| /* | 
 |  * Ethernet driver for Motorola MPC8xx. | 
 |  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | 
 |  * | 
 |  * I copied the basic skeleton from the lance driver, because I did not | 
 |  * know how to write the Linux driver, but I did know how the LANCE worked. | 
 |  * | 
 |  * This version of the driver is somewhat selectable for the different | 
 |  * processor/board combinations.  It works for the boards I know about | 
 |  * now, and should be easily modified to include others.  Some of the | 
 |  * configuration information is contained in <asm/commproc.h> and the | 
 |  * remainder is here. | 
 |  * | 
 |  * Buffer descriptors are kept in the CPM dual port RAM, and the frame | 
 |  * buffers are in the host memory. | 
 |  * | 
 |  * Right now, I am very watseful with the buffers.  I allocate memory | 
 |  * pages and then divide them into 2K frame buffers.  This way I know I | 
 |  * have buffers large enough to hold one frame within one buffer descriptor. | 
 |  * Once I get this working, I will use 64 or 128 byte CPM buffers, which | 
 |  * will be much more memory efficient and will easily handle lots of | 
 |  * small packets. | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/bitops.h> | 
 |  | 
 | #include <asm/8xx_immap.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/mpc8xx.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/commproc.h> | 
 |  | 
 | /* | 
 |  *				Theory of Operation | 
 |  * | 
 |  * The MPC8xx CPM performs the Ethernet processing on SCC1.  It can use | 
 |  * an aribtrary number of buffers on byte boundaries, but must have at | 
 |  * least two receive buffers to prevent constant overrun conditions. | 
 |  * | 
 |  * The buffer descriptors are allocated from the CPM dual port memory | 
 |  * with the data buffers allocated from host memory, just like all other | 
 |  * serial communication protocols.  The host memory buffers are allocated | 
 |  * from the free page pool, and then divided into smaller receive and | 
 |  * transmit buffers.  The size of the buffers should be a power of two, | 
 |  * since that nicely divides the page.  This creates a ring buffer | 
 |  * structure similar to the LANCE and other controllers. | 
 |  * | 
 |  * Like the LANCE driver: | 
 |  * The driver runs as two independent, single-threaded flows of control.  One | 
 |  * is the send-packet routine, which enforces single-threaded use by the | 
 |  * cep->tx_busy flag.  The other thread is the interrupt handler, which is | 
 |  * single threaded by the hardware and other software. | 
 |  * | 
 |  * The send packet thread has partial control over the Tx ring and the | 
 |  * 'cep->tx_busy' flag.  It sets the tx_busy flag whenever it's queuing a Tx | 
 |  * packet. If the next queue slot is empty, it clears the tx_busy flag when | 
 |  * finished otherwise it sets the 'lp->tx_full' flag. | 
 |  * | 
 |  * The MBX has a control register external to the MPC8xx that has some | 
 |  * control of the Ethernet interface.  Information is in the manual for | 
 |  * your board. | 
 |  * | 
 |  * The RPX boards have an external control/status register.  Consult the | 
 |  * programming documents for details unique to your board. | 
 |  * | 
 |  * For the TQM8xx(L) modules, there is no control register interface. | 
 |  * All functions are directly controlled using I/O pins.  See <asm/commproc.h>. | 
 |  */ | 
 |  | 
 | /* The transmitter timeout | 
 |  */ | 
 | #define TX_TIMEOUT	(2*HZ) | 
 |  | 
 | /* The number of Tx and Rx buffers.  These are allocated from the page | 
 |  * pool.  The code may assume these are power of two, so it is best | 
 |  * to keep them that size. | 
 |  * We don't need to allocate pages for the transmitter.  We just use | 
 |  * the skbuffer directly. | 
 |  */ | 
 | #ifdef CONFIG_ENET_BIG_BUFFERS | 
 | #define CPM_ENET_RX_PAGES	32 | 
 | #define CPM_ENET_RX_FRSIZE	2048 | 
 | #define CPM_ENET_RX_FRPPG	(PAGE_SIZE / CPM_ENET_RX_FRSIZE) | 
 | #define RX_RING_SIZE		(CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) | 
 | #define TX_RING_SIZE		64	/* Must be power of two */ | 
 | #define TX_RING_MOD_MASK	63	/*   for this to work */ | 
 | #else | 
 | #define CPM_ENET_RX_PAGES	4 | 
 | #define CPM_ENET_RX_FRSIZE	2048 | 
 | #define CPM_ENET_RX_FRPPG	(PAGE_SIZE / CPM_ENET_RX_FRSIZE) | 
 | #define RX_RING_SIZE		(CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) | 
 | #define TX_RING_SIZE		8	/* Must be power of two */ | 
 | #define TX_RING_MOD_MASK	7	/*   for this to work */ | 
 | #endif | 
 |  | 
 | /* The CPM stores dest/src/type, data, and checksum for receive packets. | 
 |  */ | 
 | #define PKT_MAXBUF_SIZE		1518 | 
 | #define PKT_MINBUF_SIZE		64 | 
 | #define PKT_MAXBLR_SIZE		1520 | 
 |  | 
 | /* The CPM buffer descriptors track the ring buffers.  The rx_bd_base and | 
 |  * tx_bd_base always point to the base of the buffer descriptors.  The | 
 |  * cur_rx and cur_tx point to the currently available buffer. | 
 |  * The dirty_tx tracks the current buffer that is being sent by the | 
 |  * controller.  The cur_tx and dirty_tx are equal under both completely | 
 |  * empty and completely full conditions.  The empty/ready indicator in | 
 |  * the buffer descriptor determines the actual condition. | 
 |  */ | 
 | struct scc_enet_private { | 
 | 	/* The saved address of a sent-in-place packet/buffer, for skfree(). */ | 
 | 	struct	sk_buff* tx_skbuff[TX_RING_SIZE]; | 
 | 	ushort	skb_cur; | 
 | 	ushort	skb_dirty; | 
 |  | 
 | 	/* CPM dual port RAM relative addresses. | 
 | 	*/ | 
 | 	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */ | 
 | 	cbd_t	*tx_bd_base; | 
 | 	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */ | 
 | 	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */ | 
 | 	scc_t	*sccp; | 
 |  | 
 | 	/* Virtual addresses for the receive buffers because we can't | 
 | 	 * do a __va() on them anymore. | 
 | 	 */ | 
 | 	unsigned char *rx_vaddr[RX_RING_SIZE]; | 
 | 	struct	net_device_stats stats; | 
 | 	uint	tx_full; | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | static int scc_enet_open(struct net_device *dev); | 
 | static int scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | 
 | static int scc_enet_rx(struct net_device *dev); | 
 | static void scc_enet_interrupt(void *dev_id); | 
 | static int scc_enet_close(struct net_device *dev); | 
 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev); | 
 | static void set_multicast_list(struct net_device *dev); | 
 |  | 
 | /* Get this from various configuration locations (depends on board). | 
 | */ | 
 | /*static	ushort	my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/ | 
 |  | 
 | /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards | 
 |  * use SCC2. Some even may use SCC3. | 
 |  * This is easily extended if necessary. | 
 |  */ | 
 | #if defined(CONFIG_SCC3_ENET) | 
 | #define CPM_CR_ENET	CPM_CR_CH_SCC3 | 
 | #define PROFF_ENET	PROFF_SCC3 | 
 | #define SCC_ENET	2		/* Index, not number! */ | 
 | #define CPMVEC_ENET	CPMVEC_SCC3 | 
 | #elif defined(CONFIG_SCC2_ENET) | 
 | #define CPM_CR_ENET	CPM_CR_CH_SCC2 | 
 | #define PROFF_ENET	PROFF_SCC2 | 
 | #define SCC_ENET	1		/* Index, not number! */ | 
 | #define CPMVEC_ENET	CPMVEC_SCC2 | 
 | #elif defined(CONFIG_SCC1_ENET) | 
 | #define CPM_CR_ENET	CPM_CR_CH_SCC1 | 
 | #define PROFF_ENET	PROFF_SCC1 | 
 | #define SCC_ENET	0		/* Index, not number! */ | 
 | #define CPMVEC_ENET	CPMVEC_SCC1 | 
 | #else | 
 | #error CONFIG_SCCx_ENET not defined | 
 | #endif | 
 |  | 
 | static int | 
 | scc_enet_open(struct net_device *dev) | 
 | { | 
 |  | 
 | 	/* I should reset the ring buffers here, but I don't yet know | 
 | 	 * a simple way to do that. | 
 | 	 */ | 
 |  | 
 | 	netif_start_queue(dev); | 
 | 	return 0;					/* Always succeed */ | 
 | } | 
 |  | 
 | static int | 
 | scc_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; | 
 | 	volatile cbd_t	*bdp; | 
 |  | 
 | 	/* Fill in a Tx ring entry */ | 
 | 	bdp = cep->cur_tx; | 
 |  | 
 | #ifndef final_version | 
 | 	if (bdp->cbd_sc & BD_ENET_TX_READY) { | 
 | 		/* Ooops.  All transmit buffers are full.  Bail out. | 
 | 		 * This should not happen, since cep->tx_busy should be set. | 
 | 		 */ | 
 | 		printk("%s: tx queue full!.\n", dev->name); | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Clear all of the status flags. | 
 | 	 */ | 
 | 	bdp->cbd_sc &= ~BD_ENET_TX_STATS; | 
 |  | 
 | 	/* If the frame is short, tell CPM to pad it. | 
 | 	*/ | 
 | 	if (skb->len <= ETH_ZLEN) | 
 | 		bdp->cbd_sc |= BD_ENET_TX_PAD; | 
 | 	else | 
 | 		bdp->cbd_sc &= ~BD_ENET_TX_PAD; | 
 |  | 
 | 	/* Set buffer length and buffer pointer. | 
 | 	*/ | 
 | 	bdp->cbd_datlen = skb->len; | 
 | 	bdp->cbd_bufaddr = __pa(skb->data); | 
 |  | 
 | 	/* Save skb pointer. | 
 | 	*/ | 
 | 	cep->tx_skbuff[cep->skb_cur] = skb; | 
 |  | 
 | 	cep->stats.tx_bytes += skb->len; | 
 | 	cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; | 
 |  | 
 | 	/* Push the data cache so the CPM does not get stale memory | 
 | 	 * data. | 
 | 	 */ | 
 | 	flush_dcache_range((unsigned long)(skb->data), | 
 | 					(unsigned long)(skb->data + skb->len)); | 
 |  | 
 | 	spin_lock_irq(&cep->lock); | 
 |  | 
 | 	/* Send it on its way.  Tell CPM its ready, interrupt when done, | 
 | 	 * its the last BD of the frame, and to put the CRC on the end. | 
 | 	 */ | 
 | 	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 |  | 
 | 	/* If this was the last BD in the ring, start at the beginning again. | 
 | 	*/ | 
 | 	if (bdp->cbd_sc & BD_ENET_TX_WRAP) | 
 | 		bdp = cep->tx_bd_base; | 
 | 	else | 
 | 		bdp++; | 
 |  | 
 | 	if (bdp->cbd_sc & BD_ENET_TX_READY) { | 
 | 		netif_stop_queue(dev); | 
 | 		cep->tx_full = 1; | 
 | 	} | 
 |  | 
 | 	cep->cur_tx = (cbd_t *)bdp; | 
 |  | 
 | 	spin_unlock_irq(&cep->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | scc_enet_timeout(struct net_device *dev) | 
 | { | 
 | 	struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; | 
 |  | 
 | 	printk("%s: transmit timed out.\n", dev->name); | 
 | 	cep->stats.tx_errors++; | 
 | #ifndef final_version | 
 | 	{ | 
 | 		int	i; | 
 | 		cbd_t	*bdp; | 
 | 		printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", | 
 | 		       cep->cur_tx, cep->tx_full ? " (full)" : "", | 
 | 		       cep->cur_rx); | 
 | 		bdp = cep->tx_bd_base; | 
 | 		for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) | 
 | 			printk("%04x %04x %08x\n", | 
 | 			       bdp->cbd_sc, | 
 | 			       bdp->cbd_datlen, | 
 | 			       bdp->cbd_bufaddr); | 
 | 		bdp = cep->rx_bd_base; | 
 | 		for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) | 
 | 			printk("%04x %04x %08x\n", | 
 | 			       bdp->cbd_sc, | 
 | 			       bdp->cbd_datlen, | 
 | 			       bdp->cbd_bufaddr); | 
 | 	} | 
 | #endif | 
 | 	if (!cep->tx_full) | 
 | 		netif_wake_queue(dev); | 
 | } | 
 |  | 
 | /* The interrupt handler. | 
 |  * This is called from the CPM handler, not the MPC core interrupt. | 
 |  */ | 
 | static void | 
 | scc_enet_interrupt(void *dev_id) | 
 | { | 
 | 	struct	net_device *dev = dev_id; | 
 | 	volatile struct	scc_enet_private *cep; | 
 | 	volatile cbd_t	*bdp; | 
 | 	ushort	int_events; | 
 | 	int	must_restart; | 
 |  | 
 | 	cep = (struct scc_enet_private *)dev->priv; | 
 |  | 
 | 	/* Get the interrupt events that caused us to be here. | 
 | 	*/ | 
 | 	int_events = cep->sccp->scc_scce; | 
 | 	cep->sccp->scc_scce = int_events; | 
 | 	must_restart = 0; | 
 |  | 
 | 	/* Handle receive event in its own function. | 
 | 	*/ | 
 | 	if (int_events & SCCE_ENET_RXF) | 
 | 		scc_enet_rx(dev_id); | 
 |  | 
 | 	/* Check for a transmit error.  The manual is a little unclear | 
 | 	 * about this, so the debug code until I get it figured out.  It | 
 | 	 * appears that if TXE is set, then TXB is not set.  However, | 
 | 	 * if carrier sense is lost during frame transmission, the TXE | 
 | 	 * bit is set, "and continues the buffer transmission normally." | 
 | 	 * I don't know if "normally" implies TXB is set when the buffer | 
 | 	 * descriptor is closed.....trial and error :-). | 
 | 	 */ | 
 |  | 
 | 	/* Transmit OK, or non-fatal error.  Update the buffer descriptors. | 
 | 	*/ | 
 | 	if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { | 
 | 	    spin_lock(&cep->lock); | 
 | 	    bdp = cep->dirty_tx; | 
 | 	    while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { | 
 | 		if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) | 
 | 		    break; | 
 |  | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */ | 
 | 			cep->stats.tx_heartbeat_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */ | 
 | 			cep->stats.tx_window_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */ | 
 | 			cep->stats.tx_aborted_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */ | 
 | 			cep->stats.tx_fifo_errors++; | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */ | 
 | 			cep->stats.tx_carrier_errors++; | 
 |  | 
 |  | 
 | 		/* No heartbeat or Lost carrier are not really bad errors. | 
 | 		 * The others require a restart transmit command. | 
 | 		 */ | 
 | 		if (bdp->cbd_sc & | 
 | 		    (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { | 
 | 			must_restart = 1; | 
 | 			cep->stats.tx_errors++; | 
 | 		} | 
 |  | 
 | 		cep->stats.tx_packets++; | 
 |  | 
 | 		/* Deferred means some collisions occurred during transmit, | 
 | 		 * but we eventually sent the packet OK. | 
 | 		 */ | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_DEF) | 
 | 			cep->stats.collisions++; | 
 |  | 
 | 		/* Free the sk buffer associated with this last transmit. | 
 | 		*/ | 
 | 		dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); | 
 | 		cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; | 
 |  | 
 | 		/* Update pointer to next buffer descriptor to be transmitted. | 
 | 		*/ | 
 | 		if (bdp->cbd_sc & BD_ENET_TX_WRAP) | 
 | 			bdp = cep->tx_bd_base; | 
 | 		else | 
 | 			bdp++; | 
 |  | 
 | 		/* I don't know if we can be held off from processing these | 
 | 		 * interrupts for more than one frame time.  I really hope | 
 | 		 * not.  In such a case, we would now want to check the | 
 | 		 * currently available BD (cur_tx) and determine if any | 
 | 		 * buffers between the dirty_tx and cur_tx have also been | 
 | 		 * sent.  We would want to process anything in between that | 
 | 		 * does not have BD_ENET_TX_READY set. | 
 | 		 */ | 
 |  | 
 | 		/* Since we have freed up a buffer, the ring is no longer | 
 | 		 * full. | 
 | 		 */ | 
 | 		if (cep->tx_full) { | 
 | 			cep->tx_full = 0; | 
 | 			if (netif_queue_stopped(dev)) | 
 | 				netif_wake_queue(dev); | 
 | 		} | 
 |  | 
 | 		cep->dirty_tx = (cbd_t *)bdp; | 
 | 	    } | 
 |  | 
 | 	    if (must_restart) { | 
 | 		volatile cpm8xx_t *cp; | 
 |  | 
 | 		/* Some transmit errors cause the transmitter to shut | 
 | 		 * down.  We now issue a restart transmit.  Since the | 
 | 		 * errors close the BD and update the pointers, the restart | 
 | 		 * _should_ pick up without having to reset any of our | 
 | 		 * pointers either. | 
 | 		 */ | 
 | 		cp = cpmp; | 
 | 		cp->cp_cpcr = | 
 | 		    mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG; | 
 | 		while (cp->cp_cpcr & CPM_CR_FLG); | 
 | 	    } | 
 | 	    spin_unlock(&cep->lock); | 
 | 	} | 
 |  | 
 | 	/* Check for receive busy, i.e. packets coming but no place to | 
 | 	 * put them.  This "can't happen" because the receive interrupt | 
 | 	 * is tossing previous frames. | 
 | 	 */ | 
 | 	if (int_events & SCCE_ENET_BSY) { | 
 | 		cep->stats.rx_dropped++; | 
 | 		printk("CPM ENET: BSY can't happen.\n"); | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* During a receive, the cur_rx points to the current incoming buffer. | 
 |  * When we update through the ring, if the next incoming buffer has | 
 |  * not been given to the system, we just set the empty indicator, | 
 |  * effectively tossing the packet. | 
 |  */ | 
 | static int | 
 | scc_enet_rx(struct net_device *dev) | 
 | { | 
 | 	struct	scc_enet_private *cep; | 
 | 	volatile cbd_t	*bdp; | 
 | 	struct	sk_buff *skb; | 
 | 	ushort	pkt_len; | 
 |  | 
 | 	cep = (struct scc_enet_private *)dev->priv; | 
 |  | 
 | 	/* First, grab all of the stats for the incoming packet. | 
 | 	 * These get messed up if we get called due to a busy condition. | 
 | 	 */ | 
 | 	bdp = cep->cur_rx; | 
 |  | 
 | for (;;) { | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_EMPTY) | 
 | 		break; | 
 |  | 
 | #ifndef final_version | 
 | 	/* Since we have allocated space to hold a complete frame, both | 
 | 	 * the first and last indicators should be set. | 
 | 	 */ | 
 | 	if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != | 
 | 		(BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) | 
 | 			printk("CPM ENET: rcv is not first+last\n"); | 
 | #endif | 
 |  | 
 | 	/* Frame too long or too short. | 
 | 	*/ | 
 | 	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) | 
 | 		cep->stats.rx_length_errors++; | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */ | 
 | 		cep->stats.rx_frame_errors++; | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */ | 
 | 		cep->stats.rx_crc_errors++; | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */ | 
 | 		cep->stats.rx_crc_errors++; | 
 |  | 
 | 	/* Report late collisions as a frame error. | 
 | 	 * On this error, the BD is closed, but we don't know what we | 
 | 	 * have in the buffer.  So, just drop this frame on the floor. | 
 | 	 */ | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_CL) { | 
 | 		cep->stats.rx_frame_errors++; | 
 | 	} | 
 | 	else { | 
 |  | 
 | 		/* Process the incoming frame. | 
 | 		*/ | 
 | 		cep->stats.rx_packets++; | 
 | 		pkt_len = bdp->cbd_datlen; | 
 | 		cep->stats.rx_bytes += pkt_len; | 
 |  | 
 | 		/* This does 16 byte alignment, much more than we need. | 
 | 		 * The packet length includes FCS, but we don't want to | 
 | 		 * include that when passing upstream as it messes up | 
 | 		 * bridging applications. | 
 | 		 */ | 
 | 		skb = dev_alloc_skb(pkt_len-4); | 
 |  | 
 | 		if (skb == NULL) { | 
 | 			printk("%s: Memory squeeze, dropping packet.\n", dev->name); | 
 | 			cep->stats.rx_dropped++; | 
 | 		} | 
 | 		else { | 
 | 			skb->dev = dev; | 
 | 			skb_put(skb,pkt_len-4);	/* Make room */ | 
 | 			eth_copy_and_sum(skb, | 
 | 				cep->rx_vaddr[bdp - cep->rx_bd_base], | 
 | 				pkt_len-4, 0); | 
 | 			skb->protocol=eth_type_trans(skb,dev); | 
 | 			netif_rx(skb); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Clear the status flags for this buffer. | 
 | 	*/ | 
 | 	bdp->cbd_sc &= ~BD_ENET_RX_STATS; | 
 |  | 
 | 	/* Mark the buffer empty. | 
 | 	*/ | 
 | 	bdp->cbd_sc |= BD_ENET_RX_EMPTY; | 
 |  | 
 | 	/* Update BD pointer to next entry. | 
 | 	*/ | 
 | 	if (bdp->cbd_sc & BD_ENET_RX_WRAP) | 
 | 		bdp = cep->rx_bd_base; | 
 | 	else | 
 | 		bdp++; | 
 |  | 
 |    } | 
 | 	cep->cur_rx = (cbd_t *)bdp; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | scc_enet_close(struct net_device *dev) | 
 | { | 
 | 	/* Don't know what to do yet. | 
 | 	*/ | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct net_device_stats *scc_enet_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct scc_enet_private *cep = (struct scc_enet_private *)dev->priv; | 
 |  | 
 | 	return &cep->stats; | 
 | } | 
 |  | 
 | /* Set or clear the multicast filter for this adaptor. | 
 |  * Skeleton taken from sunlance driver. | 
 |  * The CPM Ethernet implementation allows Multicast as well as individual | 
 |  * MAC address filtering.  Some of the drivers check to make sure it is | 
 |  * a group multicast address, and discard those that are not.  I guess I | 
 |  * will do the same for now, but just remove the test if you want | 
 |  * individual filtering as well (do the upper net layers want or support | 
 |  * this kind of feature?). | 
 |  */ | 
 |  | 
 | static void set_multicast_list(struct net_device *dev) | 
 | { | 
 | 	struct	scc_enet_private *cep; | 
 | 	struct	dev_mc_list *dmi; | 
 | 	u_char	*mcptr, *tdptr; | 
 | 	volatile scc_enet_t *ep; | 
 | 	int	i, j; | 
 | 	cep = (struct scc_enet_private *)dev->priv; | 
 |  | 
 | 	/* Get pointer to SCC area in parameter RAM. | 
 | 	*/ | 
 | 	ep = (scc_enet_t *)dev->base_addr; | 
 |  | 
 | 	if (dev->flags&IFF_PROMISC) { | 
 | 	 | 
 | 		/* Log any net taps. */ | 
 | 		printk("%s: Promiscuous mode enabled.\n", dev->name); | 
 | 		cep->sccp->scc_psmr |= SCC_PSMR_PRO; | 
 | 	} else { | 
 |  | 
 | 		cep->sccp->scc_psmr &= ~SCC_PSMR_PRO; | 
 |  | 
 | 		if (dev->flags & IFF_ALLMULTI) { | 
 | 			/* Catch all multicast addresses, so set the | 
 | 			 * filter to all 1's. | 
 | 			 */ | 
 | 			ep->sen_gaddr1 = 0xffff; | 
 | 			ep->sen_gaddr2 = 0xffff; | 
 | 			ep->sen_gaddr3 = 0xffff; | 
 | 			ep->sen_gaddr4 = 0xffff; | 
 | 		} | 
 | 		else { | 
 | 			/* Clear filter and add the addresses in the list. | 
 | 			*/ | 
 | 			ep->sen_gaddr1 = 0; | 
 | 			ep->sen_gaddr2 = 0; | 
 | 			ep->sen_gaddr3 = 0; | 
 | 			ep->sen_gaddr4 = 0; | 
 |  | 
 | 			dmi = dev->mc_list; | 
 |  | 
 | 			for (i=0; i<dev->mc_count; i++) { | 
 | 		 | 
 | 				/* Only support group multicast for now. | 
 | 				*/ | 
 | 				if (!(dmi->dmi_addr[0] & 1)) | 
 | 					continue; | 
 |  | 
 | 				/* The address in dmi_addr is LSB first, | 
 | 				 * and taddr is MSB first.  We have to | 
 | 				 * copy bytes MSB first from dmi_addr. | 
 | 				 */ | 
 | 				mcptr = (u_char *)dmi->dmi_addr + 5; | 
 | 				tdptr = (u_char *)&ep->sen_taddrh; | 
 | 				for (j=0; j<6; j++) | 
 | 					*tdptr++ = *mcptr--; | 
 |  | 
 | 				/* Ask CPM to run CRC and set bit in | 
 | 				 * filter mask. | 
 | 				 */ | 
 | 				cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG; | 
 | 				/* this delay is necessary here -- Cort */ | 
 | 				udelay(10); | 
 | 				while (cpmp->cp_cpcr & CPM_CR_FLG); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* Initialize the CPM Ethernet on SCC.  If EPPC-Bug loaded us, or performed | 
 |  * some other network I/O, a whole bunch of this has already been set up. | 
 |  * It is no big deal if we do it again, we just have to disable the | 
 |  * transmit and receive to make sure we don't catch the CPM with some | 
 |  * inconsistent control information. | 
 |  */ | 
 | static int __init scc_enet_init(void) | 
 | { | 
 | 	struct net_device *dev; | 
 | 	struct scc_enet_private *cep; | 
 | 	int i, j, k, err; | 
 | 	uint dp_offset; | 
 | 	unsigned char	*eap, *ba; | 
 | 	dma_addr_t	mem_addr; | 
 | 	bd_t		*bd; | 
 | 	volatile	cbd_t		*bdp; | 
 | 	volatile	cpm8xx_t	*cp; | 
 | 	volatile	scc_t		*sccp; | 
 | 	volatile	scc_enet_t	*ep; | 
 | 	volatile	immap_t		*immap; | 
 |  | 
 | 	cp = cpmp;	/* Get pointer to Communication Processor */ | 
 |  | 
 | 	immap = (immap_t *)(mfspr(SPRN_IMMR) & 0xFFFF0000);	/* and to internal registers */ | 
 |  | 
 | 	bd = (bd_t *)__res; | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(*cep)); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cep = dev->priv; | 
 | 	spin_lock_init(&cep->lock); | 
 |  | 
 | 	/* Get pointer to SCC area in parameter RAM. | 
 | 	*/ | 
 | 	ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]); | 
 |  | 
 | 	/* And another to the SCC register area. | 
 | 	*/ | 
 | 	sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]); | 
 | 	cep->sccp = (scc_t *)sccp;		/* Keep the pointer handy */ | 
 |  | 
 | 	/* Disable receive and transmit in case EPPC-Bug started it. | 
 | 	*/ | 
 | 	sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); | 
 |  | 
 | 	/* Cookbook style from the MPC860 manual..... | 
 | 	 * Not all of this is necessary if EPPC-Bug has initialized | 
 | 	 * the network. | 
 | 	 * So far we are lucky, all board configurations use the same | 
 | 	 * pins, or at least the same I/O Port for these functions..... | 
 | 	 * It can't last though...... | 
 | 	 */ | 
 |  | 
 | #if (defined(PA_ENET_RXD) && defined(PA_ENET_TXD)) | 
 | 	/* Configure port A pins for Txd and Rxd. | 
 | 	*/ | 
 | 	immap->im_ioport.iop_papar |=  (PA_ENET_RXD | PA_ENET_TXD); | 
 | 	immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD); | 
 | 	immap->im_ioport.iop_paodr &=                ~PA_ENET_TXD; | 
 | #elif (defined(PB_ENET_RXD) && defined(PB_ENET_TXD)) | 
 | 	/* Configure port B pins for Txd and Rxd. | 
 | 	*/ | 
 | 	immap->im_cpm.cp_pbpar |=  (PB_ENET_RXD | PB_ENET_TXD); | 
 | 	immap->im_cpm.cp_pbdir &= ~(PB_ENET_RXD | PB_ENET_TXD); | 
 | 	immap->im_cpm.cp_pbodr &=		 ~PB_ENET_TXD; | 
 | #else | 
 | #error Exactly ONE pair of PA_ENET_[RT]XD, PB_ENET_[RT]XD must be defined | 
 | #endif | 
 |  | 
 | #if defined(PC_ENET_LBK) | 
 | 	/* Configure port C pins to disable External Loopback | 
 | 	 */ | 
 | 	immap->im_ioport.iop_pcpar &= ~PC_ENET_LBK; | 
 | 	immap->im_ioport.iop_pcdir |=  PC_ENET_LBK; | 
 | 	immap->im_ioport.iop_pcso  &= ~PC_ENET_LBK; | 
 | 	immap->im_ioport.iop_pcdat &= ~PC_ENET_LBK;	/* Disable Loopback */ | 
 | #endif	/* PC_ENET_LBK */ | 
 |  | 
 | #ifdef PE_ENET_TCLK | 
 | 	/* Configure port E for TCLK and RCLK. | 
 | 	*/ | 
 | 	cp->cp_pepar |=  (PE_ENET_TCLK | PE_ENET_RCLK); | 
 | 	cp->cp_pedir &= ~(PE_ENET_TCLK | PE_ENET_RCLK); | 
 | 	cp->cp_peso  &= ~(PE_ENET_TCLK | PE_ENET_RCLK); | 
 | #else | 
 | 	/* Configure port A for TCLK and RCLK. | 
 | 	*/ | 
 | 	immap->im_ioport.iop_papar |=  (PA_ENET_TCLK | PA_ENET_RCLK); | 
 | 	immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK); | 
 | #endif | 
 |  | 
 | 	/* Configure port C pins to enable CLSN and RENA. | 
 | 	*/ | 
 | 	immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA); | 
 | 	immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA); | 
 | 	immap->im_ioport.iop_pcso  |=  (PC_ENET_CLSN | PC_ENET_RENA); | 
 |  | 
 | 	/* Configure Serial Interface clock routing. | 
 | 	 * First, clear all SCC bits to zero, then set the ones we want. | 
 | 	 */ | 
 | 	cp->cp_sicr &= ~SICR_ENET_MASK; | 
 | 	cp->cp_sicr |=  SICR_ENET_CLKRT; | 
 |  | 
 | 	/* Manual says set SDDR, but I can't find anything with that | 
 | 	 * name.  I think it is a misprint, and should be SDCR.  This | 
 | 	 * has already been set by the communication processor initialization. | 
 | 	 */ | 
 |  | 
 | 	/* Allocate space for the buffer descriptors in the DP ram. | 
 | 	 * These are relative offsets in the DP ram address space. | 
 | 	 * Initialize base addresses for the buffer descriptors. | 
 | 	 */ | 
 | 	dp_offset = cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE, 8); | 
 | 	ep->sen_genscc.scc_rbase = dp_offset; | 
 | 	cep->rx_bd_base = cpm_dpram_addr(dp_offset); | 
 |  | 
 | 	dp_offset = cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE, 8); | 
 | 	ep->sen_genscc.scc_tbase = dp_offset; | 
 | 	cep->tx_bd_base = cpm_dpram_addr(dp_offset); | 
 |  | 
 | 	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; | 
 | 	cep->cur_rx = cep->rx_bd_base; | 
 |  | 
 | 	/* Issue init Rx BD command for SCC. | 
 | 	 * Manual says to perform an Init Rx parameters here.  We have | 
 | 	 * to perform both Rx and Tx because the SCC may have been | 
 | 	 * already running. | 
 | 	 * In addition, we have to do it later because we don't yet have | 
 | 	 * all of the BD control/status set properly. | 
 | 	cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG; | 
 | 	while (cp->cp_cpcr & CPM_CR_FLG); | 
 | 	 */ | 
 |  | 
 | 	/* Initialize function code registers for big-endian. | 
 | 	*/ | 
 | 	ep->sen_genscc.scc_rfcr = SCC_EB; | 
 | 	ep->sen_genscc.scc_tfcr = SCC_EB; | 
 |  | 
 | 	/* Set maximum bytes per receive buffer. | 
 | 	 * This appears to be an Ethernet frame size, not the buffer | 
 | 	 * fragment size.  It must be a multiple of four. | 
 | 	 */ | 
 | 	ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; | 
 |  | 
 | 	/* Set CRC preset and mask. | 
 | 	*/ | 
 | 	ep->sen_cpres = 0xffffffff; | 
 | 	ep->sen_cmask = 0xdebb20e3; | 
 |  | 
 | 	ep->sen_crcec = 0;	/* CRC Error counter */ | 
 | 	ep->sen_alec = 0;	/* alignment error counter */ | 
 | 	ep->sen_disfc = 0;	/* discard frame counter */ | 
 |  | 
 | 	ep->sen_pads = 0x8888;	/* Tx short frame pad character */ | 
 | 	ep->sen_retlim = 15;	/* Retry limit threshold */ | 
 |  | 
 | 	ep->sen_maxflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */ | 
 | 	ep->sen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */ | 
 |  | 
 | 	ep->sen_maxd1 = PKT_MAXBLR_SIZE;	/* maximum DMA1 length */ | 
 | 	ep->sen_maxd2 = PKT_MAXBLR_SIZE;	/* maximum DMA2 length */ | 
 |  | 
 | 	/* Clear hash tables. | 
 | 	*/ | 
 | 	ep->sen_gaddr1 = 0; | 
 | 	ep->sen_gaddr2 = 0; | 
 | 	ep->sen_gaddr3 = 0; | 
 | 	ep->sen_gaddr4 = 0; | 
 | 	ep->sen_iaddr1 = 0; | 
 | 	ep->sen_iaddr2 = 0; | 
 | 	ep->sen_iaddr3 = 0; | 
 | 	ep->sen_iaddr4 = 0; | 
 |  | 
 | 	/* Set Ethernet station address. | 
 | 	 */ | 
 | 	eap = (unsigned char *)&(ep->sen_paddrh); | 
 | 	for (i=5; i>=0; i--) | 
 | 		*eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; | 
 |  | 
 | 	ep->sen_pper = 0;	/* 'cause the book says so */ | 
 | 	ep->sen_taddrl = 0;	/* temp address (LSB) */ | 
 | 	ep->sen_taddrm = 0; | 
 | 	ep->sen_taddrh = 0;	/* temp address (MSB) */ | 
 |  | 
 | 	/* Now allocate the host memory pages and initialize the | 
 | 	 * buffer descriptors. | 
 | 	 */ | 
 | 	bdp = cep->tx_bd_base; | 
 | 	for (i=0; i<TX_RING_SIZE; i++) { | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		bdp->cbd_sc = 0; | 
 | 		bdp->cbd_bufaddr = 0; | 
 | 		bdp++; | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	bdp = cep->rx_bd_base; | 
 | 	k = 0; | 
 | 	for (i=0; i<CPM_ENET_RX_PAGES; i++) { | 
 |  | 
 | 		/* Allocate a page. | 
 | 		*/ | 
 | 		ba = (unsigned char *)dma_alloc_coherent(NULL, PAGE_SIZE, | 
 | 				&mem_addr, GFP_KERNEL); | 
 | 		/* BUG: no check for failure */ | 
 |  | 
 | 		/* Initialize the BD for every fragment in the page. | 
 | 		*/ | 
 | 		for (j=0; j<CPM_ENET_RX_FRPPG; j++) { | 
 | 			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; | 
 | 			bdp->cbd_bufaddr = mem_addr; | 
 | 			cep->rx_vaddr[k++] = ba; | 
 | 			mem_addr += CPM_ENET_RX_FRSIZE; | 
 | 			ba += CPM_ENET_RX_FRSIZE; | 
 | 			bdp++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set the last buffer to wrap. | 
 | 	*/ | 
 | 	bdp--; | 
 | 	bdp->cbd_sc |= BD_SC_WRAP; | 
 |  | 
 | 	/* Let's re-initialize the channel now.  We have to do it later | 
 | 	 * than the manual describes because we have just now finished | 
 | 	 * the BD initialization. | 
 | 	 */ | 
 | 	cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG; | 
 | 	while (cp->cp_cpcr & CPM_CR_FLG); | 
 |  | 
 | 	cep->skb_cur = cep->skb_dirty = 0; | 
 |  | 
 | 	sccp->scc_scce = 0xffff;	/* Clear any pending events */ | 
 |  | 
 | 	/* Enable interrupts for transmit error, complete frame | 
 | 	 * received, and any transmit buffer we have also set the | 
 | 	 * interrupt flag. | 
 | 	 */ | 
 | 	sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); | 
 |  | 
 | 	/* Install our interrupt handler. | 
 | 	*/ | 
 | 	cpm_install_handler(CPMVEC_ENET, scc_enet_interrupt, dev); | 
 |  | 
 | 	/* Set GSMR_H to enable all normal operating modes. | 
 | 	 * Set GSMR_L to enable Ethernet to MC68160. | 
 | 	 */ | 
 | 	sccp->scc_gsmrh = 0; | 
 | 	sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); | 
 |  | 
 | 	/* Set sync/delimiters. | 
 | 	*/ | 
 | 	sccp->scc_dsr = 0xd555; | 
 |  | 
 | 	/* Set processing mode.  Use Ethernet CRC, catch broadcast, and | 
 | 	 * start frame search 22 bit times after RENA. | 
 | 	 */ | 
 | 	sccp->scc_psmr = (SCC_PSMR_ENCRC | SCC_PSMR_NIB22); | 
 |  | 
 | 	/* It is now OK to enable the Ethernet transmitter. | 
 | 	 * Unfortunately, there are board implementation differences here. | 
 | 	 */ | 
 | #if   (!defined (PB_ENET_TENA) &&  defined (PC_ENET_TENA) && !defined (PE_ENET_TENA)) | 
 | 	immap->im_ioport.iop_pcpar |=  PC_ENET_TENA; | 
 | 	immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA; | 
 | #elif ( defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && !defined (PE_ENET_TENA)) | 
 | 	cp->cp_pbpar |= PB_ENET_TENA; | 
 | 	cp->cp_pbdir |= PB_ENET_TENA; | 
 | #elif ( !defined (PB_ENET_TENA) && !defined (PC_ENET_TENA) && defined (PE_ENET_TENA)) | 
 | 	cp->cp_pepar |=  PE_ENET_TENA; | 
 | 	cp->cp_pedir &= ~PE_ENET_TENA; | 
 | 	cp->cp_peso  |=  PE_ENET_TENA; | 
 | #else | 
 | #error Configuration Error: define exactly ONE of PB_ENET_TENA, PC_ENET_TENA, PE_ENET_TENA | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC) | 
 | 	/* And while we are here, set the configuration to enable ethernet. | 
 | 	*/ | 
 | 	*((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK; | 
 | 	*((volatile uint *)RPX_CSR_ADDR) |= | 
 | 			(BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_BSEIP | 
 | 	/* BSE uses port B and C for PHY control. | 
 | 	*/ | 
 | 	cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS); | 
 | 	cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); | 
 | 	cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); | 
 |  | 
 | 	immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK; | 
 | 	immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK; | 
 | 	immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK; | 
 | 	immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_FADS | 
 | 	cp->cp_pbpar |= PB_ENET_TENA; | 
 | 	cp->cp_pbdir |= PB_ENET_TENA; | 
 |  | 
 | 	/* Enable the EEST PHY. | 
 | 	*/ | 
 | 	*((volatile uint *)BCSR1) &= ~BCSR1_ETHEN; | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_MPC885ADS | 
 |  | 
 | 	/* Deassert PHY reset and enable the PHY. | 
 | 	 */ | 
 | 	{ | 
 | 		volatile uint __iomem *bcsr = ioremap(BCSR_ADDR, BCSR_SIZE); | 
 | 		uint tmp; | 
 |  | 
 | 		tmp = in_be32(bcsr + 1 /* BCSR1 */); | 
 | 		tmp |= BCSR1_ETHEN; | 
 | 		out_be32(bcsr + 1, tmp); | 
 | 		tmp = in_be32(bcsr + 4 /* BCSR4 */); | 
 | 		tmp |= BCSR4_ETH10_RST; | 
 | 		out_be32(bcsr + 4, tmp); | 
 | 		iounmap(bcsr); | 
 | 	} | 
 |  | 
 | 	/* On MPC885ADS SCC ethernet PHY defaults to the full duplex mode | 
 | 	 * upon reset. SCC is set to half duplex by default. So this | 
 | 	 * inconsistency should be better fixed by the software. | 
 | 	 */ | 
 | #endif | 
 |  | 
 | 	dev->base_addr = (unsigned long)ep; | 
 | #if 0 | 
 | 	dev->name = "CPM_ENET"; | 
 | #endif | 
 |  | 
 | 	/* The CPM Ethernet specific entries in the device structure. */ | 
 | 	dev->open = scc_enet_open; | 
 | 	dev->hard_start_xmit = scc_enet_start_xmit; | 
 | 	dev->tx_timeout = scc_enet_timeout; | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 	dev->stop = scc_enet_close; | 
 | 	dev->get_stats = scc_enet_get_stats; | 
 | 	dev->set_multicast_list = set_multicast_list; | 
 |  | 
 | 	err = register_netdev(dev); | 
 | 	if (err) { | 
 | 		free_netdev(dev); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* And last, enable the transmit and receive processing. | 
 | 	*/ | 
 | 	sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); | 
 |  | 
 | 	printk("%s: CPM ENET Version 0.2 on SCC%d, ", dev->name, SCC_ENET+1); | 
 | 	for (i=0; i<5; i++) | 
 | 		printk("%02x:", dev->dev_addr[i]); | 
 | 	printk("%02x\n", dev->dev_addr[5]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(scc_enet_init); | 
 |  |