|  | #ifndef _LINUX_SLUB_DEF_H | 
|  | #define _LINUX_SLUB_DEF_H | 
|  |  | 
|  | /* | 
|  | * SLUB : A Slab allocator without object queues. | 
|  | * | 
|  | * (C) 2007 SGI, Christoph Lameter | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kobject.h> | 
|  |  | 
|  | #include <linux/kmemleak.h> | 
|  |  | 
|  | enum stat_item { | 
|  | ALLOC_FASTPATH,		/* Allocation from cpu slab */ | 
|  | ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */ | 
|  | FREE_FASTPATH,		/* Free to cpu slub */ | 
|  | FREE_SLOWPATH,		/* Freeing not to cpu slab */ | 
|  | FREE_FROZEN,		/* Freeing to frozen slab */ | 
|  | FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */ | 
|  | FREE_REMOVE_PARTIAL,	/* Freeing removes last object */ | 
|  | ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */ | 
|  | ALLOC_SLAB,		/* Cpu slab acquired from page allocator */ | 
|  | ALLOC_REFILL,		/* Refill cpu slab from slab freelist */ | 
|  | ALLOC_NODE_MISMATCH,	/* Switching cpu slab */ | 
|  | FREE_SLAB,		/* Slab freed to the page allocator */ | 
|  | CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */ | 
|  | DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */ | 
|  | DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */ | 
|  | DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */ | 
|  | DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */ | 
|  | DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ | 
|  | DEACTIVATE_BYPASS,	/* Implicit deactivation */ | 
|  | ORDER_FALLBACK,		/* Number of times fallback was necessary */ | 
|  | CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */ | 
|  | CMPXCHG_DOUBLE_FAIL,	/* Number of times that cmpxchg double did not match */ | 
|  | CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */ | 
|  | CPU_PARTIAL_FREE,	/* Refill cpu partial on free */ | 
|  | CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */ | 
|  | CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */ | 
|  | NR_SLUB_STAT_ITEMS }; | 
|  |  | 
|  | struct kmem_cache_cpu { | 
|  | void **freelist;	/* Pointer to next available object */ | 
|  | unsigned long tid;	/* Globally unique transaction id */ | 
|  | struct page *page;	/* The slab from which we are allocating */ | 
|  | struct page *partial;	/* Partially allocated frozen slabs */ | 
|  | int node;		/* The node of the page (or -1 for debug) */ | 
|  | #ifdef CONFIG_SLUB_STATS | 
|  | unsigned stat[NR_SLUB_STAT_ITEMS]; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct kmem_cache_node { | 
|  | spinlock_t list_lock;	/* Protect partial list and nr_partial */ | 
|  | unsigned long nr_partial; | 
|  | struct list_head partial; | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | atomic_long_t nr_slabs; | 
|  | atomic_long_t total_objects; | 
|  | struct list_head full; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Word size structure that can be atomically updated or read and that | 
|  | * contains both the order and the number of objects that a slab of the | 
|  | * given order would contain. | 
|  | */ | 
|  | struct kmem_cache_order_objects { | 
|  | unsigned long x; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Slab cache management. | 
|  | */ | 
|  | struct kmem_cache { | 
|  | struct kmem_cache_cpu __percpu *cpu_slab; | 
|  | /* Used for retriving partial slabs etc */ | 
|  | unsigned long flags; | 
|  | unsigned long min_partial; | 
|  | int size;		/* The size of an object including meta data */ | 
|  | int objsize;		/* The size of an object without meta data */ | 
|  | int offset;		/* Free pointer offset. */ | 
|  | int cpu_partial;	/* Number of per cpu partial objects to keep around */ | 
|  | struct kmem_cache_order_objects oo; | 
|  |  | 
|  | /* Allocation and freeing of slabs */ | 
|  | struct kmem_cache_order_objects max; | 
|  | struct kmem_cache_order_objects min; | 
|  | gfp_t allocflags;	/* gfp flags to use on each alloc */ | 
|  | int refcount;		/* Refcount for slab cache destroy */ | 
|  | void (*ctor)(void *); | 
|  | int inuse;		/* Offset to metadata */ | 
|  | int align;		/* Alignment */ | 
|  | int reserved;		/* Reserved bytes at the end of slabs */ | 
|  | const char *name;	/* Name (only for display!) */ | 
|  | struct list_head list;	/* List of slab caches */ | 
|  | #ifdef CONFIG_SYSFS | 
|  | struct kobject kobj;	/* For sysfs */ | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Defragmentation by allocating from a remote node. | 
|  | */ | 
|  | int remote_node_defrag_ratio; | 
|  | #endif | 
|  | struct kmem_cache_node *node[MAX_NUMNODES]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Kmalloc subsystem. | 
|  | */ | 
|  | #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 | 
|  | #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN | 
|  | #else | 
|  | #define KMALLOC_MIN_SIZE 8 | 
|  | #endif | 
|  |  | 
|  | #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) | 
|  |  | 
|  | /* | 
|  | * Maximum kmalloc object size handled by SLUB. Larger object allocations | 
|  | * are passed through to the page allocator. The page allocator "fastpath" | 
|  | * is relatively slow so we need this value sufficiently high so that | 
|  | * performance critical objects are allocated through the SLUB fastpath. | 
|  | * | 
|  | * This should be dropped to PAGE_SIZE / 2 once the page allocator | 
|  | * "fastpath" becomes competitive with the slab allocator fastpaths. | 
|  | */ | 
|  | #define SLUB_MAX_SIZE (2 * PAGE_SIZE) | 
|  |  | 
|  | #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2) | 
|  |  | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | #define SLUB_DMA __GFP_DMA | 
|  | #else | 
|  | /* Disable DMA functionality */ | 
|  | #define SLUB_DMA (__force gfp_t)0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We keep the general caches in an array of slab caches that are used for | 
|  | * 2^x bytes of allocations. | 
|  | */ | 
|  | extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; | 
|  |  | 
|  | /* | 
|  | * Sorry that the following has to be that ugly but some versions of GCC | 
|  | * have trouble with constant propagation and loops. | 
|  | */ | 
|  | static __always_inline int kmalloc_index(size_t size) | 
|  | { | 
|  | if (!size) | 
|  | return 0; | 
|  |  | 
|  | if (size <= KMALLOC_MIN_SIZE) | 
|  | return KMALLOC_SHIFT_LOW; | 
|  |  | 
|  | if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) | 
|  | return 1; | 
|  | if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) | 
|  | return 2; | 
|  | if (size <=          8) return 3; | 
|  | if (size <=         16) return 4; | 
|  | if (size <=         32) return 5; | 
|  | if (size <=         64) return 6; | 
|  | if (size <=        128) return 7; | 
|  | if (size <=        256) return 8; | 
|  | if (size <=        512) return 9; | 
|  | if (size <=       1024) return 10; | 
|  | if (size <=   2 * 1024) return 11; | 
|  | if (size <=   4 * 1024) return 12; | 
|  | /* | 
|  | * The following is only needed to support architectures with a larger page | 
|  | * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page | 
|  | * size we would have to go up to 128k. | 
|  | */ | 
|  | if (size <=   8 * 1024) return 13; | 
|  | if (size <=  16 * 1024) return 14; | 
|  | if (size <=  32 * 1024) return 15; | 
|  | if (size <=  64 * 1024) return 16; | 
|  | if (size <= 128 * 1024) return 17; | 
|  | if (size <= 256 * 1024) return 18; | 
|  | if (size <= 512 * 1024) return 19; | 
|  | if (size <= 1024 * 1024) return 20; | 
|  | if (size <=  2 * 1024 * 1024) return 21; | 
|  | BUG(); | 
|  | return -1; /* Will never be reached */ | 
|  |  | 
|  | /* | 
|  | * What we really wanted to do and cannot do because of compiler issues is: | 
|  | *	int i; | 
|  | *	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) | 
|  | *		if (size <= (1 << i)) | 
|  | *			return i; | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the slab cache for a given combination of allocation flags and size. | 
|  | * | 
|  | * This ought to end up with a global pointer to the right cache | 
|  | * in kmalloc_caches. | 
|  | */ | 
|  | static __always_inline struct kmem_cache *kmalloc_slab(size_t size) | 
|  | { | 
|  | int index = kmalloc_index(size); | 
|  |  | 
|  | if (index == 0) | 
|  | return NULL; | 
|  |  | 
|  | return kmalloc_caches[index]; | 
|  | } | 
|  |  | 
|  | void *kmem_cache_alloc(struct kmem_cache *, gfp_t); | 
|  | void *__kmalloc(size_t size, gfp_t flags); | 
|  |  | 
|  | static __always_inline void * | 
|  | kmalloc_order(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order); | 
|  | kmemleak_alloc(ret, size, 1, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Calling this on allocated memory will check that the memory | 
|  | * is expected to be in use, and print warnings if not. | 
|  | */ | 
|  | #ifdef CONFIG_SLUB_DEBUG | 
|  | extern bool verify_mem_not_deleted(const void *x); | 
|  | #else | 
|  | static inline bool verify_mem_not_deleted(const void *x) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | extern void * | 
|  | kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size); | 
|  | extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); | 
|  | #else | 
|  | static __always_inline void * | 
|  | kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
|  | { | 
|  | return kmem_cache_alloc(s, gfpflags); | 
|  | } | 
|  |  | 
|  | static __always_inline void * | 
|  | kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
|  | { | 
|  | return kmalloc_order(size, flags, order); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static __always_inline void *kmalloc_large(size_t size, gfp_t flags) | 
|  | { | 
|  | unsigned int order = get_order(size); | 
|  | return kmalloc_order_trace(size, flags, order); | 
|  | } | 
|  |  | 
|  | static __always_inline void *kmalloc(size_t size, gfp_t flags) | 
|  | { | 
|  | if (__builtin_constant_p(size)) { | 
|  | if (size > SLUB_MAX_SIZE) | 
|  | return kmalloc_large(size, flags); | 
|  |  | 
|  | if (!(flags & SLUB_DMA)) { | 
|  | struct kmem_cache *s = kmalloc_slab(size); | 
|  |  | 
|  | if (!s) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | return kmem_cache_alloc_trace(s, flags, size); | 
|  | } | 
|  | } | 
|  | return __kmalloc(size, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | void *__kmalloc_node(size_t size, gfp_t flags, int node); | 
|  | void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); | 
|  |  | 
|  | #ifdef CONFIG_TRACING | 
|  | extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
|  | gfp_t gfpflags, | 
|  | int node, size_t size); | 
|  | #else | 
|  | static __always_inline void * | 
|  | kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
|  | gfp_t gfpflags, | 
|  | int node, size_t size) | 
|  | { | 
|  | return kmem_cache_alloc_node(s, gfpflags, node); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) | 
|  | { | 
|  | if (__builtin_constant_p(size) && | 
|  | size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) { | 
|  | struct kmem_cache *s = kmalloc_slab(size); | 
|  |  | 
|  | if (!s) | 
|  | return ZERO_SIZE_PTR; | 
|  |  | 
|  | return kmem_cache_alloc_node_trace(s, flags, node, size); | 
|  | } | 
|  | return __kmalloc_node(size, flags, node); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif /* _LINUX_SLUB_DEF_H */ |