|  | /* | 
|  | * mm/percpu.c - percpu memory allocator | 
|  | * | 
|  | * Copyright (C) 2009		SUSE Linux Products GmbH | 
|  | * Copyright (C) 2009		Tejun Heo <tj@kernel.org> | 
|  | * | 
|  | * This file is released under the GPLv2. | 
|  | * | 
|  | * This is percpu allocator which can handle both static and dynamic | 
|  | * areas.  Percpu areas are allocated in chunks.  Each chunk is | 
|  | * consisted of boot-time determined number of units and the first | 
|  | * chunk is used for static percpu variables in the kernel image | 
|  | * (special boot time alloc/init handling necessary as these areas | 
|  | * need to be brought up before allocation services are running). | 
|  | * Unit grows as necessary and all units grow or shrink in unison. | 
|  | * When a chunk is filled up, another chunk is allocated. | 
|  | * | 
|  | *  c0                           c1                         c2 | 
|  | *  -------------------          -------------------        ------------ | 
|  | * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u | 
|  | *  -------------------  ......  -------------------  ....  ------------ | 
|  | * | 
|  | * Allocation is done in offset-size areas of single unit space.  Ie, | 
|  | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | 
|  | * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to | 
|  | * cpus.  On NUMA, the mapping can be non-linear and even sparse. | 
|  | * Percpu access can be done by configuring percpu base registers | 
|  | * according to cpu to unit mapping and pcpu_unit_size. | 
|  | * | 
|  | * There are usually many small percpu allocations many of them being | 
|  | * as small as 4 bytes.  The allocator organizes chunks into lists | 
|  | * according to free size and tries to allocate from the fullest one. | 
|  | * Each chunk keeps the maximum contiguous area size hint which is | 
|  | * guaranteed to be equal to or larger than the maximum contiguous | 
|  | * area in the chunk.  This helps the allocator not to iterate the | 
|  | * chunk maps unnecessarily. | 
|  | * | 
|  | * Allocation state in each chunk is kept using an array of integers | 
|  | * on chunk->map.  A positive value in the map represents a free | 
|  | * region and negative allocated.  Allocation inside a chunk is done | 
|  | * by scanning this map sequentially and serving the first matching | 
|  | * entry.  This is mostly copied from the percpu_modalloc() allocator. | 
|  | * Chunks can be determined from the address using the index field | 
|  | * in the page struct. The index field contains a pointer to the chunk. | 
|  | * | 
|  | * To use this allocator, arch code should do the followings. | 
|  | * | 
|  | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 
|  | *   regular address to percpu pointer and back if they need to be | 
|  | *   different from the default | 
|  | * | 
|  | * - use pcpu_setup_first_chunk() during percpu area initialization to | 
|  | *   setup the first chunk containing the kernel static percpu area | 
|  | */ | 
|  |  | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/log2.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/kmemleak.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */ | 
|  | #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ | 
|  | #ifndef __addr_to_pcpu_ptr | 
|  | #define __addr_to_pcpu_ptr(addr)					\ | 
|  | (void __percpu *)((unsigned long)(addr) -			\ | 
|  | (unsigned long)pcpu_base_addr	+		\ | 
|  | (unsigned long)__per_cpu_start) | 
|  | #endif | 
|  | #ifndef __pcpu_ptr_to_addr | 
|  | #define __pcpu_ptr_to_addr(ptr)						\ | 
|  | (void __force *)((unsigned long)(ptr) +				\ | 
|  | (unsigned long)pcpu_base_addr -		\ | 
|  | (unsigned long)__per_cpu_start) | 
|  | #endif | 
|  | #else	/* CONFIG_SMP */ | 
|  | /* on UP, it's always identity mapped */ | 
|  | #define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr) | 
|  | #define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr) | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | struct pcpu_chunk { | 
|  | struct list_head	list;		/* linked to pcpu_slot lists */ | 
|  | int			free_size;	/* free bytes in the chunk */ | 
|  | int			contig_hint;	/* max contiguous size hint */ | 
|  | void			*base_addr;	/* base address of this chunk */ | 
|  | int			map_used;	/* # of map entries used */ | 
|  | int			map_alloc;	/* # of map entries allocated */ | 
|  | int			*map;		/* allocation map */ | 
|  | void			*data;		/* chunk data */ | 
|  | bool			immutable;	/* no [de]population allowed */ | 
|  | unsigned long		populated[];	/* populated bitmap */ | 
|  | }; | 
|  |  | 
|  | static int pcpu_unit_pages __read_mostly; | 
|  | static int pcpu_unit_size __read_mostly; | 
|  | static int pcpu_nr_units __read_mostly; | 
|  | static int pcpu_atom_size __read_mostly; | 
|  | static int pcpu_nr_slots __read_mostly; | 
|  | static size_t pcpu_chunk_struct_size __read_mostly; | 
|  |  | 
|  | /* cpus with the lowest and highest unit addresses */ | 
|  | static unsigned int pcpu_low_unit_cpu __read_mostly; | 
|  | static unsigned int pcpu_high_unit_cpu __read_mostly; | 
|  |  | 
|  | /* the address of the first chunk which starts with the kernel static area */ | 
|  | void *pcpu_base_addr __read_mostly; | 
|  | EXPORT_SYMBOL_GPL(pcpu_base_addr); | 
|  |  | 
|  | static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */ | 
|  | const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */ | 
|  |  | 
|  | /* group information, used for vm allocation */ | 
|  | static int pcpu_nr_groups __read_mostly; | 
|  | static const unsigned long *pcpu_group_offsets __read_mostly; | 
|  | static const size_t *pcpu_group_sizes __read_mostly; | 
|  |  | 
|  | /* | 
|  | * The first chunk which always exists.  Note that unlike other | 
|  | * chunks, this one can be allocated and mapped in several different | 
|  | * ways and thus often doesn't live in the vmalloc area. | 
|  | */ | 
|  | static struct pcpu_chunk *pcpu_first_chunk; | 
|  |  | 
|  | /* | 
|  | * Optional reserved chunk.  This chunk reserves part of the first | 
|  | * chunk and serves it for reserved allocations.  The amount of | 
|  | * reserved offset is in pcpu_reserved_chunk_limit.  When reserved | 
|  | * area doesn't exist, the following variables contain NULL and 0 | 
|  | * respectively. | 
|  | */ | 
|  | static struct pcpu_chunk *pcpu_reserved_chunk; | 
|  | static int pcpu_reserved_chunk_limit; | 
|  |  | 
|  | /* | 
|  | * Synchronization rules. | 
|  | * | 
|  | * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former | 
|  | * protects allocation/reclaim paths, chunks, populated bitmap and | 
|  | * vmalloc mapping.  The latter is a spinlock and protects the index | 
|  | * data structures - chunk slots, chunks and area maps in chunks. | 
|  | * | 
|  | * During allocation, pcpu_alloc_mutex is kept locked all the time and | 
|  | * pcpu_lock is grabbed and released as necessary.  All actual memory | 
|  | * allocations are done using GFP_KERNEL with pcpu_lock released.  In | 
|  | * general, percpu memory can't be allocated with irq off but | 
|  | * irqsave/restore are still used in alloc path so that it can be used | 
|  | * from early init path - sched_init() specifically. | 
|  | * | 
|  | * Free path accesses and alters only the index data structures, so it | 
|  | * can be safely called from atomic context.  When memory needs to be | 
|  | * returned to the system, free path schedules reclaim_work which | 
|  | * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be | 
|  | * reclaimed, release both locks and frees the chunks.  Note that it's | 
|  | * necessary to grab both locks to remove a chunk from circulation as | 
|  | * allocation path might be referencing the chunk with only | 
|  | * pcpu_alloc_mutex locked. | 
|  | */ | 
|  | static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */ | 
|  | static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */ | 
|  |  | 
|  | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ | 
|  |  | 
|  | /* reclaim work to release fully free chunks, scheduled from free path */ | 
|  | static void pcpu_reclaim(struct work_struct *work); | 
|  | static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); | 
|  |  | 
|  | static bool pcpu_addr_in_first_chunk(void *addr) | 
|  | { | 
|  | void *first_start = pcpu_first_chunk->base_addr; | 
|  |  | 
|  | return addr >= first_start && addr < first_start + pcpu_unit_size; | 
|  | } | 
|  |  | 
|  | static bool pcpu_addr_in_reserved_chunk(void *addr) | 
|  | { | 
|  | void *first_start = pcpu_first_chunk->base_addr; | 
|  |  | 
|  | return addr >= first_start && | 
|  | addr < first_start + pcpu_reserved_chunk_limit; | 
|  | } | 
|  |  | 
|  | static int __pcpu_size_to_slot(int size) | 
|  | { | 
|  | int highbit = fls(size);	/* size is in bytes */ | 
|  | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); | 
|  | } | 
|  |  | 
|  | static int pcpu_size_to_slot(int size) | 
|  | { | 
|  | if (size == pcpu_unit_size) | 
|  | return pcpu_nr_slots - 1; | 
|  | return __pcpu_size_to_slot(size); | 
|  | } | 
|  |  | 
|  | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | 
|  | { | 
|  | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | 
|  | return 0; | 
|  |  | 
|  | return pcpu_size_to_slot(chunk->free_size); | 
|  | } | 
|  |  | 
|  | /* set the pointer to a chunk in a page struct */ | 
|  | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | 
|  | { | 
|  | page->index = (unsigned long)pcpu; | 
|  | } | 
|  |  | 
|  | /* obtain pointer to a chunk from a page struct */ | 
|  | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | 
|  | { | 
|  | return (struct pcpu_chunk *)page->index; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | 
|  | { | 
|  | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; | 
|  | } | 
|  |  | 
|  | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 
|  | unsigned int cpu, int page_idx) | 
|  | { | 
|  | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + | 
|  | (page_idx << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, | 
|  | int *rs, int *re, int end) | 
|  | { | 
|  | *rs = find_next_zero_bit(chunk->populated, end, *rs); | 
|  | *re = find_next_bit(chunk->populated, end, *rs + 1); | 
|  | } | 
|  |  | 
|  | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, | 
|  | int *rs, int *re, int end) | 
|  | { | 
|  | *rs = find_next_bit(chunk->populated, end, *rs); | 
|  | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * (Un)populated page region iterators.  Iterate over (un)populated | 
|  | * page regions between @start and @end in @chunk.  @rs and @re should | 
|  | * be integer variables and will be set to start and end page index of | 
|  | * the current region. | 
|  | */ | 
|  | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \ | 
|  | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | 
|  | (rs) < (re);						    \ | 
|  | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | 
|  |  | 
|  | #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \ | 
|  | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \ | 
|  | (rs) < (re);						    \ | 
|  | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | 
|  |  | 
|  | /** | 
|  | * pcpu_mem_zalloc - allocate memory | 
|  | * @size: bytes to allocate | 
|  | * | 
|  | * Allocate @size bytes.  If @size is smaller than PAGE_SIZE, | 
|  | * kzalloc() is used; otherwise, vzalloc() is used.  The returned | 
|  | * memory is always zeroed. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | static void *pcpu_mem_zalloc(size_t size) | 
|  | { | 
|  | if (WARN_ON_ONCE(!slab_is_available())) | 
|  | return NULL; | 
|  |  | 
|  | if (size <= PAGE_SIZE) | 
|  | return kzalloc(size, GFP_KERNEL); | 
|  | else | 
|  | return vzalloc(size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_mem_free - free memory | 
|  | * @ptr: memory to free | 
|  | * @size: size of the area | 
|  | * | 
|  | * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc(). | 
|  | */ | 
|  | static void pcpu_mem_free(void *ptr, size_t size) | 
|  | { | 
|  | if (size <= PAGE_SIZE) | 
|  | kfree(ptr); | 
|  | else | 
|  | vfree(ptr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | 
|  | * @chunk: chunk of interest | 
|  | * @oslot: the previous slot it was on | 
|  | * | 
|  | * This function is called after an allocation or free changed @chunk. | 
|  | * New slot according to the changed state is determined and @chunk is | 
|  | * moved to the slot.  Note that the reserved chunk is never put on | 
|  | * chunk slots. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | */ | 
|  | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | 
|  | { | 
|  | int nslot = pcpu_chunk_slot(chunk); | 
|  |  | 
|  | if (chunk != pcpu_reserved_chunk && oslot != nslot) { | 
|  | if (oslot < nslot) | 
|  | list_move(&chunk->list, &pcpu_slot[nslot]); | 
|  | else | 
|  | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_need_to_extend - determine whether chunk area map needs to be extended | 
|  | * @chunk: chunk of interest | 
|  | * | 
|  | * Determine whether area map of @chunk needs to be extended to | 
|  | * accommodate a new allocation. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | * | 
|  | * RETURNS: | 
|  | * New target map allocation length if extension is necessary, 0 | 
|  | * otherwise. | 
|  | */ | 
|  | static int pcpu_need_to_extend(struct pcpu_chunk *chunk) | 
|  | { | 
|  | int new_alloc; | 
|  |  | 
|  | if (chunk->map_alloc >= chunk->map_used + 2) | 
|  | return 0; | 
|  |  | 
|  | new_alloc = PCPU_DFL_MAP_ALLOC; | 
|  | while (new_alloc < chunk->map_used + 2) | 
|  | new_alloc *= 2; | 
|  |  | 
|  | return new_alloc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_extend_area_map - extend area map of a chunk | 
|  | * @chunk: chunk of interest | 
|  | * @new_alloc: new target allocation length of the area map | 
|  | * | 
|  | * Extend area map of @chunk to have @new_alloc entries. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | 
|  | { | 
|  | int *old = NULL, *new = NULL; | 
|  | size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); | 
|  | unsigned long flags; | 
|  |  | 
|  | new = pcpu_mem_zalloc(new_size); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* acquire pcpu_lock and switch to new area map */ | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  |  | 
|  | if (new_alloc <= chunk->map_alloc) | 
|  | goto out_unlock; | 
|  |  | 
|  | old_size = chunk->map_alloc * sizeof(chunk->map[0]); | 
|  | old = chunk->map; | 
|  |  | 
|  | memcpy(new, old, old_size); | 
|  |  | 
|  | chunk->map_alloc = new_alloc; | 
|  | chunk->map = new; | 
|  | new = NULL; | 
|  |  | 
|  | out_unlock: | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | /* | 
|  | * pcpu_mem_free() might end up calling vfree() which uses | 
|  | * IRQ-unsafe lock and thus can't be called under pcpu_lock. | 
|  | */ | 
|  | pcpu_mem_free(old, old_size); | 
|  | pcpu_mem_free(new, new_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_split_block - split a map block | 
|  | * @chunk: chunk of interest | 
|  | * @i: index of map block to split | 
|  | * @head: head size in bytes (can be 0) | 
|  | * @tail: tail size in bytes (can be 0) | 
|  | * | 
|  | * Split the @i'th map block into two or three blocks.  If @head is | 
|  | * non-zero, @head bytes block is inserted before block @i moving it | 
|  | * to @i+1 and reducing its size by @head bytes. | 
|  | * | 
|  | * If @tail is non-zero, the target block, which can be @i or @i+1 | 
|  | * depending on @head, is reduced by @tail bytes and @tail byte block | 
|  | * is inserted after the target block. | 
|  | * | 
|  | * @chunk->map must have enough free slots to accommodate the split. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | */ | 
|  | static void pcpu_split_block(struct pcpu_chunk *chunk, int i, | 
|  | int head, int tail) | 
|  | { | 
|  | int nr_extra = !!head + !!tail; | 
|  |  | 
|  | BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); | 
|  |  | 
|  | /* insert new subblocks */ | 
|  | memmove(&chunk->map[i + nr_extra], &chunk->map[i], | 
|  | sizeof(chunk->map[0]) * (chunk->map_used - i)); | 
|  | chunk->map_used += nr_extra; | 
|  |  | 
|  | if (head) { | 
|  | chunk->map[i + 1] = chunk->map[i] - head; | 
|  | chunk->map[i++] = head; | 
|  | } | 
|  | if (tail) { | 
|  | chunk->map[i++] -= tail; | 
|  | chunk->map[i] = tail; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_area - allocate area from a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @size: wanted size in bytes | 
|  | * @align: wanted align | 
|  | * | 
|  | * Try to allocate @size bytes area aligned at @align from @chunk. | 
|  | * Note that this function only allocates the offset.  It doesn't | 
|  | * populate or map the area. | 
|  | * | 
|  | * @chunk->map must have at least two free slots. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | * | 
|  | * RETURNS: | 
|  | * Allocated offset in @chunk on success, -1 if no matching area is | 
|  | * found. | 
|  | */ | 
|  | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) | 
|  | { | 
|  | int oslot = pcpu_chunk_slot(chunk); | 
|  | int max_contig = 0; | 
|  | int i, off; | 
|  |  | 
|  | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { | 
|  | bool is_last = i + 1 == chunk->map_used; | 
|  | int head, tail; | 
|  |  | 
|  | /* extra for alignment requirement */ | 
|  | head = ALIGN(off, align) - off; | 
|  | BUG_ON(i == 0 && head != 0); | 
|  |  | 
|  | if (chunk->map[i] < 0) | 
|  | continue; | 
|  | if (chunk->map[i] < head + size) { | 
|  | max_contig = max(chunk->map[i], max_contig); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If head is small or the previous block is free, | 
|  | * merge'em.  Note that 'small' is defined as smaller | 
|  | * than sizeof(int), which is very small but isn't too | 
|  | * uncommon for percpu allocations. | 
|  | */ | 
|  | if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { | 
|  | if (chunk->map[i - 1] > 0) | 
|  | chunk->map[i - 1] += head; | 
|  | else { | 
|  | chunk->map[i - 1] -= head; | 
|  | chunk->free_size -= head; | 
|  | } | 
|  | chunk->map[i] -= head; | 
|  | off += head; | 
|  | head = 0; | 
|  | } | 
|  |  | 
|  | /* if tail is small, just keep it around */ | 
|  | tail = chunk->map[i] - head - size; | 
|  | if (tail < sizeof(int)) | 
|  | tail = 0; | 
|  |  | 
|  | /* split if warranted */ | 
|  | if (head || tail) { | 
|  | pcpu_split_block(chunk, i, head, tail); | 
|  | if (head) { | 
|  | i++; | 
|  | off += head; | 
|  | max_contig = max(chunk->map[i - 1], max_contig); | 
|  | } | 
|  | if (tail) | 
|  | max_contig = max(chunk->map[i + 1], max_contig); | 
|  | } | 
|  |  | 
|  | /* update hint and mark allocated */ | 
|  | if (is_last) | 
|  | chunk->contig_hint = max_contig; /* fully scanned */ | 
|  | else | 
|  | chunk->contig_hint = max(chunk->contig_hint, | 
|  | max_contig); | 
|  |  | 
|  | chunk->free_size -= chunk->map[i]; | 
|  | chunk->map[i] = -chunk->map[i]; | 
|  |  | 
|  | pcpu_chunk_relocate(chunk, oslot); | 
|  | return off; | 
|  | } | 
|  |  | 
|  | chunk->contig_hint = max_contig;	/* fully scanned */ | 
|  | pcpu_chunk_relocate(chunk, oslot); | 
|  |  | 
|  | /* tell the upper layer that this chunk has no matching area */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_area - free area to a pcpu_chunk | 
|  | * @chunk: chunk of interest | 
|  | * @freeme: offset of area to free | 
|  | * | 
|  | * Free area starting from @freeme to @chunk.  Note that this function | 
|  | * only modifies the allocation map.  It doesn't depopulate or unmap | 
|  | * the area. | 
|  | * | 
|  | * CONTEXT: | 
|  | * pcpu_lock. | 
|  | */ | 
|  | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | 
|  | { | 
|  | int oslot = pcpu_chunk_slot(chunk); | 
|  | int i, off; | 
|  |  | 
|  | for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) | 
|  | if (off == freeme) | 
|  | break; | 
|  | BUG_ON(off != freeme); | 
|  | BUG_ON(chunk->map[i] > 0); | 
|  |  | 
|  | chunk->map[i] = -chunk->map[i]; | 
|  | chunk->free_size += chunk->map[i]; | 
|  |  | 
|  | /* merge with previous? */ | 
|  | if (i > 0 && chunk->map[i - 1] >= 0) { | 
|  | chunk->map[i - 1] += chunk->map[i]; | 
|  | chunk->map_used--; | 
|  | memmove(&chunk->map[i], &chunk->map[i + 1], | 
|  | (chunk->map_used - i) * sizeof(chunk->map[0])); | 
|  | i--; | 
|  | } | 
|  | /* merge with next? */ | 
|  | if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { | 
|  | chunk->map[i] += chunk->map[i + 1]; | 
|  | chunk->map_used--; | 
|  | memmove(&chunk->map[i + 1], &chunk->map[i + 2], | 
|  | (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); | 
|  | } | 
|  |  | 
|  | chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); | 
|  | pcpu_chunk_relocate(chunk, oslot); | 
|  | } | 
|  |  | 
|  | static struct pcpu_chunk *pcpu_alloc_chunk(void) | 
|  | { | 
|  | struct pcpu_chunk *chunk; | 
|  |  | 
|  | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); | 
|  | if (!chunk) | 
|  | return NULL; | 
|  |  | 
|  | chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * | 
|  | sizeof(chunk->map[0])); | 
|  | if (!chunk->map) { | 
|  | kfree(chunk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | 
|  | chunk->map[chunk->map_used++] = pcpu_unit_size; | 
|  |  | 
|  | INIT_LIST_HEAD(&chunk->list); | 
|  | chunk->free_size = pcpu_unit_size; | 
|  | chunk->contig_hint = pcpu_unit_size; | 
|  |  | 
|  | return chunk; | 
|  | } | 
|  |  | 
|  | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | 
|  | { | 
|  | if (!chunk) | 
|  | return; | 
|  | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | 
|  | kfree(chunk); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Chunk management implementation. | 
|  | * | 
|  | * To allow different implementations, chunk alloc/free and | 
|  | * [de]population are implemented in a separate file which is pulled | 
|  | * into this file and compiled together.  The following functions | 
|  | * should be implemented. | 
|  | * | 
|  | * pcpu_populate_chunk		- populate the specified range of a chunk | 
|  | * pcpu_depopulate_chunk	- depopulate the specified range of a chunk | 
|  | * pcpu_create_chunk		- create a new chunk | 
|  | * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop | 
|  | * pcpu_addr_to_page		- translate address to physical address | 
|  | * pcpu_verify_alloc_info	- check alloc_info is acceptable during init | 
|  | */ | 
|  | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); | 
|  | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | 
|  | static struct pcpu_chunk *pcpu_create_chunk(void); | 
|  | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | 
|  | static struct page *pcpu_addr_to_page(void *addr); | 
|  | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | 
|  |  | 
|  | #ifdef CONFIG_NEED_PER_CPU_KM | 
|  | #include "percpu-km.c" | 
|  | #else | 
|  | #include "percpu-vm.c" | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * pcpu_chunk_addr_search - determine chunk containing specified address | 
|  | * @addr: address for which the chunk needs to be determined. | 
|  | * | 
|  | * RETURNS: | 
|  | * The address of the found chunk. | 
|  | */ | 
|  | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 
|  | { | 
|  | /* is it in the first chunk? */ | 
|  | if (pcpu_addr_in_first_chunk(addr)) { | 
|  | /* is it in the reserved area? */ | 
|  | if (pcpu_addr_in_reserved_chunk(addr)) | 
|  | return pcpu_reserved_chunk; | 
|  | return pcpu_first_chunk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The address is relative to unit0 which might be unused and | 
|  | * thus unmapped.  Offset the address to the unit space of the | 
|  | * current processor before looking it up in the vmalloc | 
|  | * space.  Note that any possible cpu id can be used here, so | 
|  | * there's no need to worry about preemption or cpu hotplug. | 
|  | */ | 
|  | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | 
|  | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc - the percpu allocator | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * @reserved: allocate from the reserved chunk if available | 
|  | * | 
|  | * Allocate percpu area of @size bytes aligned at @align. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved) | 
|  | { | 
|  | static int warn_limit = 10; | 
|  | struct pcpu_chunk *chunk; | 
|  | const char *err; | 
|  | int slot, off, new_alloc; | 
|  | unsigned long flags; | 
|  | void __percpu *ptr; | 
|  |  | 
|  | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { | 
|  | WARN(true, "illegal size (%zu) or align (%zu) for " | 
|  | "percpu allocation\n", size, align); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&pcpu_alloc_mutex); | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  |  | 
|  | /* serve reserved allocations from the reserved chunk if available */ | 
|  | if (reserved && pcpu_reserved_chunk) { | 
|  | chunk = pcpu_reserved_chunk; | 
|  |  | 
|  | if (size > chunk->contig_hint) { | 
|  | err = "alloc from reserved chunk failed"; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | while ((new_alloc = pcpu_need_to_extend(chunk))) { | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | if (pcpu_extend_area_map(chunk, new_alloc) < 0) { | 
|  | err = "failed to extend area map of reserved chunk"; | 
|  | goto fail_unlock_mutex; | 
|  | } | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | } | 
|  |  | 
|  | off = pcpu_alloc_area(chunk, size, align); | 
|  | if (off >= 0) | 
|  | goto area_found; | 
|  |  | 
|  | err = "alloc from reserved chunk failed"; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | restart: | 
|  | /* search through normal chunks */ | 
|  | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { | 
|  | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | 
|  | if (size > chunk->contig_hint) | 
|  | continue; | 
|  |  | 
|  | new_alloc = pcpu_need_to_extend(chunk); | 
|  | if (new_alloc) { | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | if (pcpu_extend_area_map(chunk, | 
|  | new_alloc) < 0) { | 
|  | err = "failed to extend area map"; | 
|  | goto fail_unlock_mutex; | 
|  | } | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | /* | 
|  | * pcpu_lock has been dropped, need to | 
|  | * restart cpu_slot list walking. | 
|  | */ | 
|  | goto restart; | 
|  | } | 
|  |  | 
|  | off = pcpu_alloc_area(chunk, size, align); | 
|  | if (off >= 0) | 
|  | goto area_found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* hmmm... no space left, create a new chunk */ | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | chunk = pcpu_create_chunk(); | 
|  | if (!chunk) { | 
|  | err = "failed to allocate new chunk"; | 
|  | goto fail_unlock_mutex; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | pcpu_chunk_relocate(chunk, -1); | 
|  | goto restart; | 
|  |  | 
|  | area_found: | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  |  | 
|  | /* populate, map and clear the area */ | 
|  | if (pcpu_populate_chunk(chunk, off, size)) { | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | pcpu_free_area(chunk, off); | 
|  | err = "failed to populate"; | 
|  | goto fail_unlock; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  |  | 
|  | /* return address relative to base address */ | 
|  | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); | 
|  | kmemleak_alloc_percpu(ptr, size); | 
|  | return ptr; | 
|  |  | 
|  | fail_unlock: | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | fail_unlock_mutex: | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  | if (warn_limit) { | 
|  | pr_warning("PERCPU: allocation failed, size=%zu align=%zu, " | 
|  | "%s\n", size, align, err); | 
|  | dump_stack(); | 
|  | if (!--warn_limit) | 
|  | pr_info("PERCPU: limit reached, disable warning\n"); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __alloc_percpu - allocate dynamic percpu area | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * | 
|  | * Allocate zero-filled percpu area of @size bytes aligned at @align. | 
|  | * Might sleep.  Might trigger writeouts. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | void __percpu *__alloc_percpu(size_t size, size_t align) | 
|  | { | 
|  | return pcpu_alloc(size, align, false); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__alloc_percpu); | 
|  |  | 
|  | /** | 
|  | * __alloc_reserved_percpu - allocate reserved percpu area | 
|  | * @size: size of area to allocate in bytes | 
|  | * @align: alignment of area (max PAGE_SIZE) | 
|  | * | 
|  | * Allocate zero-filled percpu area of @size bytes aligned at @align | 
|  | * from reserved percpu area if arch has set it up; otherwise, | 
|  | * allocation is served from the same dynamic area.  Might sleep. | 
|  | * Might trigger writeouts. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Does GFP_KERNEL allocation. | 
|  | * | 
|  | * RETURNS: | 
|  | * Percpu pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) | 
|  | { | 
|  | return pcpu_alloc(size, align, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_reclaim - reclaim fully free chunks, workqueue function | 
|  | * @work: unused | 
|  | * | 
|  | * Reclaim all fully free chunks except for the first one. | 
|  | * | 
|  | * CONTEXT: | 
|  | * workqueue context. | 
|  | */ | 
|  | static void pcpu_reclaim(struct work_struct *work) | 
|  | { | 
|  | LIST_HEAD(todo); | 
|  | struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; | 
|  | struct pcpu_chunk *chunk, *next; | 
|  |  | 
|  | mutex_lock(&pcpu_alloc_mutex); | 
|  | spin_lock_irq(&pcpu_lock); | 
|  |  | 
|  | list_for_each_entry_safe(chunk, next, head, list) { | 
|  | WARN_ON(chunk->immutable); | 
|  |  | 
|  | /* spare the first one */ | 
|  | if (chunk == list_first_entry(head, struct pcpu_chunk, list)) | 
|  | continue; | 
|  |  | 
|  | list_move(&chunk->list, &todo); | 
|  | } | 
|  |  | 
|  | spin_unlock_irq(&pcpu_lock); | 
|  |  | 
|  | list_for_each_entry_safe(chunk, next, &todo, list) { | 
|  | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); | 
|  | pcpu_destroy_chunk(chunk); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pcpu_alloc_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_percpu - free percpu area | 
|  | * @ptr: pointer to area to free | 
|  | * | 
|  | * Free percpu area @ptr. | 
|  | * | 
|  | * CONTEXT: | 
|  | * Can be called from atomic context. | 
|  | */ | 
|  | void free_percpu(void __percpu *ptr) | 
|  | { | 
|  | void *addr; | 
|  | struct pcpu_chunk *chunk; | 
|  | unsigned long flags; | 
|  | int off; | 
|  |  | 
|  | if (!ptr) | 
|  | return; | 
|  |  | 
|  | kmemleak_free_percpu(ptr); | 
|  |  | 
|  | addr = __pcpu_ptr_to_addr(ptr); | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  |  | 
|  | chunk = pcpu_chunk_addr_search(addr); | 
|  | off = addr - chunk->base_addr; | 
|  |  | 
|  | pcpu_free_area(chunk, off); | 
|  |  | 
|  | /* if there are more than one fully free chunks, wake up grim reaper */ | 
|  | if (chunk->free_size == pcpu_unit_size) { | 
|  | struct pcpu_chunk *pos; | 
|  |  | 
|  | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) | 
|  | if (pos != chunk) { | 
|  | schedule_work(&pcpu_reclaim_work); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_percpu); | 
|  |  | 
|  | /** | 
|  | * is_kernel_percpu_address - test whether address is from static percpu area | 
|  | * @addr: address to test | 
|  | * | 
|  | * Test whether @addr belongs to in-kernel static percpu area.  Module | 
|  | * static percpu areas are not considered.  For those, use | 
|  | * is_module_percpu_address(). | 
|  | * | 
|  | * RETURNS: | 
|  | * %true if @addr is from in-kernel static percpu area, %false otherwise. | 
|  | */ | 
|  | bool is_kernel_percpu_address(unsigned long addr) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | const size_t static_size = __per_cpu_end - __per_cpu_start; | 
|  | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | void *start = per_cpu_ptr(base, cpu); | 
|  |  | 
|  | if ((void *)addr >= start && (void *)addr < start + static_size) | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  | /* on UP, can't distinguish from other static vars, always false */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | 
|  | * @addr: the address to be converted to physical address | 
|  | * | 
|  | * Given @addr which is dereferenceable address obtained via one of | 
|  | * percpu access macros, this function translates it into its physical | 
|  | * address.  The caller is responsible for ensuring @addr stays valid | 
|  | * until this function finishes. | 
|  | * | 
|  | * percpu allocator has special setup for the first chunk, which currently | 
|  | * supports either embedding in linear address space or vmalloc mapping, | 
|  | * and, from the second one, the backing allocator (currently either vm or | 
|  | * km) provides translation. | 
|  | * | 
|  | * The addr can be tranlated simply without checking if it falls into the | 
|  | * first chunk. But the current code reflects better how percpu allocator | 
|  | * actually works, and the verification can discover both bugs in percpu | 
|  | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | 
|  | * code. | 
|  | * | 
|  | * RETURNS: | 
|  | * The physical address for @addr. | 
|  | */ | 
|  | phys_addr_t per_cpu_ptr_to_phys(void *addr) | 
|  | { | 
|  | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | 
|  | bool in_first_chunk = false; | 
|  | unsigned long first_low, first_high; | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* | 
|  | * The following test on unit_low/high isn't strictly | 
|  | * necessary but will speed up lookups of addresses which | 
|  | * aren't in the first chunk. | 
|  | */ | 
|  | first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); | 
|  | first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, | 
|  | pcpu_unit_pages); | 
|  | if ((unsigned long)addr >= first_low && | 
|  | (unsigned long)addr < first_high) { | 
|  | for_each_possible_cpu(cpu) { | 
|  | void *start = per_cpu_ptr(base, cpu); | 
|  |  | 
|  | if (addr >= start && addr < start + pcpu_unit_size) { | 
|  | in_first_chunk = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (in_first_chunk) { | 
|  | if (!is_vmalloc_addr(addr)) | 
|  | return __pa(addr); | 
|  | else | 
|  | return page_to_phys(vmalloc_to_page(addr)) + | 
|  | offset_in_page(addr); | 
|  | } else | 
|  | return page_to_phys(pcpu_addr_to_page(addr)) + | 
|  | offset_in_page(addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_alloc_info - allocate percpu allocation info | 
|  | * @nr_groups: the number of groups | 
|  | * @nr_units: the number of units | 
|  | * | 
|  | * Allocate ai which is large enough for @nr_groups groups containing | 
|  | * @nr_units units.  The returned ai's groups[0].cpu_map points to the | 
|  | * cpu_map array which is long enough for @nr_units and filled with | 
|  | * NR_CPUS.  It's the caller's responsibility to initialize cpu_map | 
|  | * pointer of other groups. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated pcpu_alloc_info on success, NULL on | 
|  | * failure. | 
|  | */ | 
|  | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | 
|  | int nr_units) | 
|  | { | 
|  | struct pcpu_alloc_info *ai; | 
|  | size_t base_size, ai_size; | 
|  | void *ptr; | 
|  | int unit; | 
|  |  | 
|  | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | 
|  | __alignof__(ai->groups[0].cpu_map[0])); | 
|  | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | 
|  |  | 
|  | ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); | 
|  | if (!ptr) | 
|  | return NULL; | 
|  | ai = ptr; | 
|  | ptr += base_size; | 
|  |  | 
|  | ai->groups[0].cpu_map = ptr; | 
|  |  | 
|  | for (unit = 0; unit < nr_units; unit++) | 
|  | ai->groups[0].cpu_map[unit] = NR_CPUS; | 
|  |  | 
|  | ai->nr_groups = nr_groups; | 
|  | ai->__ai_size = PFN_ALIGN(ai_size); | 
|  |  | 
|  | return ai; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_free_alloc_info - free percpu allocation info | 
|  | * @ai: pcpu_alloc_info to free | 
|  | * | 
|  | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | 
|  | */ | 
|  | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | 
|  | { | 
|  | free_bootmem(__pa(ai), ai->__ai_size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | 
|  | * @lvl: loglevel | 
|  | * @ai: allocation info to dump | 
|  | * | 
|  | * Print out information about @ai using loglevel @lvl. | 
|  | */ | 
|  | static void pcpu_dump_alloc_info(const char *lvl, | 
|  | const struct pcpu_alloc_info *ai) | 
|  | { | 
|  | int group_width = 1, cpu_width = 1, width; | 
|  | char empty_str[] = "--------"; | 
|  | int alloc = 0, alloc_end = 0; | 
|  | int group, v; | 
|  | int upa, apl;	/* units per alloc, allocs per line */ | 
|  |  | 
|  | v = ai->nr_groups; | 
|  | while (v /= 10) | 
|  | group_width++; | 
|  |  | 
|  | v = num_possible_cpus(); | 
|  | while (v /= 10) | 
|  | cpu_width++; | 
|  | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | 
|  |  | 
|  | upa = ai->alloc_size / ai->unit_size; | 
|  | width = upa * (cpu_width + 1) + group_width + 3; | 
|  | apl = rounddown_pow_of_two(max(60 / width, 1)); | 
|  |  | 
|  | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", | 
|  | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | 
|  | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | 
|  |  | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | const struct pcpu_group_info *gi = &ai->groups[group]; | 
|  | int unit = 0, unit_end = 0; | 
|  |  | 
|  | BUG_ON(gi->nr_units % upa); | 
|  | for (alloc_end += gi->nr_units / upa; | 
|  | alloc < alloc_end; alloc++) { | 
|  | if (!(alloc % apl)) { | 
|  | printk("\n"); | 
|  | printk("%spcpu-alloc: ", lvl); | 
|  | } | 
|  | printk("[%0*d] ", group_width, group); | 
|  |  | 
|  | for (unit_end += upa; unit < unit_end; unit++) | 
|  | if (gi->cpu_map[unit] != NR_CPUS) | 
|  | printk("%0*d ", cpu_width, | 
|  | gi->cpu_map[unit]); | 
|  | else | 
|  | printk("%s ", empty_str); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_setup_first_chunk - initialize the first percpu chunk | 
|  | * @ai: pcpu_alloc_info describing how to percpu area is shaped | 
|  | * @base_addr: mapped address | 
|  | * | 
|  | * Initialize the first percpu chunk which contains the kernel static | 
|  | * perpcu area.  This function is to be called from arch percpu area | 
|  | * setup path. | 
|  | * | 
|  | * @ai contains all information necessary to initialize the first | 
|  | * chunk and prime the dynamic percpu allocator. | 
|  | * | 
|  | * @ai->static_size is the size of static percpu area. | 
|  | * | 
|  | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | 
|  | * reserve after the static area in the first chunk.  This reserves | 
|  | * the first chunk such that it's available only through reserved | 
|  | * percpu allocation.  This is primarily used to serve module percpu | 
|  | * static areas on architectures where the addressing model has | 
|  | * limited offset range for symbol relocations to guarantee module | 
|  | * percpu symbols fall inside the relocatable range. | 
|  | * | 
|  | * @ai->dyn_size determines the number of bytes available for dynamic | 
|  | * allocation in the first chunk.  The area between @ai->static_size + | 
|  | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | 
|  | * | 
|  | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE | 
|  | * and equal to or larger than @ai->static_size + @ai->reserved_size + | 
|  | * @ai->dyn_size. | 
|  | * | 
|  | * @ai->atom_size is the allocation atom size and used as alignment | 
|  | * for vm areas. | 
|  | * | 
|  | * @ai->alloc_size is the allocation size and always multiple of | 
|  | * @ai->atom_size.  This is larger than @ai->atom_size if | 
|  | * @ai->unit_size is larger than @ai->atom_size. | 
|  | * | 
|  | * @ai->nr_groups and @ai->groups describe virtual memory layout of | 
|  | * percpu areas.  Units which should be colocated are put into the | 
|  | * same group.  Dynamic VM areas will be allocated according to these | 
|  | * groupings.  If @ai->nr_groups is zero, a single group containing | 
|  | * all units is assumed. | 
|  | * | 
|  | * The caller should have mapped the first chunk at @base_addr and | 
|  | * copied static data to each unit. | 
|  | * | 
|  | * If the first chunk ends up with both reserved and dynamic areas, it | 
|  | * is served by two chunks - one to serve the core static and reserved | 
|  | * areas and the other for the dynamic area.  They share the same vm | 
|  | * and page map but uses different area allocation map to stay away | 
|  | * from each other.  The latter chunk is circulated in the chunk slots | 
|  | * and available for dynamic allocation like any other chunks. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | 
|  | void *base_addr) | 
|  | { | 
|  | static char cpus_buf[4096] __initdata; | 
|  | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | 
|  | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | 
|  | size_t dyn_size = ai->dyn_size; | 
|  | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | 
|  | struct pcpu_chunk *schunk, *dchunk = NULL; | 
|  | unsigned long *group_offsets; | 
|  | size_t *group_sizes; | 
|  | unsigned long *unit_off; | 
|  | unsigned int cpu; | 
|  | int *unit_map; | 
|  | int group, unit, i; | 
|  |  | 
|  | cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask); | 
|  |  | 
|  | #define PCPU_SETUP_BUG_ON(cond)	do {					\ | 
|  | if (unlikely(cond)) {						\ | 
|  | pr_emerg("PERCPU: failed to initialize, %s", #cond);	\ | 
|  | pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\ | 
|  | pcpu_dump_alloc_info(KERN_EMERG, ai);			\ | 
|  | BUG();							\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | /* sanity checks */ | 
|  | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); | 
|  | #ifdef CONFIG_SMP | 
|  | PCPU_SETUP_BUG_ON(!ai->static_size); | 
|  | PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); | 
|  | #endif | 
|  | PCPU_SETUP_BUG_ON(!base_addr); | 
|  | PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); | 
|  | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 
|  | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 
|  | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 
|  | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); | 
|  | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | 
|  |  | 
|  | /* process group information and build config tables accordingly */ | 
|  | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); | 
|  | group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); | 
|  | unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); | 
|  | unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); | 
|  |  | 
|  | for (cpu = 0; cpu < nr_cpu_ids; cpu++) | 
|  | unit_map[cpu] = UINT_MAX; | 
|  |  | 
|  | pcpu_low_unit_cpu = NR_CPUS; | 
|  | pcpu_high_unit_cpu = NR_CPUS; | 
|  |  | 
|  | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { | 
|  | const struct pcpu_group_info *gi = &ai->groups[group]; | 
|  |  | 
|  | group_offsets[group] = gi->base_offset; | 
|  | group_sizes[group] = gi->nr_units * ai->unit_size; | 
|  |  | 
|  | for (i = 0; i < gi->nr_units; i++) { | 
|  | cpu = gi->cpu_map[i]; | 
|  | if (cpu == NR_CPUS) | 
|  | continue; | 
|  |  | 
|  | PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids); | 
|  | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); | 
|  | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | 
|  |  | 
|  | unit_map[cpu] = unit + i; | 
|  | unit_off[cpu] = gi->base_offset + i * ai->unit_size; | 
|  |  | 
|  | /* determine low/high unit_cpu */ | 
|  | if (pcpu_low_unit_cpu == NR_CPUS || | 
|  | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | 
|  | pcpu_low_unit_cpu = cpu; | 
|  | if (pcpu_high_unit_cpu == NR_CPUS || | 
|  | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | 
|  | pcpu_high_unit_cpu = cpu; | 
|  | } | 
|  | } | 
|  | pcpu_nr_units = unit; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); | 
|  |  | 
|  | /* we're done parsing the input, undefine BUG macro and dump config */ | 
|  | #undef PCPU_SETUP_BUG_ON | 
|  | pcpu_dump_alloc_info(KERN_DEBUG, ai); | 
|  |  | 
|  | pcpu_nr_groups = ai->nr_groups; | 
|  | pcpu_group_offsets = group_offsets; | 
|  | pcpu_group_sizes = group_sizes; | 
|  | pcpu_unit_map = unit_map; | 
|  | pcpu_unit_offsets = unit_off; | 
|  |  | 
|  | /* determine basic parameters */ | 
|  | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; | 
|  | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 
|  | pcpu_atom_size = ai->atom_size; | 
|  | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + | 
|  | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | 
|  |  | 
|  | /* | 
|  | * Allocate chunk slots.  The additional last slot is for | 
|  | * empty chunks. | 
|  | */ | 
|  | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | 
|  | pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); | 
|  | for (i = 0; i < pcpu_nr_slots; i++) | 
|  | INIT_LIST_HEAD(&pcpu_slot[i]); | 
|  |  | 
|  | /* | 
|  | * Initialize static chunk.  If reserved_size is zero, the | 
|  | * static chunk covers static area + dynamic allocation area | 
|  | * in the first chunk.  If reserved_size is not zero, it | 
|  | * covers static area + reserved area (mostly used for module | 
|  | * static percpu allocation). | 
|  | */ | 
|  | schunk = alloc_bootmem(pcpu_chunk_struct_size); | 
|  | INIT_LIST_HEAD(&schunk->list); | 
|  | schunk->base_addr = base_addr; | 
|  | schunk->map = smap; | 
|  | schunk->map_alloc = ARRAY_SIZE(smap); | 
|  | schunk->immutable = true; | 
|  | bitmap_fill(schunk->populated, pcpu_unit_pages); | 
|  |  | 
|  | if (ai->reserved_size) { | 
|  | schunk->free_size = ai->reserved_size; | 
|  | pcpu_reserved_chunk = schunk; | 
|  | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; | 
|  | } else { | 
|  | schunk->free_size = dyn_size; | 
|  | dyn_size = 0;			/* dynamic area covered */ | 
|  | } | 
|  | schunk->contig_hint = schunk->free_size; | 
|  |  | 
|  | schunk->map[schunk->map_used++] = -ai->static_size; | 
|  | if (schunk->free_size) | 
|  | schunk->map[schunk->map_used++] = schunk->free_size; | 
|  |  | 
|  | /* init dynamic chunk if necessary */ | 
|  | if (dyn_size) { | 
|  | dchunk = alloc_bootmem(pcpu_chunk_struct_size); | 
|  | INIT_LIST_HEAD(&dchunk->list); | 
|  | dchunk->base_addr = base_addr; | 
|  | dchunk->map = dmap; | 
|  | dchunk->map_alloc = ARRAY_SIZE(dmap); | 
|  | dchunk->immutable = true; | 
|  | bitmap_fill(dchunk->populated, pcpu_unit_pages); | 
|  |  | 
|  | dchunk->contig_hint = dchunk->free_size = dyn_size; | 
|  | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | 
|  | dchunk->map[dchunk->map_used++] = dchunk->free_size; | 
|  | } | 
|  |  | 
|  | /* link the first chunk in */ | 
|  | pcpu_first_chunk = dchunk ?: schunk; | 
|  | pcpu_chunk_relocate(pcpu_first_chunk, -1); | 
|  |  | 
|  | /* we're done */ | 
|  | pcpu_base_addr = base_addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { | 
|  | [PCPU_FC_AUTO]	= "auto", | 
|  | [PCPU_FC_EMBED]	= "embed", | 
|  | [PCPU_FC_PAGE]	= "page", | 
|  | }; | 
|  |  | 
|  | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; | 
|  |  | 
|  | static int __init percpu_alloc_setup(char *str) | 
|  | { | 
|  | if (0) | 
|  | /* nada */; | 
|  | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | 
|  | else if (!strcmp(str, "embed")) | 
|  | pcpu_chosen_fc = PCPU_FC_EMBED; | 
|  | #endif | 
|  | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
|  | else if (!strcmp(str, "page")) | 
|  | pcpu_chosen_fc = PCPU_FC_PAGE; | 
|  | #endif | 
|  | else | 
|  | pr_warning("PERCPU: unknown allocator %s specified\n", str); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("percpu_alloc", percpu_alloc_setup); | 
|  |  | 
|  | /* | 
|  | * pcpu_embed_first_chunk() is used by the generic percpu setup. | 
|  | * Build it if needed by the arch config or the generic setup is going | 
|  | * to be used. | 
|  | */ | 
|  | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ | 
|  | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | 
|  | #define BUILD_EMBED_FIRST_CHUNK | 
|  | #endif | 
|  |  | 
|  | /* build pcpu_page_first_chunk() iff needed by the arch config */ | 
|  | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | 
|  | #define BUILD_PAGE_FIRST_CHUNK | 
|  | #endif | 
|  |  | 
|  | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | 
|  | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | 
|  | /** | 
|  | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @dyn_size: minimum free size for dynamic allocation in bytes | 
|  | * @atom_size: allocation atom size | 
|  | * @cpu_distance_fn: callback to determine distance between cpus, optional | 
|  | * | 
|  | * This function determines grouping of units, their mappings to cpus | 
|  | * and other parameters considering needed percpu size, allocation | 
|  | * atom size and distances between CPUs. | 
|  | * | 
|  | * Groups are always mutliples of atom size and CPUs which are of | 
|  | * LOCAL_DISTANCE both ways are grouped together and share space for | 
|  | * units in the same group.  The returned configuration is guaranteed | 
|  | * to have CPUs on different nodes on different groups and >=75% usage | 
|  | * of allocated virtual address space. | 
|  | * | 
|  | * RETURNS: | 
|  | * On success, pointer to the new allocation_info is returned.  On | 
|  | * failure, ERR_PTR value is returned. | 
|  | */ | 
|  | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | 
|  | size_t reserved_size, size_t dyn_size, | 
|  | size_t atom_size, | 
|  | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | 
|  | { | 
|  | static int group_map[NR_CPUS] __initdata; | 
|  | static int group_cnt[NR_CPUS] __initdata; | 
|  | const size_t static_size = __per_cpu_end - __per_cpu_start; | 
|  | int nr_groups = 1, nr_units = 0; | 
|  | size_t size_sum, min_unit_size, alloc_size; | 
|  | int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */ | 
|  | int last_allocs, group, unit; | 
|  | unsigned int cpu, tcpu; | 
|  | struct pcpu_alloc_info *ai; | 
|  | unsigned int *cpu_map; | 
|  |  | 
|  | /* this function may be called multiple times */ | 
|  | memset(group_map, 0, sizeof(group_map)); | 
|  | memset(group_cnt, 0, sizeof(group_cnt)); | 
|  |  | 
|  | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | 
|  | size_sum = PFN_ALIGN(static_size + reserved_size + | 
|  | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | 
|  | dyn_size = size_sum - static_size - reserved_size; | 
|  |  | 
|  | /* | 
|  | * Determine min_unit_size, alloc_size and max_upa such that | 
|  | * alloc_size is multiple of atom_size and is the smallest | 
|  | * which can accommodate 4k aligned segments which are equal to | 
|  | * or larger than min_unit_size. | 
|  | */ | 
|  | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | 
|  |  | 
|  | alloc_size = roundup(min_unit_size, atom_size); | 
|  | upa = alloc_size / min_unit_size; | 
|  | while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | 
|  | upa--; | 
|  | max_upa = upa; | 
|  |  | 
|  | /* group cpus according to their proximity */ | 
|  | for_each_possible_cpu(cpu) { | 
|  | group = 0; | 
|  | next_group: | 
|  | for_each_possible_cpu(tcpu) { | 
|  | if (cpu == tcpu) | 
|  | break; | 
|  | if (group_map[tcpu] == group && cpu_distance_fn && | 
|  | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | 
|  | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | 
|  | group++; | 
|  | nr_groups = max(nr_groups, group + 1); | 
|  | goto next_group; | 
|  | } | 
|  | } | 
|  | group_map[cpu] = group; | 
|  | group_cnt[group]++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Expand unit size until address space usage goes over 75% | 
|  | * and then as much as possible without using more address | 
|  | * space. | 
|  | */ | 
|  | last_allocs = INT_MAX; | 
|  | for (upa = max_upa; upa; upa--) { | 
|  | int allocs = 0, wasted = 0; | 
|  |  | 
|  | if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | 
|  | continue; | 
|  |  | 
|  | for (group = 0; group < nr_groups; group++) { | 
|  | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | 
|  | allocs += this_allocs; | 
|  | wasted += this_allocs * upa - group_cnt[group]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Don't accept if wastage is over 1/3.  The | 
|  | * greater-than comparison ensures upa==1 always | 
|  | * passes the following check. | 
|  | */ | 
|  | if (wasted > num_possible_cpus() / 3) | 
|  | continue; | 
|  |  | 
|  | /* and then don't consume more memory */ | 
|  | if (allocs > last_allocs) | 
|  | break; | 
|  | last_allocs = allocs; | 
|  | best_upa = upa; | 
|  | } | 
|  | upa = best_upa; | 
|  |  | 
|  | /* allocate and fill alloc_info */ | 
|  | for (group = 0; group < nr_groups; group++) | 
|  | nr_units += roundup(group_cnt[group], upa); | 
|  |  | 
|  | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | 
|  | if (!ai) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | cpu_map = ai->groups[0].cpu_map; | 
|  |  | 
|  | for (group = 0; group < nr_groups; group++) { | 
|  | ai->groups[group].cpu_map = cpu_map; | 
|  | cpu_map += roundup(group_cnt[group], upa); | 
|  | } | 
|  |  | 
|  | ai->static_size = static_size; | 
|  | ai->reserved_size = reserved_size; | 
|  | ai->dyn_size = dyn_size; | 
|  | ai->unit_size = alloc_size / upa; | 
|  | ai->atom_size = atom_size; | 
|  | ai->alloc_size = alloc_size; | 
|  |  | 
|  | for (group = 0, unit = 0; group_cnt[group]; group++) { | 
|  | struct pcpu_group_info *gi = &ai->groups[group]; | 
|  |  | 
|  | /* | 
|  | * Initialize base_offset as if all groups are located | 
|  | * back-to-back.  The caller should update this to | 
|  | * reflect actual allocation. | 
|  | */ | 
|  | gi->base_offset = unit * ai->unit_size; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | if (group_map[cpu] == group) | 
|  | gi->cpu_map[gi->nr_units++] = cpu; | 
|  | gi->nr_units = roundup(gi->nr_units, upa); | 
|  | unit += gi->nr_units; | 
|  | } | 
|  | BUG_ON(unit != nr_units); | 
|  |  | 
|  | return ai; | 
|  | } | 
|  | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | 
|  |  | 
|  | #if defined(BUILD_EMBED_FIRST_CHUNK) | 
|  | /** | 
|  | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @dyn_size: minimum free size for dynamic allocation in bytes | 
|  | * @atom_size: allocation atom size | 
|  | * @cpu_distance_fn: callback to determine distance between cpus, optional | 
|  | * @alloc_fn: function to allocate percpu page | 
|  | * @free_fn: function to free percpu page | 
|  | * | 
|  | * This is a helper to ease setting up embedded first percpu chunk and | 
|  | * can be called where pcpu_setup_first_chunk() is expected. | 
|  | * | 
|  | * If this function is used to setup the first chunk, it is allocated | 
|  | * by calling @alloc_fn and used as-is without being mapped into | 
|  | * vmalloc area.  Allocations are always whole multiples of @atom_size | 
|  | * aligned to @atom_size. | 
|  | * | 
|  | * This enables the first chunk to piggy back on the linear physical | 
|  | * mapping which often uses larger page size.  Please note that this | 
|  | * can result in very sparse cpu->unit mapping on NUMA machines thus | 
|  | * requiring large vmalloc address space.  Don't use this allocator if | 
|  | * vmalloc space is not orders of magnitude larger than distances | 
|  | * between node memory addresses (ie. 32bit NUMA machines). | 
|  | * | 
|  | * @dyn_size specifies the minimum dynamic area size. | 
|  | * | 
|  | * If the needed size is smaller than the minimum or specified unit | 
|  | * size, the leftover is returned using @free_fn. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, | 
|  | size_t atom_size, | 
|  | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | 
|  | pcpu_fc_alloc_fn_t alloc_fn, | 
|  | pcpu_fc_free_fn_t free_fn) | 
|  | { | 
|  | void *base = (void *)ULONG_MAX; | 
|  | void **areas = NULL; | 
|  | struct pcpu_alloc_info *ai; | 
|  | size_t size_sum, areas_size, max_distance; | 
|  | int group, i, rc; | 
|  |  | 
|  | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, | 
|  | cpu_distance_fn); | 
|  | if (IS_ERR(ai)) | 
|  | return PTR_ERR(ai); | 
|  |  | 
|  | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | 
|  | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); | 
|  |  | 
|  | areas = alloc_bootmem_nopanic(areas_size); | 
|  | if (!areas) { | 
|  | rc = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* allocate, copy and determine base address */ | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | struct pcpu_group_info *gi = &ai->groups[group]; | 
|  | unsigned int cpu = NR_CPUS; | 
|  | void *ptr; | 
|  |  | 
|  | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | 
|  | cpu = gi->cpu_map[i]; | 
|  | BUG_ON(cpu == NR_CPUS); | 
|  |  | 
|  | /* allocate space for the whole group */ | 
|  | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | 
|  | if (!ptr) { | 
|  | rc = -ENOMEM; | 
|  | goto out_free_areas; | 
|  | } | 
|  | /* kmemleak tracks the percpu allocations separately */ | 
|  | kmemleak_free(ptr); | 
|  | areas[group] = ptr; | 
|  |  | 
|  | base = min(ptr, base); | 
|  |  | 
|  | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | 
|  | if (gi->cpu_map[i] == NR_CPUS) { | 
|  | /* unused unit, free whole */ | 
|  | free_fn(ptr, ai->unit_size); | 
|  | continue; | 
|  | } | 
|  | /* copy and return the unused part */ | 
|  | memcpy(ptr, __per_cpu_load, ai->static_size); | 
|  | free_fn(ptr + size_sum, ai->unit_size - size_sum); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* base address is now known, determine group base offsets */ | 
|  | max_distance = 0; | 
|  | for (group = 0; group < ai->nr_groups; group++) { | 
|  | ai->groups[group].base_offset = areas[group] - base; | 
|  | max_distance = max_t(size_t, max_distance, | 
|  | ai->groups[group].base_offset); | 
|  | } | 
|  | max_distance += ai->unit_size; | 
|  |  | 
|  | /* warn if maximum distance is further than 75% of vmalloc space */ | 
|  | if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) { | 
|  | pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " | 
|  | "space 0x%lx\n", max_distance, | 
|  | (unsigned long)(VMALLOC_END - VMALLOC_START)); | 
|  | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
|  | /* and fail if we have fallback */ | 
|  | rc = -EINVAL; | 
|  | goto out_free; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", | 
|  | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, | 
|  | ai->dyn_size, ai->unit_size); | 
|  |  | 
|  | rc = pcpu_setup_first_chunk(ai, base); | 
|  | goto out_free; | 
|  |  | 
|  | out_free_areas: | 
|  | for (group = 0; group < ai->nr_groups; group++) | 
|  | free_fn(areas[group], | 
|  | ai->groups[group].nr_units * ai->unit_size); | 
|  | out_free: | 
|  | pcpu_free_alloc_info(ai); | 
|  | if (areas) | 
|  | free_bootmem(__pa(areas), areas_size); | 
|  | return rc; | 
|  | } | 
|  | #endif /* BUILD_EMBED_FIRST_CHUNK */ | 
|  |  | 
|  | #ifdef BUILD_PAGE_FIRST_CHUNK | 
|  | /** | 
|  | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages | 
|  | * @reserved_size: the size of reserved percpu area in bytes | 
|  | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | 
|  | * @free_fn: function to free percpu page, always called with PAGE_SIZE | 
|  | * @populate_pte_fn: function to populate pte | 
|  | * | 
|  | * This is a helper to ease setting up page-remapped first percpu | 
|  | * chunk and can be called where pcpu_setup_first_chunk() is expected. | 
|  | * | 
|  | * This is the basic allocator.  Static percpu area is allocated | 
|  | * page-by-page into vmalloc area. | 
|  | * | 
|  | * RETURNS: | 
|  | * 0 on success, -errno on failure. | 
|  | */ | 
|  | int __init pcpu_page_first_chunk(size_t reserved_size, | 
|  | pcpu_fc_alloc_fn_t alloc_fn, | 
|  | pcpu_fc_free_fn_t free_fn, | 
|  | pcpu_fc_populate_pte_fn_t populate_pte_fn) | 
|  | { | 
|  | static struct vm_struct vm; | 
|  | struct pcpu_alloc_info *ai; | 
|  | char psize_str[16]; | 
|  | int unit_pages; | 
|  | size_t pages_size; | 
|  | struct page **pages; | 
|  | int unit, i, j, rc; | 
|  |  | 
|  | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | 
|  |  | 
|  | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); | 
|  | if (IS_ERR(ai)) | 
|  | return PTR_ERR(ai); | 
|  | BUG_ON(ai->nr_groups != 1); | 
|  | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | 
|  |  | 
|  | unit_pages = ai->unit_size >> PAGE_SHIFT; | 
|  |  | 
|  | /* unaligned allocations can't be freed, round up to page size */ | 
|  | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * | 
|  | sizeof(pages[0])); | 
|  | pages = alloc_bootmem(pages_size); | 
|  |  | 
|  | /* allocate pages */ | 
|  | j = 0; | 
|  | for (unit = 0; unit < num_possible_cpus(); unit++) | 
|  | for (i = 0; i < unit_pages; i++) { | 
|  | unsigned int cpu = ai->groups[0].cpu_map[unit]; | 
|  | void *ptr; | 
|  |  | 
|  | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); | 
|  | if (!ptr) { | 
|  | pr_warning("PERCPU: failed to allocate %s page " | 
|  | "for cpu%u\n", psize_str, cpu); | 
|  | goto enomem; | 
|  | } | 
|  | /* kmemleak tracks the percpu allocations separately */ | 
|  | kmemleak_free(ptr); | 
|  | pages[j++] = virt_to_page(ptr); | 
|  | } | 
|  |  | 
|  | /* allocate vm area, map the pages and copy static data */ | 
|  | vm.flags = VM_ALLOC; | 
|  | vm.size = num_possible_cpus() * ai->unit_size; | 
|  | vm_area_register_early(&vm, PAGE_SIZE); | 
|  |  | 
|  | for (unit = 0; unit < num_possible_cpus(); unit++) { | 
|  | unsigned long unit_addr = | 
|  | (unsigned long)vm.addr + unit * ai->unit_size; | 
|  |  | 
|  | for (i = 0; i < unit_pages; i++) | 
|  | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); | 
|  |  | 
|  | /* pte already populated, the following shouldn't fail */ | 
|  | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], | 
|  | unit_pages); | 
|  | if (rc < 0) | 
|  | panic("failed to map percpu area, err=%d\n", rc); | 
|  |  | 
|  | /* | 
|  | * FIXME: Archs with virtual cache should flush local | 
|  | * cache for the linear mapping here - something | 
|  | * equivalent to flush_cache_vmap() on the local cpu. | 
|  | * flush_cache_vmap() can't be used as most supporting | 
|  | * data structures are not set up yet. | 
|  | */ | 
|  |  | 
|  | /* copy static data */ | 
|  | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); | 
|  | } | 
|  |  | 
|  | /* we're ready, commit */ | 
|  | pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", | 
|  | unit_pages, psize_str, vm.addr, ai->static_size, | 
|  | ai->reserved_size, ai->dyn_size); | 
|  |  | 
|  | rc = pcpu_setup_first_chunk(ai, vm.addr); | 
|  | goto out_free_ar; | 
|  |  | 
|  | enomem: | 
|  | while (--j >= 0) | 
|  | free_fn(page_address(pages[j]), PAGE_SIZE); | 
|  | rc = -ENOMEM; | 
|  | out_free_ar: | 
|  | free_bootmem(__pa(pages), pages_size); | 
|  | pcpu_free_alloc_info(ai); | 
|  | return rc; | 
|  | } | 
|  | #endif /* BUILD_PAGE_FIRST_CHUNK */ | 
|  |  | 
|  | #ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA | 
|  | /* | 
|  | * Generic SMP percpu area setup. | 
|  | * | 
|  | * The embedding helper is used because its behavior closely resembles | 
|  | * the original non-dynamic generic percpu area setup.  This is | 
|  | * important because many archs have addressing restrictions and might | 
|  | * fail if the percpu area is located far away from the previous | 
|  | * location.  As an added bonus, in non-NUMA cases, embedding is | 
|  | * generally a good idea TLB-wise because percpu area can piggy back | 
|  | * on the physical linear memory mapping which uses large page | 
|  | * mappings on applicable archs. | 
|  | */ | 
|  | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | 
|  | EXPORT_SYMBOL(__per_cpu_offset); | 
|  |  | 
|  | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, | 
|  | size_t align) | 
|  | { | 
|  | return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); | 
|  | } | 
|  |  | 
|  | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) | 
|  | { | 
|  | free_bootmem(__pa(ptr), size); | 
|  | } | 
|  |  | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | unsigned long delta; | 
|  | unsigned int cpu; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Always reserve area for module percpu variables.  That's | 
|  | * what the legacy allocator did. | 
|  | */ | 
|  | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, | 
|  | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, | 
|  | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | 
|  | if (rc < 0) | 
|  | panic("Failed to initialize percpu areas."); | 
|  |  | 
|  | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
|  | for_each_possible_cpu(cpu) | 
|  | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | 
|  | } | 
|  | #endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | 
|  |  | 
|  | #else	/* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * UP percpu area setup. | 
|  | * | 
|  | * UP always uses km-based percpu allocator with identity mapping. | 
|  | * Static percpu variables are indistinguishable from the usual static | 
|  | * variables and don't require any special preparation. | 
|  | */ | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | const size_t unit_size = | 
|  | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | 
|  | PERCPU_DYNAMIC_RESERVE)); | 
|  | struct pcpu_alloc_info *ai; | 
|  | void *fc; | 
|  |  | 
|  | ai = pcpu_alloc_alloc_info(1, 1); | 
|  | fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  | if (!ai || !fc) | 
|  | panic("Failed to allocate memory for percpu areas."); | 
|  |  | 
|  | ai->dyn_size = unit_size; | 
|  | ai->unit_size = unit_size; | 
|  | ai->atom_size = unit_size; | 
|  | ai->alloc_size = unit_size; | 
|  | ai->groups[0].nr_units = 1; | 
|  | ai->groups[0].cpu_map[0] = 0; | 
|  |  | 
|  | if (pcpu_setup_first_chunk(ai, fc) < 0) | 
|  | panic("Failed to initialize percpu areas."); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * First and reserved chunks are initialized with temporary allocation | 
|  | * map in initdata so that they can be used before slab is online. | 
|  | * This function is called after slab is brought up and replaces those | 
|  | * with properly allocated maps. | 
|  | */ | 
|  | void __init percpu_init_late(void) | 
|  | { | 
|  | struct pcpu_chunk *target_chunks[] = | 
|  | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | 
|  | struct pcpu_chunk *chunk; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; (chunk = target_chunks[i]); i++) { | 
|  | int *map; | 
|  | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | 
|  |  | 
|  | BUILD_BUG_ON(size > PAGE_SIZE); | 
|  |  | 
|  | map = pcpu_mem_zalloc(size); | 
|  | BUG_ON(!map); | 
|  |  | 
|  | spin_lock_irqsave(&pcpu_lock, flags); | 
|  | memcpy(map, chunk->map, size); | 
|  | chunk->map = map; | 
|  | spin_unlock_irqrestore(&pcpu_lock, flags); | 
|  | } | 
|  | } |