|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/kmap_types.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <hv/hypervisor.h> | 
|  | #include <arch/chip.h> | 
|  |  | 
|  |  | 
|  | #if !CHIP_HAS_COHERENT_LOCAL_CACHE() | 
|  |  | 
|  | /* Defined in memcpy.S */ | 
|  | extern unsigned long __memcpy_asm(void *to, const void *from, unsigned long n); | 
|  | extern unsigned long __copy_to_user_inatomic_asm( | 
|  | void __user *to, const void *from, unsigned long n); | 
|  | extern unsigned long __copy_from_user_inatomic_asm( | 
|  | void *to, const void __user *from, unsigned long n); | 
|  | extern unsigned long __copy_from_user_zeroing_asm( | 
|  | void *to, const void __user *from, unsigned long n); | 
|  |  | 
|  | typedef unsigned long (*memcpy_t)(void *, const void *, unsigned long); | 
|  |  | 
|  | /* Size above which to consider TLB games for performance */ | 
|  | #define LARGE_COPY_CUTOFF 2048 | 
|  |  | 
|  | /* Communicate to the simulator what we are trying to do. */ | 
|  | #define sim_allow_multiple_caching(b) \ | 
|  | __insn_mtspr(SPR_SIM_CONTROL, \ | 
|  | SIM_CONTROL_ALLOW_MULTIPLE_CACHING | ((b) << _SIM_CONTROL_OPERATOR_BITS)) | 
|  |  | 
|  | /* | 
|  | * Copy memory by briefly enabling incoherent cacheline-at-a-time mode. | 
|  | * | 
|  | * We set up our own source and destination PTEs that we fully control. | 
|  | * This is the only way to guarantee that we don't race with another | 
|  | * thread that is modifying the PTE; we can't afford to try the | 
|  | * copy_{to,from}_user() technique of catching the interrupt, since | 
|  | * we must run with interrupts disabled to avoid the risk of some | 
|  | * other code seeing the incoherent data in our cache.  (Recall that | 
|  | * our cache is indexed by PA, so even if the other code doesn't use | 
|  | * our kmap_atomic virtual addresses, they'll still hit in cache using | 
|  | * the normal VAs that aren't supposed to hit in cache.) | 
|  | */ | 
|  | static void memcpy_multicache(void *dest, const void *source, | 
|  | pte_t dst_pte, pte_t src_pte, int len) | 
|  | { | 
|  | int idx; | 
|  | unsigned long flags, newsrc, newdst; | 
|  | pmd_t *pmdp; | 
|  | pte_t *ptep; | 
|  | int type0, type1; | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | /* | 
|  | * Disable interrupts so that we don't recurse into memcpy() | 
|  | * in an interrupt handler, nor accidentally reference | 
|  | * the PA of the source from an interrupt routine.  Also | 
|  | * notify the simulator that we're playing games so we don't | 
|  | * generate spurious coherency warnings. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | sim_allow_multiple_caching(1); | 
|  |  | 
|  | /* Set up the new dest mapping */ | 
|  | type0 = kmap_atomic_idx_push(); | 
|  | idx = FIX_KMAP_BEGIN + (KM_TYPE_NR * cpu) + type0; | 
|  | newdst = __fix_to_virt(idx) + ((unsigned long)dest & (PAGE_SIZE-1)); | 
|  | pmdp = pmd_offset(pud_offset(pgd_offset_k(newdst), newdst), newdst); | 
|  | ptep = pte_offset_kernel(pmdp, newdst); | 
|  | if (pte_val(*ptep) != pte_val(dst_pte)) { | 
|  | set_pte(ptep, dst_pte); | 
|  | local_flush_tlb_page(NULL, newdst, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* Set up the new source mapping */ | 
|  | type1 = kmap_atomic_idx_push(); | 
|  | idx += (type0 - type1); | 
|  | src_pte = hv_pte_set_nc(src_pte); | 
|  | src_pte = hv_pte_clear_writable(src_pte);  /* be paranoid */ | 
|  | newsrc = __fix_to_virt(idx) + ((unsigned long)source & (PAGE_SIZE-1)); | 
|  | pmdp = pmd_offset(pud_offset(pgd_offset_k(newsrc), newsrc), newsrc); | 
|  | ptep = pte_offset_kernel(pmdp, newsrc); | 
|  | __set_pte(ptep, src_pte);   /* set_pte() would be confused by this */ | 
|  | local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); | 
|  |  | 
|  | /* Actually move the data. */ | 
|  | __memcpy_asm((void *)newdst, (const void *)newsrc, len); | 
|  |  | 
|  | /* | 
|  | * Remap the source as locally-cached and not OLOC'ed so that | 
|  | * we can inval without also invaling the remote cpu's cache. | 
|  | * This also avoids known errata with inv'ing cacheable oloc data. | 
|  | */ | 
|  | src_pte = hv_pte_set_mode(src_pte, HV_PTE_MODE_CACHE_NO_L3); | 
|  | src_pte = hv_pte_set_writable(src_pte); /* need write access for inv */ | 
|  | __set_pte(ptep, src_pte);   /* set_pte() would be confused by this */ | 
|  | local_flush_tlb_page(NULL, newsrc, PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * Do the actual invalidation, covering the full L2 cache line | 
|  | * at the end since __memcpy_asm() is somewhat aggressive. | 
|  | */ | 
|  | __inv_buffer((void *)newsrc, len); | 
|  |  | 
|  | /* | 
|  | * We're done: notify the simulator that all is back to normal, | 
|  | * and re-enable interrupts and pre-emption. | 
|  | */ | 
|  | kmap_atomic_idx_pop(); | 
|  | kmap_atomic_idx_pop(); | 
|  | sim_allow_multiple_caching(0); | 
|  | local_irq_restore(flags); | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify large copies from remotely-cached memory, and copy them | 
|  | * via memcpy_multicache() if they look good, otherwise fall back | 
|  | * to the particular kind of copying passed as the memcpy_t function. | 
|  | */ | 
|  | static unsigned long fast_copy(void *dest, const void *source, int len, | 
|  | memcpy_t func) | 
|  | { | 
|  | /* | 
|  | * Check if it's big enough to bother with.  We may end up doing a | 
|  | * small copy via TLB manipulation if we're near a page boundary, | 
|  | * but presumably we'll make it up when we hit the second page. | 
|  | */ | 
|  | while (len >= LARGE_COPY_CUTOFF) { | 
|  | int copy_size, bytes_left_on_page; | 
|  | pte_t *src_ptep, *dst_ptep; | 
|  | pte_t src_pte, dst_pte; | 
|  | struct page *src_page, *dst_page; | 
|  |  | 
|  | /* Is the source page oloc'ed to a remote cpu? */ | 
|  | retry_source: | 
|  | src_ptep = virt_to_pte(current->mm, (unsigned long)source); | 
|  | if (src_ptep == NULL) | 
|  | break; | 
|  | src_pte = *src_ptep; | 
|  | if (!hv_pte_get_present(src_pte) || | 
|  | !hv_pte_get_readable(src_pte) || | 
|  | hv_pte_get_mode(src_pte) != HV_PTE_MODE_CACHE_TILE_L3) | 
|  | break; | 
|  | if (get_remote_cache_cpu(src_pte) == smp_processor_id()) | 
|  | break; | 
|  | src_page = pfn_to_page(pte_pfn(src_pte)); | 
|  | get_page(src_page); | 
|  | if (pte_val(src_pte) != pte_val(*src_ptep)) { | 
|  | put_page(src_page); | 
|  | goto retry_source; | 
|  | } | 
|  | if (pte_huge(src_pte)) { | 
|  | /* Adjust the PTE to correspond to a small page */ | 
|  | int pfn = pte_pfn(src_pte); | 
|  | pfn += (((unsigned long)source & (HPAGE_SIZE-1)) | 
|  | >> PAGE_SHIFT); | 
|  | src_pte = pfn_pte(pfn, src_pte); | 
|  | src_pte = pte_mksmall(src_pte); | 
|  | } | 
|  |  | 
|  | /* Is the destination page writable? */ | 
|  | retry_dest: | 
|  | dst_ptep = virt_to_pte(current->mm, (unsigned long)dest); | 
|  | if (dst_ptep == NULL) { | 
|  | put_page(src_page); | 
|  | break; | 
|  | } | 
|  | dst_pte = *dst_ptep; | 
|  | if (!hv_pte_get_present(dst_pte) || | 
|  | !hv_pte_get_writable(dst_pte)) { | 
|  | put_page(src_page); | 
|  | break; | 
|  | } | 
|  | dst_page = pfn_to_page(pte_pfn(dst_pte)); | 
|  | if (dst_page == src_page) { | 
|  | /* | 
|  | * Source and dest are on the same page; this | 
|  | * potentially exposes us to incoherence if any | 
|  | * part of src and dest overlap on a cache line. | 
|  | * Just give up rather than trying to be precise. | 
|  | */ | 
|  | put_page(src_page); | 
|  | break; | 
|  | } | 
|  | get_page(dst_page); | 
|  | if (pte_val(dst_pte) != pte_val(*dst_ptep)) { | 
|  | put_page(dst_page); | 
|  | goto retry_dest; | 
|  | } | 
|  | if (pte_huge(dst_pte)) { | 
|  | /* Adjust the PTE to correspond to a small page */ | 
|  | int pfn = pte_pfn(dst_pte); | 
|  | pfn += (((unsigned long)dest & (HPAGE_SIZE-1)) | 
|  | >> PAGE_SHIFT); | 
|  | dst_pte = pfn_pte(pfn, dst_pte); | 
|  | dst_pte = pte_mksmall(dst_pte); | 
|  | } | 
|  |  | 
|  | /* All looks good: create a cachable PTE and copy from it */ | 
|  | copy_size = len; | 
|  | bytes_left_on_page = | 
|  | PAGE_SIZE - (((int)source) & (PAGE_SIZE-1)); | 
|  | if (copy_size > bytes_left_on_page) | 
|  | copy_size = bytes_left_on_page; | 
|  | bytes_left_on_page = | 
|  | PAGE_SIZE - (((int)dest) & (PAGE_SIZE-1)); | 
|  | if (copy_size > bytes_left_on_page) | 
|  | copy_size = bytes_left_on_page; | 
|  | memcpy_multicache(dest, source, dst_pte, src_pte, copy_size); | 
|  |  | 
|  | /* Release the pages */ | 
|  | put_page(dst_page); | 
|  | put_page(src_page); | 
|  |  | 
|  | /* Continue on the next page */ | 
|  | dest += copy_size; | 
|  | source += copy_size; | 
|  | len -= copy_size; | 
|  | } | 
|  |  | 
|  | return func(dest, source, len); | 
|  | } | 
|  |  | 
|  | void *memcpy(void *to, const void *from, __kernel_size_t n) | 
|  | { | 
|  | if (n < LARGE_COPY_CUTOFF) | 
|  | return (void *)__memcpy_asm(to, from, n); | 
|  | else | 
|  | return (void *)fast_copy(to, from, n, __memcpy_asm); | 
|  | } | 
|  |  | 
|  | unsigned long __copy_to_user_inatomic(void __user *to, const void *from, | 
|  | unsigned long n) | 
|  | { | 
|  | if (n < LARGE_COPY_CUTOFF) | 
|  | return __copy_to_user_inatomic_asm(to, from, n); | 
|  | else | 
|  | return fast_copy(to, from, n, __copy_to_user_inatomic_asm); | 
|  | } | 
|  |  | 
|  | unsigned long __copy_from_user_inatomic(void *to, const void __user *from, | 
|  | unsigned long n) | 
|  | { | 
|  | if (n < LARGE_COPY_CUTOFF) | 
|  | return __copy_from_user_inatomic_asm(to, from, n); | 
|  | else | 
|  | return fast_copy(to, from, n, __copy_from_user_inatomic_asm); | 
|  | } | 
|  |  | 
|  | unsigned long __copy_from_user_zeroing(void *to, const void __user *from, | 
|  | unsigned long n) | 
|  | { | 
|  | if (n < LARGE_COPY_CUTOFF) | 
|  | return __copy_from_user_zeroing_asm(to, from, n); | 
|  | else | 
|  | return fast_copy(to, from, n, __copy_from_user_zeroing_asm); | 
|  | } | 
|  |  | 
|  | #endif /* !CHIP_HAS_COHERENT_LOCAL_CACHE() */ |