 
|  | kvmppc_wait_for_nap(vc); | 
|  | /* prevent other vcpu threads from doing kvmppc_start_thread() now */ | 
|  | vc->vcore_state = VCORE_EXITING; | 
|  | spin_unlock(&vc->lock); | 
|  |  | 
|  | /* make sure updates to secondary vcpu structs are visible now */ | 
|  | smp_mb(); | 
|  | kvm_guest_exit(); | 
|  |  | 
|  | preempt_enable(); | 
|  | kvm_resched(vcpu); | 
|  |  | 
|  | now = get_tb(); | 
|  | list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { | 
|  | /* cancel pending dec exception if dec is positive */ | 
|  | if (now < vcpu->arch.dec_expires && | 
|  | kvmppc_core_pending_dec(vcpu)) | 
|  | kvmppc_core_dequeue_dec(vcpu); | 
|  |  | 
|  | ret = RESUME_GUEST; | 
|  | if (vcpu->arch.trap) | 
|  | ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, | 
|  | vcpu->arch.run_task); | 
|  |  | 
|  | vcpu->arch.ret = ret; | 
|  | vcpu->arch.trap = 0; | 
|  |  | 
|  | if (vcpu->arch.ceded) { | 
|  | if (ret != RESUME_GUEST) | 
|  | kvmppc_end_cede(vcpu); | 
|  | else | 
|  | kvmppc_set_timer(vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&vc->lock); | 
|  | out: | 
|  | vc->vcore_state = VCORE_INACTIVE; | 
|  | vc->preempt_tb = mftb(); | 
|  | list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, | 
|  | arch.run_list) { | 
|  | if (vcpu->arch.ret != RESUME_GUEST) { | 
|  | kvmppc_remove_runnable(vc, vcpu); | 
|  | wake_up(&vcpu->arch.cpu_run); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for some other vcpu thread to execute us, and | 
|  | * wake us up when we need to handle something in the host. | 
|  | */ | 
|  | static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  |  | 
|  | prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); | 
|  | if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) | 
|  | schedule(); | 
|  | finish_wait(&vcpu->arch.cpu_run, &wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All the vcpus in this vcore are idle, so wait for a decrementer | 
|  | * or external interrupt to one of the vcpus.  vc->lock is held. | 
|  | */ | 
|  | static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | struct kvm_vcpu *v; | 
|  | int all_idle = 1; | 
|  |  | 
|  | prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); | 
|  | vc->vcore_state = VCORE_SLEEPING; | 
|  | spin_unlock(&vc->lock); | 
|  | list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { | 
|  | if (!v->arch.ceded || v->arch.pending_exceptions) { | 
|  | all_idle = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (all_idle) | 
|  | schedule(); | 
|  | finish_wait(&vc->wq, &wait); | 
|  | spin_lock(&vc->lock); | 
|  | vc->vcore_state = VCORE_INACTIVE; | 
|  | } | 
|  |  | 
|  | static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int n_ceded; | 
|  | int prev_state; | 
|  | struct kvmppc_vcore *vc; | 
|  | struct kvm_vcpu *v, *vn; | 
|  |  | 
|  | kvm_run->exit_reason = 0; | 
|  | vcpu->arch.ret = RESUME_GUEST; | 
|  | vcpu->arch.trap = 0; | 
|  |  | 
|  | /* | 
|  | * Synchronize with other threads in this virtual core | 
|  | */ | 
|  | vc = vcpu->arch.vcore; | 
|  | spin_lock(&vc->lock); | 
|  | vcpu->arch.ceded = 0; | 
|  | vcpu->arch.run_task = current; | 
|  | vcpu->arch.kvm_run = kvm_run; | 
|  | prev_state = vcpu->arch.state; | 
|  | vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; | 
|  | list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); | 
|  | ++vc->n_runnable; | 
|  |  | 
|  | /* | 
|  | * This happens the first time this is called for a vcpu. | 
|  | * If the vcore is already running, we may be able to start | 
|  | * this thread straight away and have it join in. | 
|  | */ | 
|  | if (prev_state == KVMPPC_VCPU_STOPPED) { | 
|  | if (vc->vcore_state == VCORE_RUNNING && | 
|  | VCORE_EXIT_COUNT(vc) == 0) { | 
|  | vcpu->arch.ptid = vc->n_runnable - 1; | 
|  | kvmppc_start_thread(vcpu); | 
|  | } | 
|  |  | 
|  | } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) | 
|  | --vc->n_busy; | 
|  |  | 
|  | while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && | 
|  | !signal_pending(current)) { | 
|  | if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { | 
|  | spin_unlock(&vc->lock); | 
|  | kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); | 
|  | spin_lock(&vc->lock); | 
|  | continue; | 
|  | } | 
|  | vc->runner = vcpu; | 
|  | n_ceded = 0; | 
|  | list_for_each_entry(v, &vc->runnable_threads, arch.run_list) | 
|  | n_ceded += v->arch.ceded; | 
|  | if (n_ceded == vc->n_runnable) | 
|  | kvmppc_vcore_blocked(vc); | 
|  | else | 
|  | kvmppc_run_core(vc); | 
|  |  | 
|  | list_for_each_entry_safe(v, vn, &vc->runnable_threads, | 
|  | arch.run_list) { | 
|  | kvmppc_core_prepare_to_enter(v); | 
|  | if (signal_pending(v->arch.run_task)) { | 
|  | kvmppc_remove_runnable(vc, v); | 
|  | v->stat.signal_exits++; | 
|  | v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; | 
|  | v->arch.ret = -EINTR; | 
|  | wake_up(&v->arch.cpu_run); | 
|  | } | 
|  | } | 
|  | vc->runner = NULL; | 
|  | } | 
|  |  | 
|  | if (signal_pending(current)) { | 
|  | if (vc->vcore_state == VCORE_RUNNING || | 
|  | vc->vcore_state == VCORE_EXITING) { | 
|  | spin_unlock(&vc->lock); | 
|  | kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); | 
|  | spin_lock(&vc->lock); | 
|  | } | 
|  | if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { | 
|  | kvmppc_remove_runnable(vc, vcpu); | 
|  | vcpu->stat.signal_exits++; | 
|  | kvm_run->exit_reason = KVM_EXIT_INTR; | 
|  | vcpu->arch.ret = -EINTR; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&vc->lock); | 
|  | return vcpu->arch.ret; | 
|  | } | 
|  |  | 
|  | int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | if (!vcpu->arch.sane) { | 
|  | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | kvmppc_core_prepare_to_enter(vcpu); | 
|  |  | 
|  | /* No need to go into the guest when all we'll do is come back out */ | 
|  | if (signal_pending(current)) { | 
|  | run->exit_reason = KVM_EXIT_INTR; | 
|  | return -EINTR; | 
|  | } | 
|  |  | 
|  | /* On the first time here, set up VRMA or RMA */ | 
|  | if (!vcpu->kvm->arch.rma_setup_done) { | 
|  | r = kvmppc_hv_setup_rma(vcpu); | 
|  | if (r) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | flush_fp_to_thread(current); | 
|  | flush_altivec_to_thread(current); | 
|  | flush_vsx_to_thread(current); | 
|  | vcpu->arch.wqp = &vcpu->arch.vcore->wq; | 
|  | vcpu->arch.pgdir = current->mm->pgd; | 
|  |  | 
|  | do { | 
|  | r = kvmppc_run_vcpu(run, vcpu); | 
|  |  | 
|  | if (run->exit_reason == KVM_EXIT_PAPR_HCALL && | 
|  | !(vcpu->arch.shregs.msr & MSR_PR)) { | 
|  | r = kvmppc_pseries_do_hcall(vcpu); | 
|  | kvmppc_core_prepare_to_enter(vcpu); | 
|  | } | 
|  | } while (r == RESUME_GUEST); | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Work out RMLS (real mode limit selector) field value for a given RMA size. | 
|  | Assumes POWER7 or PPC970. */ | 
|  | static inline int lpcr_rmls(unsigned long rma_size) | 
|  | { | 
|  | switch (rma_size) { | 
|  | case 32ul << 20:	/* 32 MB */ | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_206)) | 
|  | return 8;	/* only supported on POWER7 */ | 
|  | return -1; | 
|  | case 64ul << 20:	/* 64 MB */ | 
|  | return 3; | 
|  | case 128ul << 20:	/* 128 MB */ | 
|  | return 7; | 
|  | case 256ul << 20:	/* 256 MB */ | 
|  | return 4; | 
|  | case 1ul << 30:		/* 1 GB */ | 
|  | return 2; | 
|  | case 16ul << 30:	/* 16 GB */ | 
|  | return 1; | 
|  | case 256ul << 30:	/* 256 GB */ | 
|  | return 0; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | 
|  | { | 
|  | struct kvmppc_linear_info *ri = vma->vm_file->private_data; | 
|  | struct page *page; | 
|  |  | 
|  | if (vmf->pgoff >= ri->npages) | 
|  | return VM_FAULT_SIGBUS; | 
|  |  | 
|  | page = pfn_to_page(ri->base_pfn + vmf->pgoff); | 
|  | get_page(page); | 
|  | vmf->page = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct vm_operations_struct kvm_rma_vm_ops = { | 
|  | .fault = kvm_rma_fault, | 
|  | }; | 
|  |  | 
|  | static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) | 
|  | { | 
|  | vma->vm_flags |= VM_RESERVED; | 
|  | vma->vm_ops = &kvm_rma_vm_ops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_rma_release(struct inode *inode, struct file *filp) | 
|  | { | 
|  | struct kvmppc_linear_info *ri = filp->private_data; | 
|  |  | 
|  | kvm_release_rma(ri); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_operations kvm_rma_fops = { | 
|  | .mmap           = kvm_rma_mmap, | 
|  | .release	= kvm_rma_release, | 
|  | }; | 
|  |  | 
|  | long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) | 
|  | { | 
|  | struct kvmppc_linear_info *ri; | 
|  | long fd; | 
|  |  | 
|  | ri = kvm_alloc_rma(); | 
|  | if (!ri) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); | 
|  | if (fd < 0) | 
|  | kvm_release_rma(ri); | 
|  |  | 
|  | ret->rma_size = ri->npages << PAGE_SHIFT; | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, | 
|  | int linux_psize) | 
|  | { | 
|  | struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; | 
|  |  | 
|  | if (!def->shift) | 
|  | return; | 
|  | (*sps)->page_shift = def->shift; | 
|  | (*sps)->slb_enc = def->sllp; | 
|  | (*sps)->enc[0].page_shift = def->shift; | 
|  | (*sps)->enc[0].pte_enc = def->penc; | 
|  | (*sps)++; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) | 
|  | { | 
|  | struct kvm_ppc_one_seg_page_size *sps; | 
|  |  | 
|  | info->flags = KVM_PPC_PAGE_SIZES_REAL; | 
|  | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | info->flags |= KVM_PPC_1T_SEGMENTS; | 
|  | info->slb_size = mmu_slb_size; | 
|  |  | 
|  | /* We only support these sizes for now, and no muti-size segments */ | 
|  | sps = &info->sps[0]; | 
|  | kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); | 
|  | kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); | 
|  | kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get (and clear) the dirty memory log for a memory slot. | 
|  | */ | 
|  | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | 
|  | { | 
|  | struct kvm_memory_slot *memslot; | 
|  | int r; | 
|  | unsigned long n; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  |  | 
|  | r = -EINVAL; | 
|  | if (log->slot >= KVM_MEMORY_SLOTS) | 
|  | goto out; | 
|  |  | 
|  | memslot = id_to_memslot(kvm->memslots, log->slot); | 
|  | r = -ENOENT; | 
|  | if (!memslot->dirty_bitmap) | 
|  | goto out; | 
|  |  | 
|  | n = kvm_dirty_bitmap_bytes(memslot); | 
|  | memset(memslot->dirty_bitmap, 0, n); | 
|  |  | 
|  | r = kvmppc_hv_get_dirty_log(kvm, memslot); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | r = -EFAULT; | 
|  | if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) | 
|  | goto out; | 
|  |  | 
|  | r = 0; | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static unsigned long slb_pgsize_encoding(unsigned long psize) | 
|  | { | 
|  | unsigned long senc = 0; | 
|  |  | 
|  | if (psize > 0x1000) { | 
|  | senc = SLB_VSID_L; | 
|  | if (psize == 0x10000) | 
|  | senc |= SLB_VSID_LP_01; | 
|  | } | 
|  | return senc; | 
|  | } | 
|  |  | 
|  | int kvmppc_core_prepare_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | unsigned long npages; | 
|  | unsigned long *phys; | 
|  |  | 
|  | /* Allocate a slot_phys array */ | 
|  | phys = kvm->arch.slot_phys[mem->slot]; | 
|  | if (!kvm->arch.using_mmu_notifiers && !phys) { | 
|  | npages = mem->memory_size >> PAGE_SHIFT; | 
|  | phys = vzalloc(npages * sizeof(unsigned long)); | 
|  | if (!phys) | 
|  | return -ENOMEM; | 
|  | kvm->arch.slot_phys[mem->slot] = phys; | 
|  | kvm->arch.slot_npages[mem->slot] = npages; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unpin_slot(struct kvm *kvm, int slot_id) | 
|  | { | 
|  | unsigned long *physp; | 
|  | unsigned long j, npages, pfn; | 
|  | struct page *page; | 
|  |  | 
|  | physp = kvm->arch.slot_phys[slot_id]; | 
|  | npages = kvm->arch.slot_npages[slot_id]; | 
|  | if (physp) { | 
|  | spin_lock(&kvm->arch.slot_phys_lock); | 
|  | for (j = 0; j < npages; j++) { | 
|  | if (!(physp[j] & KVMPPC_GOT_PAGE)) | 
|  | continue; | 
|  | pfn = physp[j] >> PAGE_SHIFT; | 
|  | page = pfn_to_page(pfn); | 
|  | SetPageDirty(page); | 
|  | put_page(page); | 
|  | } | 
|  | kvm->arch.slot_phys[slot_id] = NULL; | 
|  | spin_unlock(&kvm->arch.slot_phys_lock); | 
|  | vfree(physp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvmppc_core_commit_memory_region(struct kvm *kvm, | 
|  | struct kvm_userspace_memory_region *mem) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int kvmppc_hv_setup_rma(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int err = 0; | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | struct kvmppc_linear_info *ri = NULL; | 
|  | unsigned long hva; | 
|  | struct kvm_memory_slot *memslot; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long lpcr, senc; | 
|  | unsigned long psize, porder; | 
|  | unsigned long rma_size; | 
|  | unsigned long rmls; | 
|  | unsigned long *physp; | 
|  | unsigned long i, npages; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | if (kvm->arch.rma_setup_done) | 
|  | goto out;	/* another vcpu beat us to it */ | 
|  |  | 
|  | /* Look up the memslot for guest physical address 0 */ | 
|  | memslot = gfn_to_memslot(kvm, 0); | 
|  |  | 
|  | /* We must have some memory at 0 by now */ | 
|  | err = -EINVAL; | 
|  | if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) | 
|  | goto out; | 
|  |  | 
|  | /* Look up the VMA for the start of this memory slot */ | 
|  | hva = memslot->userspace_addr; | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | vma = find_vma(current->mm, hva); | 
|  | if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) | 
|  | goto up_out; | 
|  |  | 
|  | psize = vma_kernel_pagesize(vma); | 
|  | porder = __ilog2(psize); | 
|  |  | 
|  | /* Is this one of our preallocated RMAs? */ | 
|  | if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && | 
|  | hva == vma->vm_start) | 
|  | ri = vma->vm_file->private_data; | 
|  |  | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (!ri) { | 
|  | /* On POWER7, use VRMA; on PPC970, give up */ | 
|  | err = -EPERM; | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_201)) { | 
|  | pr_err("KVM: CPU requires an RMO\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* We can handle 4k, 64k or 16M pages in the VRMA */ | 
|  | err = -EINVAL; | 
|  | if (!(psize == 0x1000 || psize == 0x10000 || | 
|  | psize == 0x1000000)) | 
|  | goto out; | 
|  |  | 
|  | /* Update VRMASD field in the LPCR */ | 
|  | senc = slb_pgsize_encoding(psize); | 
|  | kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | | 
|  | (VRMA_VSID << SLB_VSID_SHIFT_1T); | 
|  | lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; | 
|  | lpcr |= senc << (LPCR_VRMASD_SH - 4); | 
|  | kvm->arch.lpcr = lpcr; | 
|  |  | 
|  | /* Create HPTEs in the hash page table for the VRMA */ | 
|  | kvmppc_map_vrma(vcpu, memslot, porder); | 
|  |  | 
|  | } else { | 
|  | /* Set up to use an RMO region */ | 
|  | rma_size = ri->npages; | 
|  | if (rma_size > memslot->npages) | 
|  | rma_size = memslot->npages; | 
|  | rma_size <<= PAGE_SHIFT; | 
|  | rmls = lpcr_rmls(rma_size); | 
|  | err = -EINVAL; | 
|  | if (rmls < 0) { | 
|  | pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); | 
|  | goto out; | 
|  | } | 
|  | atomic_inc(&ri->use_count); | 
|  | kvm->arch.rma = ri; | 
|  |  | 
|  | /* Update LPCR and RMOR */ | 
|  | lpcr = kvm->arch.lpcr; | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_201)) { | 
|  | /* PPC970; insert RMLS value (split field) in HID4 */ | 
|  | lpcr &= ~((1ul << HID4_RMLS0_SH) | | 
|  | (3ul << HID4_RMLS2_SH)); | 
|  | lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | | 
|  | ((rmls & 3) << HID4_RMLS2_SH); | 
|  | /* RMOR is also in HID4 */ | 
|  | lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) | 
|  | << HID4_RMOR_SH; | 
|  | } else { | 
|  | /* POWER7 */ | 
|  | lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); | 
|  | lpcr |= rmls << LPCR_RMLS_SH; | 
|  | kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; | 
|  | } | 
|  | kvm->arch.lpcr = lpcr; | 
|  | pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", | 
|  | ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); | 
|  |  | 
|  | /* Initialize phys addrs of pages in RMO */ | 
|  | npages = ri->npages; | 
|  | porder = __ilog2(npages); | 
|  | physp = kvm->arch.slot_phys[memslot->id]; | 
|  | spin_lock(&kvm->arch.slot_phys_lock); | 
|  | for (i = 0; i < npages; ++i) | 
|  | physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder; | 
|  | spin_unlock(&kvm->arch.slot_phys_lock); | 
|  | } | 
|  |  | 
|  | /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ | 
|  | smp_wmb(); | 
|  | kvm->arch.rma_setup_done = 1; | 
|  | err = 0; | 
|  | out: | 
|  | mutex_unlock(&kvm->lock); | 
|  | return err; | 
|  |  | 
|  | up_out: | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int kvmppc_core_init_vm(struct kvm *kvm) | 
|  | { | 
|  | long r; | 
|  | unsigned long lpcr; | 
|  |  | 
|  | /* Allocate hashed page table */ | 
|  | r = kvmppc_alloc_hpt(kvm); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); | 
|  |  | 
|  | kvm->arch.rma = NULL; | 
|  |  | 
|  | kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); | 
|  |  | 
|  | if (cpu_has_feature(CPU_FTR_ARCH_201)) { | 
|  | /* PPC970; HID4 is effectively the LPCR */ | 
|  | unsigned long lpid = kvm->arch.lpid; | 
|  | kvm->arch.host_lpid = 0; | 
|  | kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); | 
|  | lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); | 
|  | lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | | 
|  | ((lpid & 0xf) << HID4_LPID5_SH); | 
|  | } else { | 
|  | /* POWER7; init LPCR for virtual RMA mode */ | 
|  | kvm->arch.host_lpid = mfspr(SPRN_LPID); | 
|  | kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); | 
|  | lpcr &= LPCR_PECE | LPCR_LPES; | 
|  | lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | | 
|  | LPCR_VPM0 | LPCR_VPM1; | 
|  | kvm->arch.vrma_slb_v = SLB_VSID_B_1T | | 
|  | (VRMA_VSID << SLB_VSID_SHIFT_1T); | 
|  | } | 
|  | kvm->arch.lpcr = lpcr; | 
|  |  | 
|  | kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); | 
|  | spin_lock_init(&kvm->arch.slot_phys_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvmppc_core_destroy_vm(struct kvm *kvm) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (!kvm->arch.using_mmu_notifiers) | 
|  | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) | 
|  | unpin_slot(kvm, i); | 
|  |  | 
|  | if (kvm->arch.rma) { | 
|  | kvm_release_rma(kvm->arch.rma); | 
|  | kvm->arch.rma = NULL; | 
|  | } | 
|  |  | 
|  | kvmppc_free_hpt(kvm); | 
|  | WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); | 
|  | } | 
|  |  | 
|  | /* These are stubs for now */ | 
|  | void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* We don't need to emulate any privileged instructions or dcbz */ | 
|  | int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, | 
|  | unsigned int inst, int *advance) | 
|  | { | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) | 
|  | { | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) | 
|  | { | 
|  | return EMULATE_FAIL; | 
|  | } | 
|  |  | 
|  | static int kvmppc_book3s_hv_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); | 
|  |  | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | r = kvmppc_mmu_hv_init(); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvmppc_book3s_hv_exit(void) | 
|  | { | 
|  | kvm_exit(); | 
|  | } | 
|  |  | 
|  | module_init(kvmppc_book3s_hv_init); | 
|  | module_exit(kvmppc_book3s_hv_exit); |