|  | #ifndef _ASM_GENERIC_PGTABLE_H | 
|  | #define _ASM_GENERIC_PGTABLE_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/bug.h> | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | 
|  | extern int ptep_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep, | 
|  | pte_t entry, int dirty); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS | 
|  | extern int pmdp_set_access_flags(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp, | 
|  | pmd_t entry, int dirty); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | 
|  | static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pte_t *ptep) | 
|  | { | 
|  | pte_t pte = *ptep; | 
|  | int r = 1; | 
|  | if (!pte_young(pte)) | 
|  | r = 0; | 
|  | else | 
|  | set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); | 
|  | return r; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pmd_t *pmdp) | 
|  | { | 
|  | pmd_t pmd = *pmdp; | 
|  | int r = 1; | 
|  | if (!pmd_young(pmd)) | 
|  | r = 0; | 
|  | else | 
|  | set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); | 
|  | return r; | 
|  | } | 
|  | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pmd_t *pmdp) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH | 
|  | int ptep_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pte_t *ptep); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH | 
|  | int pmdp_clear_flush_young(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR | 
|  | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pte_t *ptep) | 
|  | { | 
|  | pte_t pte = *ptep; | 
|  | pte_clear(mm, address, ptep); | 
|  | return pte; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pmd_t *pmdp) | 
|  | { | 
|  | pmd_t pmd = *pmdp; | 
|  | pmd_clear(mm, address, pmdp); | 
|  | return pmd; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL | 
|  | static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, | 
|  | unsigned long address, pte_t *ptep, | 
|  | int full) | 
|  | { | 
|  | pte_t pte; | 
|  | pte = ptep_get_and_clear(mm, address, ptep); | 
|  | return pte; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Some architectures may be able to avoid expensive synchronization | 
|  | * primitives when modifications are made to PTE's which are already | 
|  | * not present, or in the process of an address space destruction. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL | 
|  | static inline void pte_clear_not_present_full(struct mm_struct *mm, | 
|  | unsigned long address, | 
|  | pte_t *ptep, | 
|  | int full) | 
|  | { | 
|  | pte_clear(mm, address, ptep); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH | 
|  | extern pte_t ptep_clear_flush(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pte_t *ptep); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH | 
|  | extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, | 
|  | unsigned long address, | 
|  | pmd_t *pmdp); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT | 
|  | struct mm_struct; | 
|  | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) | 
|  | { | 
|  | pte_t old_pte = *ptep; | 
|  | set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline void pmdp_set_wrprotect(struct mm_struct *mm, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | pmd_t old_pmd = *pmdp; | 
|  | set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); | 
|  | } | 
|  | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | static inline void pmdp_set_wrprotect(struct mm_struct *mm, | 
|  | unsigned long address, pmd_t *pmdp) | 
|  | { | 
|  | BUG(); | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH | 
|  | extern void pmdp_splitting_flush(struct vm_area_struct *vma, | 
|  | unsigned long address, pmd_t *pmdp); | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTE_SAME | 
|  | static inline int pte_same(pte_t pte_a, pte_t pte_b) | 
|  | { | 
|  | return pte_val(pte_a) == pte_val(pte_b); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PMD_SAME | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) | 
|  | { | 
|  | return pmd_val(pmd_a) == pmd_val(pmd_b); | 
|  | } | 
|  | #else /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY | 
|  | #define page_test_and_clear_dirty(pfn, mapped)	(0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY | 
|  | #define pte_maybe_dirty(pte)		pte_dirty(pte) | 
|  | #else | 
|  | #define pte_maybe_dirty(pte)		(1) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG | 
|  | #define page_test_and_clear_young(pfn) (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PGD_OFFSET_GATE | 
|  | #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_ARCH_MOVE_PTE | 
|  | #define move_pte(pte, prot, old_addr, new_addr)	(pte) | 
|  | #endif | 
|  |  | 
|  | #ifndef flush_tlb_fix_spurious_fault | 
|  | #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) | 
|  | #endif | 
|  |  | 
|  | #ifndef pgprot_noncached | 
|  | #define pgprot_noncached(prot)	(prot) | 
|  | #endif | 
|  |  | 
|  | #ifndef pgprot_writecombine | 
|  | #define pgprot_writecombine pgprot_noncached | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When walking page tables, get the address of the next boundary, | 
|  | * or the end address of the range if that comes earlier.  Although no | 
|  | * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. | 
|  | */ | 
|  |  | 
|  | #define pgd_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  |  | 
|  | #ifndef pud_addr_end | 
|  | #define pud_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #ifndef pmd_addr_end | 
|  | #define pmd_addr_end(addr, end)						\ | 
|  | ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\ | 
|  | (__boundary - 1 < (end) - 1)? __boundary: (end);		\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * When walking page tables, we usually want to skip any p?d_none entries; | 
|  | * and any p?d_bad entries - reporting the error before resetting to none. | 
|  | * Do the tests inline, but report and clear the bad entry in mm/memory.c. | 
|  | */ | 
|  | void pgd_clear_bad(pgd_t *); | 
|  | void pud_clear_bad(pud_t *); | 
|  | void pmd_clear_bad(pmd_t *); | 
|  |  | 
|  | static inline int pgd_none_or_clear_bad(pgd_t *pgd) | 
|  | { | 
|  | if (pgd_none(*pgd)) | 
|  | return 1; | 
|  | if (unlikely(pgd_bad(*pgd))) { | 
|  | pgd_clear_bad(pgd); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pud_none_or_clear_bad(pud_t *pud) | 
|  | { | 
|  | if (pud_none(*pud)) | 
|  | return 1; | 
|  | if (unlikely(pud_bad(*pud))) { | 
|  | pud_clear_bad(pud); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int pmd_none_or_clear_bad(pmd_t *pmd) | 
|  | { | 
|  | if (pmd_none(*pmd)) | 
|  | return 1; | 
|  | if (unlikely(pmd_bad(*pmd))) { | 
|  | pmd_clear_bad(pmd); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | /* | 
|  | * Get the current pte state, but zero it out to make it | 
|  | * non-present, preventing the hardware from asynchronously | 
|  | * updating it. | 
|  | */ | 
|  | return ptep_get_and_clear(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | static inline void __ptep_modify_prot_commit(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | /* | 
|  | * The pte is non-present, so there's no hardware state to | 
|  | * preserve. | 
|  | */ | 
|  | set_pte_at(mm, addr, ptep, pte); | 
|  | } | 
|  |  | 
|  | #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION | 
|  | /* | 
|  | * Start a pte protection read-modify-write transaction, which | 
|  | * protects against asynchronous hardware modifications to the pte. | 
|  | * The intention is not to prevent the hardware from making pte | 
|  | * updates, but to prevent any updates it may make from being lost. | 
|  | * | 
|  | * This does not protect against other software modifications of the | 
|  | * pte; the appropriate pte lock must be held over the transation. | 
|  | * | 
|  | * Note that this interface is intended to be batchable, meaning that | 
|  | * ptep_modify_prot_commit may not actually update the pte, but merely | 
|  | * queue the update to be done at some later time.  The update must be | 
|  | * actually committed before the pte lock is released, however. | 
|  | */ | 
|  | static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | return __ptep_modify_prot_start(mm, addr, ptep); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit an update to a pte, leaving any hardware-controlled bits in | 
|  | * the PTE unmodified. | 
|  | */ | 
|  | static inline void ptep_modify_prot_commit(struct mm_struct *mm, | 
|  | unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | __ptep_modify_prot_commit(mm, addr, ptep, pte); | 
|  | } | 
|  | #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * A facility to provide lazy MMU batching.  This allows PTE updates and | 
|  | * page invalidations to be delayed until a call to leave lazy MMU mode | 
|  | * is issued.  Some architectures may benefit from doing this, and it is | 
|  | * beneficial for both shadow and direct mode hypervisors, which may batch | 
|  | * the PTE updates which happen during this window.  Note that using this | 
|  | * interface requires that read hazards be removed from the code.  A read | 
|  | * hazard could result in the direct mode hypervisor case, since the actual | 
|  | * write to the page tables may not yet have taken place, so reads though | 
|  | * a raw PTE pointer after it has been modified are not guaranteed to be | 
|  | * up to date.  This mode can only be entered and left under the protection of | 
|  | * the page table locks for all page tables which may be modified.  In the UP | 
|  | * case, this is required so that preemption is disabled, and in the SMP case, | 
|  | * it must synchronize the delayed page table writes properly on other CPUs. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE | 
|  | #define arch_enter_lazy_mmu_mode()	do {} while (0) | 
|  | #define arch_leave_lazy_mmu_mode()	do {} while (0) | 
|  | #define arch_flush_lazy_mmu_mode()	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A facility to provide batching of the reload of page tables and | 
|  | * other process state with the actual context switch code for | 
|  | * paravirtualized guests.  By convention, only one of the batched | 
|  | * update (lazy) modes (CPU, MMU) should be active at any given time, | 
|  | * entry should never be nested, and entry and exits should always be | 
|  | * paired.  This is for sanity of maintaining and reasoning about the | 
|  | * kernel code.  In this case, the exit (end of the context switch) is | 
|  | * in architecture-specific code, and so doesn't need a generic | 
|  | * definition. | 
|  | */ | 
|  | #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH | 
|  | #define arch_start_context_switch(prev)	do {} while (0) | 
|  | #endif | 
|  |  | 
|  | #ifndef __HAVE_PFNMAP_TRACKING | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * track_pfn_vma_new is called when a _new_ pfn mapping is being established | 
|  | * for physical range indicated by pfn and size. | 
|  | */ | 
|  | static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long size) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * track_pfn_vma_copy is called when vma that is covering the pfnmap gets | 
|  | * copied through copy_page_range(). | 
|  | */ | 
|  | static inline int track_pfn_vma_copy(struct vm_area_struct *vma) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interface that can be used by architecture code to keep track of | 
|  | * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn) | 
|  | * | 
|  | * untrack_pfn_vma is called while unmapping a pfnmap for a region. | 
|  | * untrack can be called for a specific region indicated by pfn and size or | 
|  | * can be for the entire vma (in which case size can be zero). | 
|  | */ | 
|  | static inline void untrack_pfn_vma(struct vm_area_struct *vma, | 
|  | unsigned long pfn, unsigned long size) | 
|  | { | 
|  | } | 
|  | #else | 
|  | extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot, | 
|  | unsigned long pfn, unsigned long size); | 
|  | extern int track_pfn_vma_copy(struct vm_area_struct *vma); | 
|  | extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn, | 
|  | unsigned long size); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | #ifndef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline int pmd_trans_huge(pmd_t pmd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline int pmd_trans_splitting(pmd_t pmd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #ifndef __HAVE_ARCH_PMD_WRITE | 
|  | static inline int pmd_write(pmd_t pmd) | 
|  | { | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  | #endif /* __HAVE_ARCH_PMD_WRITE */ | 
|  | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  |  | 
|  | #ifndef pmd_read_atomic | 
|  | static inline pmd_t pmd_read_atomic(pmd_t *pmdp) | 
|  | { | 
|  | /* | 
|  | * Depend on compiler for an atomic pmd read. NOTE: this is | 
|  | * only going to work, if the pmdval_t isn't larger than | 
|  | * an unsigned long. | 
|  | */ | 
|  | return *pmdp; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This function is meant to be used by sites walking pagetables with | 
|  | * the mmap_sem hold in read mode to protect against MADV_DONTNEED and | 
|  | * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd | 
|  | * into a null pmd and the transhuge page fault can convert a null pmd | 
|  | * into an hugepmd or into a regular pmd (if the hugepage allocation | 
|  | * fails). While holding the mmap_sem in read mode the pmd becomes | 
|  | * stable and stops changing under us only if it's not null and not a | 
|  | * transhuge pmd. When those races occurs and this function makes a | 
|  | * difference vs the standard pmd_none_or_clear_bad, the result is | 
|  | * undefined so behaving like if the pmd was none is safe (because it | 
|  | * can return none anyway). The compiler level barrier() is critically | 
|  | * important to compute the two checks atomically on the same pmdval. | 
|  | * | 
|  | * For 32bit kernels with a 64bit large pmd_t this automatically takes | 
|  | * care of reading the pmd atomically to avoid SMP race conditions | 
|  | * against pmd_populate() when the mmap_sem is hold for reading by the | 
|  | * caller (a special atomic read not done by "gcc" as in the generic | 
|  | * version above, is also needed when THP is disabled because the page | 
|  | * fault can populate the pmd from under us). | 
|  | */ | 
|  | static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) | 
|  | { | 
|  | pmd_t pmdval = pmd_read_atomic(pmd); | 
|  | /* | 
|  | * The barrier will stabilize the pmdval in a register or on | 
|  | * the stack so that it will stop changing under the code. | 
|  | * | 
|  | * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, | 
|  | * pmd_read_atomic is allowed to return a not atomic pmdval | 
|  | * (for example pointing to an hugepage that has never been | 
|  | * mapped in the pmd). The below checks will only care about | 
|  | * the low part of the pmd with 32bit PAE x86 anyway, with the | 
|  | * exception of pmd_none(). So the important thing is that if | 
|  | * the low part of the pmd is found null, the high part will | 
|  | * be also null or the pmd_none() check below would be | 
|  | * confused. | 
|  | */ | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | barrier(); | 
|  | #endif | 
|  | if (pmd_none(pmdval)) | 
|  | return 1; | 
|  | if (unlikely(pmd_bad(pmdval))) { | 
|  | if (!pmd_trans_huge(pmdval)) | 
|  | pmd_clear_bad(pmd); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a noop if Transparent Hugepage Support is not built into | 
|  | * the kernel. Otherwise it is equivalent to | 
|  | * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in | 
|  | * places that already verified the pmd is not none and they want to | 
|  | * walk ptes while holding the mmap sem in read mode (write mode don't | 
|  | * need this). If THP is not enabled, the pmd can't go away under the | 
|  | * code even if MADV_DONTNEED runs, but if THP is enabled we need to | 
|  | * run a pmd_trans_unstable before walking the ptes after | 
|  | * split_huge_page_pmd returns (because it may have run when the pmd | 
|  | * become null, but then a page fault can map in a THP and not a | 
|  | * regular page). | 
|  | */ | 
|  | static inline int pmd_trans_unstable(pmd_t *pmd) | 
|  | { | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | return pmd_none_or_trans_huge_or_clear_bad(pmd); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | #endif /* !__ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* _ASM_GENERIC_PGTABLE_H */ |