|  | /* | 
|  | * PowerPC64 Segment Translation Support. | 
|  | * | 
|  | * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com | 
|  | *    Copyright (c) 2001 Dave Engebretsen | 
|  | * | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/memblock.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/paca.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/abs_addr.h> | 
|  |  | 
|  | struct stab_entry { | 
|  | unsigned long esid_data; | 
|  | unsigned long vsid_data; | 
|  | }; | 
|  |  | 
|  | #define NR_STAB_CACHE_ENTRIES 8 | 
|  | static DEFINE_PER_CPU(long, stab_cache_ptr); | 
|  | static DEFINE_PER_CPU(long [NR_STAB_CACHE_ENTRIES], stab_cache); | 
|  |  | 
|  | /* | 
|  | * Create a segment table entry for the given esid/vsid pair. | 
|  | */ | 
|  | static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) | 
|  | { | 
|  | unsigned long esid_data, vsid_data; | 
|  | unsigned long entry, group, old_esid, castout_entry, i; | 
|  | unsigned int global_entry; | 
|  | struct stab_entry *ste, *castout_ste; | 
|  | unsigned long kernel_segment = (esid << SID_SHIFT) >= PAGE_OFFSET; | 
|  |  | 
|  | vsid_data = vsid << STE_VSID_SHIFT; | 
|  | esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V; | 
|  | if (! kernel_segment) | 
|  | esid_data |= STE_ESID_KS; | 
|  |  | 
|  | /* Search the primary group first. */ | 
|  | global_entry = (esid & 0x1f) << 3; | 
|  | ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); | 
|  |  | 
|  | /* Find an empty entry, if one exists. */ | 
|  | for (group = 0; group < 2; group++) { | 
|  | for (entry = 0; entry < 8; entry++, ste++) { | 
|  | if (!(ste->esid_data & STE_ESID_V)) { | 
|  | ste->vsid_data = vsid_data; | 
|  | eieio(); | 
|  | ste->esid_data = esid_data; | 
|  | return (global_entry | entry); | 
|  | } | 
|  | } | 
|  | /* Now search the secondary group. */ | 
|  | global_entry = ((~esid) & 0x1f) << 3; | 
|  | ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Could not find empty entry, pick one with a round robin selection. | 
|  | * Search all entries in the two groups. | 
|  | */ | 
|  | castout_entry = get_paca()->stab_rr; | 
|  | for (i = 0; i < 16; i++) { | 
|  | if (castout_entry < 8) { | 
|  | global_entry = (esid & 0x1f) << 3; | 
|  | ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7)); | 
|  | castout_ste = ste + castout_entry; | 
|  | } else { | 
|  | global_entry = ((~esid) & 0x1f) << 3; | 
|  | ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7)); | 
|  | castout_ste = ste + (castout_entry - 8); | 
|  | } | 
|  |  | 
|  | /* Dont cast out the first kernel segment */ | 
|  | if ((castout_ste->esid_data & ESID_MASK) != PAGE_OFFSET) | 
|  | break; | 
|  |  | 
|  | castout_entry = (castout_entry + 1) & 0xf; | 
|  | } | 
|  |  | 
|  | get_paca()->stab_rr = (castout_entry + 1) & 0xf; | 
|  |  | 
|  | /* Modify the old entry to the new value. */ | 
|  |  | 
|  | /* Force previous translations to complete. DRENG */ | 
|  | asm volatile("isync" : : : "memory"); | 
|  |  | 
|  | old_esid = castout_ste->esid_data >> SID_SHIFT; | 
|  | castout_ste->esid_data = 0;		/* Invalidate old entry */ | 
|  |  | 
|  | asm volatile("sync" : : : "memory");    /* Order update */ | 
|  |  | 
|  | castout_ste->vsid_data = vsid_data; | 
|  | eieio();				/* Order update */ | 
|  | castout_ste->esid_data = esid_data; | 
|  |  | 
|  | asm volatile("slbie  %0" : : "r" (old_esid << SID_SHIFT)); | 
|  | /* Ensure completion of slbie */ | 
|  | asm volatile("sync" : : : "memory"); | 
|  |  | 
|  | return (global_entry | (castout_entry & 0x7)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a segment table entry for the given ea and mm | 
|  | */ | 
|  | static int __ste_allocate(unsigned long ea, struct mm_struct *mm) | 
|  | { | 
|  | unsigned long vsid; | 
|  | unsigned char stab_entry; | 
|  | unsigned long offset; | 
|  |  | 
|  | /* Kernel or user address? */ | 
|  | if (is_kernel_addr(ea)) { | 
|  | vsid = get_kernel_vsid(ea, MMU_SEGSIZE_256M); | 
|  | } else { | 
|  | if ((ea >= TASK_SIZE_USER64) || (! mm)) | 
|  | return 1; | 
|  |  | 
|  | vsid = get_vsid(mm->context.id, ea, MMU_SEGSIZE_256M); | 
|  | } | 
|  |  | 
|  | stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid); | 
|  |  | 
|  | if (!is_kernel_addr(ea)) { | 
|  | offset = __get_cpu_var(stab_cache_ptr); | 
|  | if (offset < NR_STAB_CACHE_ENTRIES) | 
|  | __get_cpu_var(stab_cache[offset++]) = stab_entry; | 
|  | else | 
|  | offset = NR_STAB_CACHE_ENTRIES+1; | 
|  | __get_cpu_var(stab_cache_ptr) = offset; | 
|  |  | 
|  | /* Order update */ | 
|  | asm volatile("sync":::"memory"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ste_allocate(unsigned long ea) | 
|  | { | 
|  | return __ste_allocate(ea, current->mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do the segment table work for a context switch: flush all user | 
|  | * entries from the table, then preload some probably useful entries | 
|  | * for the new task | 
|  | */ | 
|  | void switch_stab(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr; | 
|  | struct stab_entry *ste; | 
|  | unsigned long offset; | 
|  | unsigned long pc = KSTK_EIP(tsk); | 
|  | unsigned long stack = KSTK_ESP(tsk); | 
|  | unsigned long unmapped_base; | 
|  |  | 
|  | /* Force previous translations to complete. DRENG */ | 
|  | asm volatile("isync" : : : "memory"); | 
|  |  | 
|  | /* | 
|  | * We need interrupts hard-disabled here, not just soft-disabled, | 
|  | * so that a PMU interrupt can't occur, which might try to access | 
|  | * user memory (to get a stack trace) and possible cause an STAB miss | 
|  | * which would update the stab_cache/stab_cache_ptr per-cpu variables. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  |  | 
|  | offset = __get_cpu_var(stab_cache_ptr); | 
|  | if (offset <= NR_STAB_CACHE_ENTRIES) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < offset; i++) { | 
|  | ste = stab + __get_cpu_var(stab_cache[i]); | 
|  | ste->esid_data = 0; /* invalidate entry */ | 
|  | } | 
|  | } else { | 
|  | unsigned long entry; | 
|  |  | 
|  | /* Invalidate all entries. */ | 
|  | ste = stab; | 
|  |  | 
|  | /* Never flush the first entry. */ | 
|  | ste += 1; | 
|  | for (entry = 1; | 
|  | entry < (HW_PAGE_SIZE / sizeof(struct stab_entry)); | 
|  | entry++, ste++) { | 
|  | unsigned long ea; | 
|  | ea = ste->esid_data & ESID_MASK; | 
|  | if (!is_kernel_addr(ea)) { | 
|  | ste->esid_data = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | asm volatile("sync; slbia; sync":::"memory"); | 
|  |  | 
|  | __get_cpu_var(stab_cache_ptr) = 0; | 
|  |  | 
|  | /* Now preload some entries for the new task */ | 
|  | if (test_tsk_thread_flag(tsk, TIF_32BIT)) | 
|  | unmapped_base = TASK_UNMAPPED_BASE_USER32; | 
|  | else | 
|  | unmapped_base = TASK_UNMAPPED_BASE_USER64; | 
|  |  | 
|  | __ste_allocate(pc, mm); | 
|  |  | 
|  | if (GET_ESID(pc) == GET_ESID(stack)) | 
|  | return; | 
|  |  | 
|  | __ste_allocate(stack, mm); | 
|  |  | 
|  | if ((GET_ESID(pc) == GET_ESID(unmapped_base)) | 
|  | || (GET_ESID(stack) == GET_ESID(unmapped_base))) | 
|  | return; | 
|  |  | 
|  | __ste_allocate(unmapped_base, mm); | 
|  |  | 
|  | /* Order update */ | 
|  | asm volatile("sync" : : : "memory"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate segment tables for secondary CPUs.  These must all go in | 
|  | * the first (bolted) segment, so that do_stab_bolted won't get a | 
|  | * recursive segment miss on the segment table itself. | 
|  | */ | 
|  | void __init stabs_alloc(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (mmu_has_feature(MMU_FTR_SLB)) | 
|  | return; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | unsigned long newstab; | 
|  |  | 
|  | if (cpu == 0) | 
|  | continue; /* stab for CPU 0 is statically allocated */ | 
|  |  | 
|  | newstab = memblock_alloc_base(HW_PAGE_SIZE, HW_PAGE_SIZE, | 
|  | 1<<SID_SHIFT); | 
|  | newstab = (unsigned long)__va(newstab); | 
|  |  | 
|  | memset((void *)newstab, 0, HW_PAGE_SIZE); | 
|  |  | 
|  | paca[cpu].stab_addr = newstab; | 
|  | paca[cpu].stab_real = virt_to_abs(newstab); | 
|  | printk(KERN_INFO "Segment table for CPU %d at 0x%llx " | 
|  | "virtual, 0x%llx absolute\n", | 
|  | cpu, paca[cpu].stab_addr, paca[cpu].stab_real); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build an entry for the base kernel segment and put it into | 
|  | * the segment table or SLB.  All other segment table or SLB | 
|  | * entries are faulted in. | 
|  | */ | 
|  | void stab_initialize(unsigned long stab) | 
|  | { | 
|  | unsigned long vsid = get_kernel_vsid(PAGE_OFFSET, MMU_SEGSIZE_256M); | 
|  | unsigned long stabreal; | 
|  |  | 
|  | asm volatile("isync; slbia; isync":::"memory"); | 
|  | make_ste(stab, GET_ESID(PAGE_OFFSET), vsid); | 
|  |  | 
|  | /* Order update */ | 
|  | asm volatile("sync":::"memory"); | 
|  |  | 
|  | /* Set ASR */ | 
|  | stabreal = get_paca()->stab_real | 0x1ul; | 
|  |  | 
|  | mtspr(SPRN_ASR, stabreal); | 
|  | } |