|  | /* | 
|  | * Audio driver for the NeoMagic 256AV and 256ZX chipsets in native | 
|  | * mode, with AC97 mixer support. | 
|  | * | 
|  | * Overall design and parts of this code stolen from vidc_*.c and | 
|  | * skeleton.c. | 
|  | * | 
|  | * Yeah, there are a lot of magic constants in here.  You tell ME what | 
|  | * they are.  I just get this stuff psychically, remember? | 
|  | * | 
|  | * This driver was written by someone who wishes to remain anonymous. | 
|  | * It is in the public domain, so share and enjoy.  Try to make a profit | 
|  | * off of it; go on, I dare you. | 
|  | * | 
|  | * Changes: | 
|  | * 11-10-2000	Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> | 
|  | *		Added some __init | 
|  | * 19-04-2001	Marcus Meissner <mm@caldera.de> | 
|  | *		Ported to 2.4 PCI API. | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include "sound_config.h" | 
|  |  | 
|  | static int nm256_debug; | 
|  | static int force_load; | 
|  |  | 
|  | #include "nm256.h" | 
|  | #include "nm256_coeff.h" | 
|  |  | 
|  | /* | 
|  | * The size of the playback reserve.  When the playback buffer has less | 
|  | * than NM256_PLAY_WMARK_SIZE bytes to output, we request a new | 
|  | * buffer. | 
|  | */ | 
|  | #define NM256_PLAY_WMARK_SIZE 512 | 
|  |  | 
|  | static struct audio_driver nm256_audio_driver; | 
|  |  | 
|  | static int nm256_grabInterrupt (struct nm256_info *card); | 
|  | static int nm256_releaseInterrupt (struct nm256_info *card); | 
|  | static irqreturn_t nm256_interrupt (int irq, void *dev_id); | 
|  | static irqreturn_t nm256_interrupt_zx (int irq, void *dev_id); | 
|  |  | 
|  | /* These belong in linux/pci.h. */ | 
|  | #define PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO 0x8005 | 
|  | #define PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO 0x8006 | 
|  | #define PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO 0x8016 | 
|  |  | 
|  | /* List of cards.  */ | 
|  | static struct nm256_info *nmcard_list; | 
|  |  | 
|  | /* Release the mapped-in memory for CARD.  */ | 
|  | static void | 
|  | nm256_release_ports (struct nm256_info *card) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < 2; x++) { | 
|  | if (card->port[x].ptr != NULL) { | 
|  | iounmap (card->port[x].ptr); | 
|  | card->port[x].ptr = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map in the memory ports for CARD, if they aren't already mapped in | 
|  | * and have been configured.  If successful, a zero value is returned; | 
|  | * otherwise any previously mapped-in areas are released and a non-zero | 
|  | * value is returned. | 
|  | * | 
|  | * This is invoked twice, once for each port.  Ideally it would only be | 
|  | * called once, but we now need to map in the second port in order to | 
|  | * check how much memory the card has on the 256ZX. | 
|  | */ | 
|  | static int | 
|  | nm256_remap_ports (struct nm256_info *card) | 
|  | { | 
|  | int x; | 
|  |  | 
|  | for (x = 0; x < 2; x++) { | 
|  | if (card->port[x].ptr == NULL && card->port[x].end_offset > 0) { | 
|  | u32 physaddr | 
|  | = card->port[x].physaddr + card->port[x].start_offset; | 
|  | u32 size | 
|  | = card->port[x].end_offset - card->port[x].start_offset; | 
|  |  | 
|  | card->port[x].ptr = ioremap_nocache (physaddr, size); | 
|  |  | 
|  | if (card->port[x].ptr == NULL) { | 
|  | printk (KERN_ERR "NM256: Unable to remap port %d\n", x + 1); | 
|  | nm256_release_ports (card); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Locate the card in our list. */ | 
|  | static struct nm256_info * | 
|  | nm256_find_card (int dev) | 
|  | { | 
|  | struct nm256_info *card; | 
|  |  | 
|  | for (card = nmcard_list; card != NULL; card = card->next_card) | 
|  | if (card->dev[0] == dev || card->dev[1] == dev) | 
|  | return card; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ditto, but find the card struct corresponding to the mixer device DEV | 
|  | * instead. | 
|  | */ | 
|  | static struct nm256_info * | 
|  | nm256_find_card_for_mixer (int dev) | 
|  | { | 
|  | struct nm256_info *card; | 
|  |  | 
|  | for (card = nmcard_list; card != NULL; card = card->next_card) | 
|  | if (card->mixer_oss_dev == dev) | 
|  | return card; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int usecache; | 
|  | static int buffertop; | 
|  |  | 
|  | /* Check to see if we're using the bank of cached coefficients. */ | 
|  | static int | 
|  | nm256_cachedCoefficients (struct nm256_info *card) | 
|  | { | 
|  | return usecache; | 
|  | } | 
|  |  | 
|  | /* The actual rates supported by the card. */ | 
|  | static int samplerates[9] = { | 
|  | 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999 | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Set the card samplerate, word size and stereo mode to correspond to | 
|  | * the settings in the CARD struct for the specified device in DEV. | 
|  | * We keep two separate sets of information, one for each device; the | 
|  | * hardware is not actually configured until a read or write is | 
|  | * attempted. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | nm256_setInfo (int dev, struct nm256_info *card) | 
|  | { | 
|  | int x; | 
|  | int w; | 
|  | int targetrate; | 
|  |  | 
|  | if (card->dev[0] == dev) | 
|  | w = 0; | 
|  | else if (card->dev[1] == dev) | 
|  | w = 1; | 
|  | else | 
|  | return -ENODEV; | 
|  |  | 
|  | targetrate = card->sinfo[w].samplerate; | 
|  |  | 
|  | if ((card->sinfo[w].bits != 8 && card->sinfo[w].bits != 16) | 
|  | || targetrate < samplerates[0] | 
|  | || targetrate > samplerates[7]) | 
|  | return -EINVAL; | 
|  |  | 
|  | for (x = 0; x < 8; x++) | 
|  | if (targetrate < ((samplerates[x] + samplerates[x + 1]) / 2)) | 
|  | break; | 
|  |  | 
|  | if (x < 8) { | 
|  | u8 ratebits = ((x << 4) & NM_RATE_MASK); | 
|  | if (card->sinfo[w].bits == 16) | 
|  | ratebits |= NM_RATE_BITS_16; | 
|  | if (card->sinfo[w].stereo) | 
|  | ratebits |= NM_RATE_STEREO; | 
|  |  | 
|  | card->sinfo[w].samplerate = samplerates[x]; | 
|  |  | 
|  |  | 
|  | if (card->dev_for_play == dev && card->playing) { | 
|  | if (nm256_debug) | 
|  | printk (KERN_DEBUG "Setting play ratebits to 0x%x\n", | 
|  | ratebits); | 
|  | nm256_loadCoefficient (card, 0, x); | 
|  | nm256_writePort8 (card, 2, | 
|  | NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET, | 
|  | ratebits); | 
|  | } | 
|  |  | 
|  | if (card->dev_for_record == dev && card->recording) { | 
|  | if (nm256_debug) | 
|  | printk (KERN_DEBUG "Setting record ratebits to 0x%x\n", | 
|  | ratebits); | 
|  | nm256_loadCoefficient (card, 1, x); | 
|  | nm256_writePort8 (card, 2, | 
|  | NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET, | 
|  | ratebits); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Start the play process going. */ | 
|  | static void | 
|  | startPlay (struct nm256_info *card) | 
|  | { | 
|  | if (! card->playing) { | 
|  | card->playing = 1; | 
|  | if (nm256_grabInterrupt (card) == 0) { | 
|  | nm256_setInfo (card->dev_for_play, card); | 
|  |  | 
|  | /* Enable playback engine and interrupts. */ | 
|  | nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, | 
|  | NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN); | 
|  |  | 
|  | /* Enable both channels. */ | 
|  | nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, 0x0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Request one chunk of AMT bytes from the recording device.  When the | 
|  | * operation is complete, the data will be copied into BUFFER and the | 
|  | * function DMAbuf_inputintr will be invoked. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | nm256_startRecording (struct nm256_info *card, char *buffer, u32 amt) | 
|  | { | 
|  | u32 endpos; | 
|  | int enableEngine = 0; | 
|  | u32 ringsize = card->recordBufferSize; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (amt > (ringsize / 2)) { | 
|  | /* | 
|  | * Of course this won't actually work right, because the | 
|  | * caller is going to assume we will give what we got asked | 
|  | * for. | 
|  | */ | 
|  | printk (KERN_ERR "NM256: Read request too large: %d\n", amt); | 
|  | amt = ringsize / 2; | 
|  | } | 
|  |  | 
|  | if (amt < 8) { | 
|  | printk (KERN_ERR "NM256: Read request too small; %d\n", amt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&card->lock,flags); | 
|  | /* | 
|  | * If we're not currently recording, set up the start and end registers | 
|  | * for the recording engine. | 
|  | */ | 
|  | if (! card->recording) { | 
|  | card->recording = 1; | 
|  | if (nm256_grabInterrupt (card) == 0) { | 
|  | card->curRecPos = 0; | 
|  | nm256_setInfo (card->dev_for_record, card); | 
|  | nm256_writePort32 (card, 2, NM_RBUFFER_START, card->abuf2); | 
|  | nm256_writePort32 (card, 2, NM_RBUFFER_END, | 
|  | card->abuf2 + ringsize); | 
|  |  | 
|  | nm256_writePort32 (card, 2, NM_RBUFFER_CURRP, | 
|  | card->abuf2 + card->curRecPos); | 
|  | enableEngine = 1; | 
|  | } | 
|  | else { | 
|  | /* Not sure what else to do here.  */ | 
|  | spin_unlock_irqrestore(&card->lock,flags); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we happen to go past the end of the buffer a bit (due to a | 
|  | * delayed interrupt) it's OK.  So might as well set the watermark | 
|  | * right at the end of the data we want. | 
|  | */ | 
|  | endpos = card->abuf2 + ((card->curRecPos + amt) % ringsize); | 
|  |  | 
|  | card->recBuf = buffer; | 
|  | card->requestedRecAmt = amt; | 
|  | nm256_writePort32 (card, 2, NM_RBUFFER_WMARK, endpos); | 
|  | /* Enable recording engine and interrupts. */ | 
|  | if (enableEngine) | 
|  | nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, | 
|  | NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN); | 
|  |  | 
|  | spin_unlock_irqrestore(&card->lock,flags); | 
|  | } | 
|  |  | 
|  | /* Stop the play engine. */ | 
|  | static void | 
|  | stopPlay (struct nm256_info *card) | 
|  | { | 
|  | /* Shut off sound from both channels. */ | 
|  | nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, | 
|  | NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT); | 
|  | /* Disable play engine. */ | 
|  | nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, 0); | 
|  | if (card->playing) { | 
|  | nm256_releaseInterrupt (card); | 
|  |  | 
|  | /* Reset the relevant state bits. */ | 
|  | card->playing = 0; | 
|  | card->curPlayPos = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Stop recording. */ | 
|  | static void | 
|  | stopRecord (struct nm256_info *card) | 
|  | { | 
|  | /* Disable recording engine. */ | 
|  | nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, 0); | 
|  |  | 
|  | if (card->recording) { | 
|  | nm256_releaseInterrupt (card); | 
|  |  | 
|  | card->recording = 0; | 
|  | card->curRecPos = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ring buffers, man.  That's where the hip-hop, wild-n-wooly action's at. | 
|  | * 1972?  (Well, I suppose it was cheep-n-easy to implement.) | 
|  | * | 
|  | * Write AMT bytes of BUFFER to the playback ring buffer, and start the | 
|  | * playback engine running.  It will only accept up to 1/2 of the total | 
|  | * size of the ring buffer.  No check is made that we're about to overwrite | 
|  | * the currently-playing sample. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | nm256_write_block (struct nm256_info *card, char *buffer, u32 amt) | 
|  | { | 
|  | u32 ringsize = card->playbackBufferSize; | 
|  | u32 endstop; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (amt > (ringsize / 2)) { | 
|  | printk (KERN_ERR "NM256: Write request too large: %d\n", amt); | 
|  | amt = (ringsize / 2); | 
|  | } | 
|  |  | 
|  | if (amt < NM256_PLAY_WMARK_SIZE) { | 
|  | printk (KERN_ERR "NM256: Write request too small: %d\n", amt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | card->curPlayPos %= ringsize; | 
|  |  | 
|  | card->requested_amt = amt; | 
|  |  | 
|  | spin_lock_irqsave(&card->lock,flags); | 
|  |  | 
|  | if ((card->curPlayPos + amt) >= ringsize) { | 
|  | u32 rem = ringsize - card->curPlayPos; | 
|  |  | 
|  | nm256_writeBuffer8 (card, buffer, 1, | 
|  | card->abuf1 + card->curPlayPos, | 
|  | rem); | 
|  | if (amt > rem) | 
|  | nm256_writeBuffer8 (card, buffer + rem, 1, card->abuf1, | 
|  | amt - rem); | 
|  | } | 
|  | else | 
|  | nm256_writeBuffer8 (card, buffer, 1, | 
|  | card->abuf1 + card->curPlayPos, | 
|  | amt); | 
|  |  | 
|  | /* | 
|  | * Setup the start-n-stop-n-limit registers, and start that engine | 
|  | * goin'. | 
|  | * | 
|  | * Normally we just let it wrap around to avoid the click-click | 
|  | * action scene. | 
|  | */ | 
|  | if (! card->playing) { | 
|  | /* The PBUFFER_END register in this case points to one sample | 
|  | before the end of the buffer. */ | 
|  | int w = (card->dev_for_play == card->dev[0] ? 0 : 1); | 
|  | int sampsize = (card->sinfo[w].bits == 16 ? 2 : 1); | 
|  |  | 
|  | if (card->sinfo[w].stereo) | 
|  | sampsize *= 2; | 
|  |  | 
|  | /* Need to set the not-normally-changing-registers up. */ | 
|  | nm256_writePort32 (card, 2, NM_PBUFFER_START, | 
|  | card->abuf1 + card->curPlayPos); | 
|  | nm256_writePort32 (card, 2, NM_PBUFFER_END, | 
|  | card->abuf1 + ringsize - sampsize); | 
|  | nm256_writePort32 (card, 2, NM_PBUFFER_CURRP, | 
|  | card->abuf1 + card->curPlayPos); | 
|  | } | 
|  | endstop = (card->curPlayPos + amt - NM256_PLAY_WMARK_SIZE) % ringsize; | 
|  | nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop); | 
|  |  | 
|  | if (! card->playing) | 
|  | startPlay (card); | 
|  |  | 
|  | spin_unlock_irqrestore(&card->lock,flags); | 
|  | } | 
|  |  | 
|  | /*  We just got a card playback interrupt; process it.  */ | 
|  | static void | 
|  | nm256_get_new_block (struct nm256_info *card) | 
|  | { | 
|  | /* Check to see how much got played so far. */ | 
|  | u32 amt = nm256_readPort32 (card, 2, NM_PBUFFER_CURRP) - card->abuf1; | 
|  |  | 
|  | if (amt >= card->playbackBufferSize) { | 
|  | printk (KERN_ERR "NM256: Sound playback pointer invalid!\n"); | 
|  | amt = 0; | 
|  | } | 
|  |  | 
|  | if (amt < card->curPlayPos) | 
|  | amt = (card->playbackBufferSize - card->curPlayPos) + amt; | 
|  | else | 
|  | amt -= card->curPlayPos; | 
|  |  | 
|  | if (card->requested_amt > (amt + NM256_PLAY_WMARK_SIZE)) { | 
|  | u32 endstop = | 
|  | card->curPlayPos + card->requested_amt - NM256_PLAY_WMARK_SIZE; | 
|  | nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop); | 
|  | } | 
|  | else { | 
|  | card->curPlayPos += card->requested_amt; | 
|  | /* Get a new block to write.  This will eventually invoke | 
|  | nm256_write_block () or stopPlay ().  */ | 
|  | DMAbuf_outputintr (card->dev_for_play, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the last-recorded block from the ring buffer, copy it into the | 
|  | * saved buffer pointer, and invoke DMAuf_inputintr() with the recording | 
|  | * device. | 
|  | */ | 
|  |  | 
|  | static void | 
|  | nm256_read_block (struct nm256_info *card) | 
|  | { | 
|  | /* Grab the current position of the recording pointer. */ | 
|  | u32 currptr = nm256_readPort32 (card, 2, NM_RBUFFER_CURRP) - card->abuf2; | 
|  | u32 amtToRead = card->requestedRecAmt; | 
|  | u32 ringsize = card->recordBufferSize; | 
|  |  | 
|  | if (currptr >= card->recordBufferSize) { | 
|  | printk (KERN_ERR "NM256: Sound buffer record pointer invalid!\n"); | 
|  | currptr = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This test is probably redundant; we shouldn't be here unless | 
|  | * it's true. | 
|  | */ | 
|  | if (card->recording) { | 
|  | /* If we wrapped around, copy everything from the start of our | 
|  | recording buffer to the end of the buffer. */ | 
|  | if (currptr < card->curRecPos) { | 
|  | u32 amt = min (ringsize - card->curRecPos, amtToRead); | 
|  |  | 
|  | nm256_readBuffer8 (card, card->recBuf, 1, | 
|  | card->abuf2 + card->curRecPos, | 
|  | amt); | 
|  | amtToRead -= amt; | 
|  | card->curRecPos += amt; | 
|  | card->recBuf += amt; | 
|  | if (card->curRecPos == ringsize) | 
|  | card->curRecPos = 0; | 
|  | } | 
|  |  | 
|  | if ((card->curRecPos < currptr) && (amtToRead > 0)) { | 
|  | u32 amt = min (currptr - card->curRecPos, amtToRead); | 
|  | nm256_readBuffer8 (card, card->recBuf, 1, | 
|  | card->abuf2 + card->curRecPos, amt); | 
|  | card->curRecPos = ((card->curRecPos + amt) % ringsize); | 
|  | } | 
|  | card->recBuf = NULL; | 
|  | card->requestedRecAmt = 0; | 
|  | DMAbuf_inputintr (card->dev_for_record); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the hardware. | 
|  | */ | 
|  | static void | 
|  | nm256_initHw (struct nm256_info *card) | 
|  | { | 
|  | /* Reset everything. */ | 
|  | nm256_writePort8 (card, 2, 0x0, 0x11); | 
|  | nm256_writePort16 (card, 2, 0x214, 0); | 
|  |  | 
|  | stopRecord (card); | 
|  | stopPlay (card); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a potential interrupt for the device referred to by DEV_ID. | 
|  | * | 
|  | * I don't like the cut-n-paste job here either between the two routines, | 
|  | * but there are sufficient differences between the two interrupt handlers | 
|  | * that parameterizing it isn't all that great either.  (Could use a macro, | 
|  | * I suppose...yucky bleah.) | 
|  | */ | 
|  |  | 
|  | static irqreturn_t | 
|  | nm256_interrupt (int irq, void *dev_id) | 
|  | { | 
|  | struct nm256_info *card = (struct nm256_info *)dev_id; | 
|  | u16 status; | 
|  | static int badintrcount; | 
|  | int handled = 0; | 
|  |  | 
|  | if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { | 
|  | printk (KERN_ERR "NM256: Bad card pointer\n"); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | status = nm256_readPort16 (card, 2, NM_INT_REG); | 
|  |  | 
|  | /* Not ours. */ | 
|  | if (status == 0) { | 
|  | if (badintrcount++ > 1000) { | 
|  | /* | 
|  | * I'm not sure if the best thing is to stop the card from | 
|  | * playing or just release the interrupt (after all, we're in | 
|  | * a bad situation, so doing fancy stuff may not be such a good | 
|  | * idea). | 
|  | * | 
|  | * I worry about the card engine continuing to play noise | 
|  | * over and over, however--that could become a very | 
|  | * obnoxious problem.  And we know that when this usually | 
|  | * happens things are fairly safe, it just means the user's | 
|  | * inserted a PCMCIA card and someone's spamming us with IRQ 9s. | 
|  | */ | 
|  |  | 
|  | handled = 1; | 
|  | if (card->playing) | 
|  | stopPlay (card); | 
|  | if (card->recording) | 
|  | stopRecord (card); | 
|  | badintrcount = 0; | 
|  | } | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | badintrcount = 0; | 
|  |  | 
|  | /* Rather boring; check for individual interrupts and process them. */ | 
|  |  | 
|  | if (status & NM_PLAYBACK_INT) { | 
|  | handled = 1; | 
|  | status &= ~NM_PLAYBACK_INT; | 
|  | NM_ACK_INT (card, NM_PLAYBACK_INT); | 
|  |  | 
|  | if (card->playing) | 
|  | nm256_get_new_block (card); | 
|  | } | 
|  |  | 
|  | if (status & NM_RECORD_INT) { | 
|  | handled = 1; | 
|  | status &= ~NM_RECORD_INT; | 
|  | NM_ACK_INT (card, NM_RECORD_INT); | 
|  |  | 
|  | if (card->recording) | 
|  | nm256_read_block (card); | 
|  | } | 
|  |  | 
|  | if (status & NM_MISC_INT_1) { | 
|  | u8 cbyte; | 
|  |  | 
|  | handled = 1; | 
|  | status &= ~NM_MISC_INT_1; | 
|  | printk (KERN_ERR "NM256: Got misc interrupt #1\n"); | 
|  | NM_ACK_INT (card, NM_MISC_INT_1); | 
|  | nm256_writePort16 (card, 2, NM_INT_REG, 0x8000); | 
|  | cbyte = nm256_readPort8 (card, 2, 0x400); | 
|  | nm256_writePort8 (card, 2, 0x400, cbyte | 2); | 
|  | } | 
|  |  | 
|  | if (status & NM_MISC_INT_2) { | 
|  | u8 cbyte; | 
|  |  | 
|  | handled = 1; | 
|  | status &= ~NM_MISC_INT_2; | 
|  | printk (KERN_ERR "NM256: Got misc interrupt #2\n"); | 
|  | NM_ACK_INT (card, NM_MISC_INT_2); | 
|  | cbyte = nm256_readPort8 (card, 2, 0x400); | 
|  | nm256_writePort8 (card, 2, 0x400, cbyte & ~2); | 
|  | } | 
|  |  | 
|  | /* Unknown interrupt. */ | 
|  | if (status) { | 
|  | handled = 1; | 
|  | printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", | 
|  | status); | 
|  | /* Pray. */ | 
|  | NM_ACK_INT (card, status); | 
|  | } | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a potential interrupt for the device referred to by DEV_ID. | 
|  | * This handler is for the 256ZX, and is very similar to the non-ZX | 
|  | * routine. | 
|  | */ | 
|  |  | 
|  | static irqreturn_t | 
|  | nm256_interrupt_zx (int irq, void *dev_id) | 
|  | { | 
|  | struct nm256_info *card = (struct nm256_info *)dev_id; | 
|  | u32 status; | 
|  | static int badintrcount; | 
|  | int handled = 0; | 
|  |  | 
|  | if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) { | 
|  | printk (KERN_ERR "NM256: Bad card pointer\n"); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | status = nm256_readPort32 (card, 2, NM_INT_REG); | 
|  |  | 
|  | /* Not ours. */ | 
|  | if (status == 0) { | 
|  | if (badintrcount++ > 1000) { | 
|  | printk (KERN_ERR "NM256: Releasing interrupt, over 1000 invalid interrupts\n"); | 
|  | /* | 
|  | * I'm not sure if the best thing is to stop the card from | 
|  | * playing or just release the interrupt (after all, we're in | 
|  | * a bad situation, so doing fancy stuff may not be such a good | 
|  | * idea). | 
|  | * | 
|  | * I worry about the card engine continuing to play noise | 
|  | * over and over, however--that could become a very | 
|  | * obnoxious problem.  And we know that when this usually | 
|  | * happens things are fairly safe, it just means the user's | 
|  | * inserted a PCMCIA card and someone's spamming us with | 
|  | * IRQ 9s. | 
|  | */ | 
|  |  | 
|  | handled = 1; | 
|  | if (card->playing) | 
|  | stopPlay (card); | 
|  | if (card->recording) | 
|  | stopRecord (card); | 
|  | badintrcount = 0; | 
|  | } | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | badintrcount = 0; | 
|  |  | 
|  | /* Rather boring; check for individual interrupts and process them. */ | 
|  |  | 
|  | if (status & NM2_PLAYBACK_INT) { | 
|  | handled = 1; | 
|  | status &= ~NM2_PLAYBACK_INT; | 
|  | NM2_ACK_INT (card, NM2_PLAYBACK_INT); | 
|  |  | 
|  | if (card->playing) | 
|  | nm256_get_new_block (card); | 
|  | } | 
|  |  | 
|  | if (status & NM2_RECORD_INT) { | 
|  | handled = 1; | 
|  | status &= ~NM2_RECORD_INT; | 
|  | NM2_ACK_INT (card, NM2_RECORD_INT); | 
|  |  | 
|  | if (card->recording) | 
|  | nm256_read_block (card); | 
|  | } | 
|  |  | 
|  | if (status & NM2_MISC_INT_1) { | 
|  | u8 cbyte; | 
|  |  | 
|  | handled = 1; | 
|  | status &= ~NM2_MISC_INT_1; | 
|  | printk (KERN_ERR "NM256: Got misc interrupt #1\n"); | 
|  | NM2_ACK_INT (card, NM2_MISC_INT_1); | 
|  | cbyte = nm256_readPort8 (card, 2, 0x400); | 
|  | nm256_writePort8 (card, 2, 0x400, cbyte | 2); | 
|  | } | 
|  |  | 
|  | if (status & NM2_MISC_INT_2) { | 
|  | u8 cbyte; | 
|  |  | 
|  | handled = 1; | 
|  | status &= ~NM2_MISC_INT_2; | 
|  | printk (KERN_ERR "NM256: Got misc interrupt #2\n"); | 
|  | NM2_ACK_INT (card, NM2_MISC_INT_2); | 
|  | cbyte = nm256_readPort8 (card, 2, 0x400); | 
|  | nm256_writePort8 (card, 2, 0x400, cbyte & ~2); | 
|  | } | 
|  |  | 
|  | /* Unknown interrupt. */ | 
|  | if (status) { | 
|  | handled = 1; | 
|  | printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n", | 
|  | status); | 
|  | /* Pray. */ | 
|  | NM2_ACK_INT (card, status); | 
|  | } | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Request our interrupt. | 
|  | */ | 
|  | static int | 
|  | nm256_grabInterrupt (struct nm256_info *card) | 
|  | { | 
|  | if (card->has_irq++ == 0) { | 
|  | if (request_irq (card->irq, card->introutine, IRQF_SHARED, | 
|  | "NM256_audio", card) < 0) { | 
|  | printk (KERN_ERR "NM256: can't obtain IRQ %d\n", card->irq); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release our interrupt. | 
|  | */ | 
|  | static int | 
|  | nm256_releaseInterrupt (struct nm256_info *card) | 
|  | { | 
|  | if (card->has_irq <= 0) { | 
|  | printk (KERN_ERR "nm256: too many calls to releaseInterrupt\n"); | 
|  | return -1; | 
|  | } | 
|  | card->has_irq--; | 
|  | if (card->has_irq == 0) { | 
|  | free_irq (card->irq, card); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Waits for the mixer to become ready to be written; returns a zero value | 
|  | * if it timed out. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | nm256_isReady (struct ac97_hwint *dev) | 
|  | { | 
|  | struct nm256_info *card = (struct nm256_info *)dev->driver_private; | 
|  | int t2 = 10; | 
|  | u32 testaddr; | 
|  | u16 testb; | 
|  | int done = 0; | 
|  |  | 
|  | if (card->magsig != NM_MAGIC_SIG) { | 
|  | printk (KERN_ERR "NM256: Bad magic signature in isReady!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | testaddr = card->mixer_status_offset; | 
|  | testb = card->mixer_status_mask; | 
|  |  | 
|  | /* | 
|  | * Loop around waiting for the mixer to become ready. | 
|  | */ | 
|  | while (! done && t2-- > 0) { | 
|  | if ((nm256_readPort16 (card, 2, testaddr) & testb) == 0) | 
|  | done = 1; | 
|  | else | 
|  | udelay (100); | 
|  | } | 
|  | return done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the contents of the AC97 mixer register REG.  Returns a positive | 
|  | * value if successful, or a negative error code. | 
|  | */ | 
|  | static int | 
|  | nm256_readAC97Reg (struct ac97_hwint *dev, u8 reg) | 
|  | { | 
|  | struct nm256_info *card = (struct nm256_info *)dev->driver_private; | 
|  |  | 
|  | if (card->magsig != NM_MAGIC_SIG) { | 
|  | printk (KERN_ERR "NM256: Bad magic signature in readAC97Reg!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (reg < 128) { | 
|  | int res; | 
|  |  | 
|  | nm256_isReady (dev); | 
|  | res = nm256_readPort16 (card, 2, card->mixer + reg); | 
|  | /* Magic delay.  Bleah yucky.  */ | 
|  | udelay (1000); | 
|  | return res; | 
|  | } | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes VALUE to AC97 mixer register REG.  Returns 0 if successful, or | 
|  | * a negative error code. | 
|  | */ | 
|  | static int | 
|  | nm256_writeAC97Reg (struct ac97_hwint *dev, u8 reg, u16 value) | 
|  | { | 
|  | unsigned long flags; | 
|  | int tries = 2; | 
|  | int done = 0; | 
|  | u32 base; | 
|  |  | 
|  | struct nm256_info *card = (struct nm256_info *)dev->driver_private; | 
|  |  | 
|  | if (card->magsig != NM_MAGIC_SIG) { | 
|  | printk (KERN_ERR "NM256: Bad magic signature in writeAC97Reg!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | base = card->mixer; | 
|  |  | 
|  | spin_lock_irqsave(&card->lock,flags); | 
|  |  | 
|  | nm256_isReady (dev); | 
|  |  | 
|  | /* Wait for the write to take, too. */ | 
|  | while ((tries-- > 0) && !done) { | 
|  | nm256_writePort16 (card, 2, base + reg, value); | 
|  | if (nm256_isReady (dev)) { | 
|  | done = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&card->lock,flags); | 
|  | udelay (1000); | 
|  |  | 
|  | return ! done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initial register values to be written to the AC97 mixer. | 
|  | * While most of these are identical to the reset values, we do this | 
|  | * so that we have most of the register contents cached--this avoids | 
|  | * reading from the mixer directly (which seems to be problematic, | 
|  | * probably due to ignorance). | 
|  | */ | 
|  | struct initialValues | 
|  | { | 
|  | unsigned short port; | 
|  | unsigned short value; | 
|  | }; | 
|  |  | 
|  | static struct initialValues nm256_ac97_initial_values[] = | 
|  | { | 
|  | { AC97_MASTER_VOL_STEREO, 0x8000 }, | 
|  | { AC97_HEADPHONE_VOL,     0x8000 }, | 
|  | { AC97_MASTER_VOL_MONO,   0x0000 }, | 
|  | { AC97_PCBEEP_VOL,        0x0000 }, | 
|  | { AC97_PHONE_VOL,         0x0008 }, | 
|  | { AC97_MIC_VOL,           0x8000 }, | 
|  | { AC97_LINEIN_VOL,        0x8808 }, | 
|  | { AC97_CD_VOL,            0x8808 }, | 
|  | { AC97_VIDEO_VOL,         0x8808 }, | 
|  | { AC97_AUX_VOL,           0x8808 }, | 
|  | { AC97_PCMOUT_VOL,        0x0808 }, | 
|  | { AC97_RECORD_SELECT,     0x0000 }, | 
|  | { AC97_RECORD_GAIN,       0x0B0B }, | 
|  | { AC97_GENERAL_PURPOSE,   0x0000 }, | 
|  | { 0xffff, 0xffff } | 
|  | }; | 
|  |  | 
|  | /* Initialize the AC97 into a known state.  */ | 
|  | static int | 
|  | nm256_resetAC97 (struct ac97_hwint *dev) | 
|  | { | 
|  | struct nm256_info *card = (struct nm256_info *)dev->driver_private; | 
|  | int x; | 
|  |  | 
|  | if (card->magsig != NM_MAGIC_SIG) { | 
|  | printk (KERN_ERR "NM256: Bad magic signature in resetAC97!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Reset the mixer.  'Tis magic!  */ | 
|  | nm256_writePort8 (card, 2, 0x6c0, 1); | 
|  | //  nm256_writePort8 (card, 2, 0x6cc, 0x87);	/* This crashes Dell latitudes */ | 
|  | nm256_writePort8 (card, 2, 0x6cc, 0x80); | 
|  | nm256_writePort8 (card, 2, 0x6cc, 0x0); | 
|  |  | 
|  | if (! card->mixer_values_init) { | 
|  | for (x = 0; nm256_ac97_initial_values[x].port != 0xffff; x++) { | 
|  | ac97_put_register (dev, | 
|  | nm256_ac97_initial_values[x].port, | 
|  | nm256_ac97_initial_values[x].value); | 
|  | card->mixer_values_init = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't do anything particularly special here; it just passes the | 
|  | * mixer ioctl to the AC97 driver. | 
|  | */ | 
|  | static int | 
|  | nm256_default_mixer_ioctl (int dev, unsigned int cmd, void __user *arg) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card_for_mixer (dev); | 
|  | if (card != NULL) | 
|  | return ac97_mixer_ioctl (&(card->mdev), cmd, arg); | 
|  | else | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static struct mixer_operations nm256_mixer_operations = { | 
|  | .owner	= THIS_MODULE, | 
|  | .id	= "NeoMagic", | 
|  | .name	= "NM256AC97Mixer", | 
|  | .ioctl	= nm256_default_mixer_ioctl | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Default settings for the OSS mixer.  These are set last, after the | 
|  | * mixer is initialized. | 
|  | * | 
|  | * I "love" C sometimes.  Got braces? | 
|  | */ | 
|  | static struct ac97_mixer_value_list mixer_defaults[] = { | 
|  | { SOUND_MIXER_VOLUME,  { { 85, 85 } } }, | 
|  | { SOUND_MIXER_SPEAKER, { { 100 } } }, | 
|  | { SOUND_MIXER_PCM,     { { 65, 65 } } }, | 
|  | { SOUND_MIXER_CD,      { { 65, 65 } } }, | 
|  | { -1,                  {  { 0,  0 } } } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Installs the AC97 mixer into CARD.  */ | 
|  | static int __devinit | 
|  | nm256_install_mixer (struct nm256_info *card) | 
|  | { | 
|  | int mixer; | 
|  |  | 
|  | card->mdev.reset_device = nm256_resetAC97; | 
|  | card->mdev.read_reg = nm256_readAC97Reg; | 
|  | card->mdev.write_reg = nm256_writeAC97Reg; | 
|  | card->mdev.driver_private = (void *)card; | 
|  |  | 
|  | if (ac97_init (&(card->mdev))) | 
|  | return -1; | 
|  |  | 
|  | mixer = sound_alloc_mixerdev(); | 
|  | if (num_mixers >= MAX_MIXER_DEV) { | 
|  | printk ("NM256 mixer: Unable to alloc mixerdev\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | mixer_devs[mixer] = &nm256_mixer_operations; | 
|  | card->mixer_oss_dev = mixer; | 
|  |  | 
|  | /* Some reasonable default values.  */ | 
|  | ac97_set_values (&(card->mdev), mixer_defaults); | 
|  |  | 
|  | printk(KERN_INFO "Initialized AC97 mixer\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if the signature left by the NM256 BIOS is intact; if so, we use | 
|  | * the associated address as the end of our audio buffer in the video | 
|  | * RAM. | 
|  | */ | 
|  |  | 
|  | static void __devinit | 
|  | nm256_peek_for_sig (struct nm256_info *card) | 
|  | { | 
|  | u32 port1offset | 
|  | = card->port[0].physaddr + card->port[0].end_offset - 0x0400; | 
|  | /* The signature is located 1K below the end of video RAM.  */ | 
|  | char __iomem *temp = ioremap_nocache (port1offset, 16); | 
|  | /* Default buffer end is 5120 bytes below the top of RAM.  */ | 
|  | u32 default_value = card->port[0].end_offset - 0x1400; | 
|  | u32 sig; | 
|  |  | 
|  | /* Install the default value first, so we don't have to repeatedly | 
|  | do it if there is a problem.  */ | 
|  | card->port[0].end_offset = default_value; | 
|  |  | 
|  | if (temp == NULL) { | 
|  | printk (KERN_ERR "NM256: Unable to scan for card signature in video RAM\n"); | 
|  | return; | 
|  | } | 
|  | sig = readl (temp); | 
|  | if ((sig & NM_SIG_MASK) == NM_SIGNATURE) { | 
|  | u32 pointer = readl (temp + 4); | 
|  |  | 
|  | /* | 
|  | * If it's obviously invalid, don't use it (the port already has a | 
|  | * suitable default value set). | 
|  | */ | 
|  | if (pointer != 0xffffffff) | 
|  | card->port[0].end_offset = pointer; | 
|  |  | 
|  | printk (KERN_INFO "NM256: Found card signature in video RAM: 0x%x\n", | 
|  | pointer); | 
|  | } | 
|  |  | 
|  | iounmap (temp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Install a driver for the PCI device referenced by PCIDEV. | 
|  | * VERSTR is a human-readable version string. | 
|  | */ | 
|  |  | 
|  | static int __devinit | 
|  | nm256_install(struct pci_dev *pcidev, enum nm256rev rev, char *verstr) | 
|  | { | 
|  | struct nm256_info *card; | 
|  | int x; | 
|  |  | 
|  | if (pci_enable_device(pcidev)) | 
|  | return 0; | 
|  |  | 
|  | card = kmalloc (sizeof (struct nm256_info), GFP_KERNEL); | 
|  | if (card == NULL) { | 
|  | printk (KERN_ERR "NM256: out of memory!\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | card->magsig = NM_MAGIC_SIG; | 
|  | card->playing  = 0; | 
|  | card->recording = 0; | 
|  | card->rev = rev; | 
|  | spin_lock_init(&card->lock); | 
|  |  | 
|  | /* Init the memory port info.  */ | 
|  | for (x = 0; x < 2; x++) { | 
|  | card->port[x].physaddr = pci_resource_start (pcidev, x); | 
|  | card->port[x].ptr = NULL; | 
|  | card->port[x].start_offset = 0; | 
|  | card->port[x].end_offset = 0; | 
|  | } | 
|  |  | 
|  | /* Port 2 is easy.  */ | 
|  | card->port[1].start_offset = 0; | 
|  | card->port[1].end_offset = NM_PORT2_SIZE; | 
|  |  | 
|  | /* Yuck.  But we have to map in port 2 so we can check how much RAM the | 
|  | card has.  */ | 
|  | if (nm256_remap_ports (card)) { | 
|  | kfree (card); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The NM256 has two memory ports.  The first port is nothing | 
|  | * more than a chunk of video RAM, which is used as the I/O ring | 
|  | * buffer.  The second port has the actual juicy stuff (like the | 
|  | * mixer and the playback engine control registers). | 
|  | */ | 
|  |  | 
|  | if (card->rev == REV_NM256AV) { | 
|  | /* Ok, try to see if this is a non-AC97 version of the hardware. */ | 
|  | int pval = nm256_readPort16 (card, 2, NM_MIXER_PRESENCE); | 
|  | if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) { | 
|  | if (! force_load) { | 
|  | printk (KERN_ERR "NM256: This doesn't look to me like the AC97-compatible version.\n"); | 
|  | printk (KERN_ERR "       You can force the driver to load by passing in the module\n"); | 
|  | printk (KERN_ERR "       parameter:\n"); | 
|  | printk (KERN_ERR "              force_load = 1\n"); | 
|  | printk (KERN_ERR "\n"); | 
|  | printk (KERN_ERR "       More likely, you should be using the appropriate SB-16 or\n"); | 
|  | printk (KERN_ERR "       CS4232 driver instead.  (If your BIOS has settings for\n"); | 
|  | printk (KERN_ERR "       IRQ and/or DMA for the sound card, this is *not* the correct\n"); | 
|  | printk (KERN_ERR "       driver to use.)\n"); | 
|  | nm256_release_ports (card); | 
|  | kfree (card); | 
|  | return 0; | 
|  | } | 
|  | else { | 
|  | printk (KERN_INFO "NM256: Forcing driver load as per user request.\n"); | 
|  | } | 
|  | } | 
|  | else { | 
|  | /*   printk (KERN_INFO "NM256: Congratulations. You're not running Eunice.\n")*/; | 
|  | } | 
|  | card->port[0].end_offset = 2560 * 1024; | 
|  | card->introutine = nm256_interrupt; | 
|  | card->mixer_status_offset = NM_MIXER_STATUS_OFFSET; | 
|  | card->mixer_status_mask = NM_MIXER_READY_MASK; | 
|  | } | 
|  | else { | 
|  | /* Not sure if there is any relevant detect for the ZX or not.  */ | 
|  | if (nm256_readPort8 (card, 2, 0xa0b) != 0) | 
|  | card->port[0].end_offset = 6144 * 1024; | 
|  | else | 
|  | card->port[0].end_offset = 4096 * 1024; | 
|  |  | 
|  | card->introutine = nm256_interrupt_zx; | 
|  | card->mixer_status_offset = NM2_MIXER_STATUS_OFFSET; | 
|  | card->mixer_status_mask = NM2_MIXER_READY_MASK; | 
|  | } | 
|  |  | 
|  | if (buffertop >= 98304 && buffertop < card->port[0].end_offset) | 
|  | card->port[0].end_offset = buffertop; | 
|  | else | 
|  | nm256_peek_for_sig (card); | 
|  |  | 
|  | card->port[0].start_offset = card->port[0].end_offset - 98304; | 
|  |  | 
|  | printk (KERN_INFO "NM256: Mapping port 1 from 0x%x - 0x%x\n", | 
|  | card->port[0].start_offset, card->port[0].end_offset); | 
|  |  | 
|  | if (nm256_remap_ports (card)) { | 
|  | kfree (card); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* See if we can get the interrupt. */ | 
|  |  | 
|  | card->irq = pcidev->irq; | 
|  | card->has_irq = 0; | 
|  |  | 
|  | if (nm256_grabInterrupt (card) != 0) { | 
|  | nm256_release_ports (card); | 
|  | kfree (card); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nm256_releaseInterrupt (card); | 
|  |  | 
|  | /* | 
|  | *	Init the board. | 
|  | */ | 
|  |  | 
|  | card->playbackBufferSize = 16384; | 
|  | card->recordBufferSize = 16384; | 
|  |  | 
|  | card->coeffBuf = card->port[0].end_offset - NM_MAX_COEFFICIENT; | 
|  | card->abuf2 = card->coeffBuf - card->recordBufferSize; | 
|  | card->abuf1 = card->abuf2 - card->playbackBufferSize; | 
|  | card->allCoeffBuf = card->abuf2 - (NM_TOTAL_COEFF_COUNT * 4); | 
|  |  | 
|  | /* Fixed setting. */ | 
|  | card->mixer = NM_MIXER_OFFSET; | 
|  | card->mixer_values_init = 0; | 
|  |  | 
|  | card->is_open_play = 0; | 
|  | card->is_open_record = 0; | 
|  |  | 
|  | card->coeffsCurrent = 0; | 
|  |  | 
|  | card->opencnt[0] = 0; card->opencnt[1] = 0; | 
|  |  | 
|  | /* Reasonable default settings, but largely unnecessary. */ | 
|  | for (x = 0; x < 2; x++) { | 
|  | card->sinfo[x].bits = 8; | 
|  | card->sinfo[x].stereo = 0; | 
|  | card->sinfo[x].samplerate = 8000; | 
|  | } | 
|  |  | 
|  | nm256_initHw (card); | 
|  |  | 
|  | for (x = 0; x < 2; x++) { | 
|  | if ((card->dev[x] = | 
|  | sound_install_audiodrv(AUDIO_DRIVER_VERSION, | 
|  | "NM256", &nm256_audio_driver, | 
|  | sizeof(struct audio_driver), | 
|  | DMA_NODMA, AFMT_U8 | AFMT_S16_LE, | 
|  | NULL, -1, -1)) >= 0) { | 
|  | /* 1K minimum buffer size. */ | 
|  | audio_devs[card->dev[x]]->min_fragment = 10; | 
|  | /* Maximum of 8K buffer size. */ | 
|  | audio_devs[card->dev[x]]->max_fragment = 13; | 
|  | } | 
|  | else { | 
|  | printk(KERN_ERR "NM256: Too many PCM devices available\n"); | 
|  | nm256_release_ports (card); | 
|  | kfree (card); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | pci_set_drvdata(pcidev,card); | 
|  |  | 
|  | /* Insert the card in the list.  */ | 
|  | card->next_card = nmcard_list; | 
|  | nmcard_list = card; | 
|  |  | 
|  | printk(KERN_INFO "Initialized NeoMagic %s audio in PCI native mode\n", | 
|  | verstr); | 
|  |  | 
|  | /* | 
|  | * And our mixer.  (We should allow support for other mixers, maybe.) | 
|  | */ | 
|  |  | 
|  | nm256_install_mixer (card); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __devinit | 
|  | nm256_probe(struct pci_dev *pcidev,const struct pci_device_id *pciid) | 
|  | { | 
|  | if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO) | 
|  | return nm256_install(pcidev, REV_NM256AV, "256AV"); | 
|  | if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO) | 
|  | return nm256_install(pcidev, REV_NM256ZX, "256ZX"); | 
|  | if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO) | 
|  | return nm256_install(pcidev, REV_NM256ZX, "256XL+"); | 
|  | return -1; /* should not come here ... */ | 
|  | } | 
|  |  | 
|  | static void __devinit | 
|  | nm256_remove(struct pci_dev *pcidev) { | 
|  | struct nm256_info *xcard = pci_get_drvdata(pcidev); | 
|  | struct nm256_info *card,*next_card = NULL; | 
|  |  | 
|  | for (card = nmcard_list; card != NULL; card = next_card) { | 
|  | next_card = card->next_card; | 
|  | if (card == xcard) { | 
|  | stopPlay (card); | 
|  | stopRecord (card); | 
|  | if (card->has_irq) | 
|  | free_irq (card->irq, card); | 
|  | nm256_release_ports (card); | 
|  | sound_unload_mixerdev (card->mixer_oss_dev); | 
|  | sound_unload_audiodev (card->dev[0]); | 
|  | sound_unload_audiodev (card->dev[1]); | 
|  | kfree (card); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (nmcard_list == card) | 
|  | nmcard_list = next_card; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Open the device | 
|  | * | 
|  | * DEV  - device | 
|  | * MODE - mode to open device (logical OR of OPEN_READ and OPEN_WRITE) | 
|  | * | 
|  | * Called when opening the DMAbuf               (dmabuf.c:259) | 
|  | */ | 
|  | static int | 
|  | nm256_audio_open(int dev, int mode) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  | int w; | 
|  |  | 
|  | if (card == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (card->dev[0] == dev) | 
|  | w = 0; | 
|  | else if (card->dev[1] == dev) | 
|  | w = 1; | 
|  | else | 
|  | return -ENODEV; | 
|  |  | 
|  | if (card->opencnt[w] > 0) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* No bits set? Huh? */ | 
|  | if (! ((mode & OPEN_READ) || (mode & OPEN_WRITE))) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * If it's open for both read and write, and the card's currently | 
|  | * being read or written to, then do the opposite of what has | 
|  | * already been done.  Otherwise, don't specify any mode until the | 
|  | * user actually tries to do I/O.  (Some programs open the device | 
|  | * for both read and write, but only actually do reading or writing.) | 
|  | */ | 
|  |  | 
|  | if ((mode & OPEN_WRITE) && (mode & OPEN_READ)) { | 
|  | if (card->is_open_play) | 
|  | mode = OPEN_WRITE; | 
|  | else if (card->is_open_record) | 
|  | mode = OPEN_READ; | 
|  | else mode = 0; | 
|  | } | 
|  |  | 
|  | if (mode & OPEN_WRITE) { | 
|  | if (card->is_open_play == 0) { | 
|  | card->dev_for_play = dev; | 
|  | card->is_open_play = 1; | 
|  | } | 
|  | else | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | if (mode & OPEN_READ) { | 
|  | if (card->is_open_record == 0) { | 
|  | card->dev_for_record = dev; | 
|  | card->is_open_record = 1; | 
|  | } | 
|  | else | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | card->opencnt[w]++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Close the device | 
|  | * | 
|  | * DEV  - device | 
|  | * | 
|  | * Called when closing the DMAbuf               (dmabuf.c:477) | 
|  | *      after halt_xfer | 
|  | */ | 
|  | static void | 
|  | nm256_audio_close(int dev) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card != NULL) { | 
|  | int w; | 
|  |  | 
|  | if (card->dev[0] == dev) | 
|  | w = 0; | 
|  | else if (card->dev[1] == dev) | 
|  | w = 1; | 
|  | else | 
|  | return; | 
|  |  | 
|  | card->opencnt[w]--; | 
|  | if (card->opencnt[w] <= 0) { | 
|  | card->opencnt[w] = 0; | 
|  |  | 
|  | if (card->dev_for_play == dev) { | 
|  | stopPlay (card); | 
|  | card->is_open_play = 0; | 
|  | card->dev_for_play = -1; | 
|  | } | 
|  |  | 
|  | if (card->dev_for_record == dev) { | 
|  | stopRecord (card); | 
|  | card->is_open_record = 0; | 
|  | card->dev_for_record = -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Standard ioctl handler. */ | 
|  | static int | 
|  | nm256_audio_ioctl(int dev, unsigned int cmd, void __user *arg) | 
|  | { | 
|  | int ret; | 
|  | u32 oldinfo; | 
|  | int w; | 
|  |  | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (dev == card->dev[0]) | 
|  | w = 0; | 
|  | else | 
|  | w = 1; | 
|  |  | 
|  | /* | 
|  | * The code here is messy.  There are probably better ways to do | 
|  | * it.  (It should be possible to handle it the same way the AC97 mixer | 
|  | * is done.) | 
|  | */ | 
|  | switch (cmd) | 
|  | { | 
|  | case SOUND_PCM_WRITE_RATE: | 
|  | if (get_user(ret, (int __user *) arg)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (ret != 0) { | 
|  | oldinfo = card->sinfo[w].samplerate; | 
|  | card->sinfo[w].samplerate = ret; | 
|  | ret = nm256_setInfo(dev, card); | 
|  | if (ret != 0) | 
|  | card->sinfo[w].samplerate = oldinfo; | 
|  | } | 
|  | if (ret == 0) | 
|  | ret = card->sinfo[w].samplerate; | 
|  | break; | 
|  |  | 
|  | case SOUND_PCM_READ_RATE: | 
|  | ret = card->sinfo[w].samplerate; | 
|  | break; | 
|  |  | 
|  | case SNDCTL_DSP_STEREO: | 
|  | if (get_user(ret, (int __user *) arg)) | 
|  | return -EFAULT; | 
|  |  | 
|  | card->sinfo[w].stereo = ret ? 1 : 0; | 
|  | ret = nm256_setInfo (dev, card); | 
|  | if (ret == 0) | 
|  | ret = card->sinfo[w].stereo; | 
|  |  | 
|  | break; | 
|  |  | 
|  | case SOUND_PCM_WRITE_CHANNELS: | 
|  | if (get_user(ret, (int __user *) arg)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (ret < 1 || ret > 3) | 
|  | ret = card->sinfo[w].stereo + 1; | 
|  | else { | 
|  | card->sinfo[w].stereo = ret - 1; | 
|  | ret = nm256_setInfo (dev, card); | 
|  | if (ret == 0) | 
|  | ret = card->sinfo[w].stereo + 1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SOUND_PCM_READ_CHANNELS: | 
|  | ret = card->sinfo[w].stereo + 1; | 
|  | break; | 
|  |  | 
|  | case SNDCTL_DSP_SETFMT: | 
|  | if (get_user(ret, (int __user *) arg)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (ret != 0) { | 
|  | oldinfo = card->sinfo[w].bits; | 
|  | card->sinfo[w].bits = ret; | 
|  | ret = nm256_setInfo (dev, card); | 
|  | if (ret != 0) | 
|  | card->sinfo[w].bits = oldinfo; | 
|  | } | 
|  | if (ret == 0) | 
|  | ret = card->sinfo[w].bits; | 
|  | break; | 
|  |  | 
|  | case SOUND_PCM_READ_BITS: | 
|  | ret = card->sinfo[w].bits; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return put_user(ret, (int __user *) arg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given the sound device DEV and an associated physical buffer PHYSBUF, | 
|  | * return a pointer to the actual buffer in kernel space. | 
|  | * | 
|  | * This routine should exist as part of the soundcore routines. | 
|  | */ | 
|  |  | 
|  | static char * | 
|  | nm256_getDMAbuffer (int dev, unsigned long physbuf) | 
|  | { | 
|  | struct audio_operations *adev = audio_devs[dev]; | 
|  | struct dma_buffparms *dmap = adev->dmap_out; | 
|  | char *dma_start = | 
|  | (char *)(physbuf - (unsigned long)dmap->raw_buf_phys | 
|  | + (unsigned long)dmap->raw_buf); | 
|  |  | 
|  | return dma_start; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Output a block to sound device | 
|  | * | 
|  | * dev          - device number | 
|  | * buf          - physical address of buffer | 
|  | * total_count  - total byte count in buffer | 
|  | * intrflag     - set if this has been called from an interrupt | 
|  | *				  (via DMAbuf_outputintr) | 
|  | * restart_dma  - set if engine needs to be re-initialised | 
|  | * | 
|  | * Called when: | 
|  | *  1. Starting output                                  (dmabuf.c:1327) | 
|  | *  2.                                                  (dmabuf.c:1504) | 
|  | *  3. A new buffer needs to be sent to the device      (dmabuf.c:1579) | 
|  | */ | 
|  | static void | 
|  | nm256_audio_output_block(int dev, unsigned long physbuf, | 
|  | int total_count, int intrflag) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card != NULL) { | 
|  | char *dma_buf = nm256_getDMAbuffer (dev, physbuf); | 
|  | card->is_open_play = 1; | 
|  | card->dev_for_play = dev; | 
|  | nm256_write_block (card, dma_buf, total_count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Ditto, but do recording instead.  */ | 
|  | static void | 
|  | nm256_audio_start_input(int dev, unsigned long physbuf, int count, | 
|  | int intrflag) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card != NULL) { | 
|  | char *dma_buf = nm256_getDMAbuffer (dev, physbuf); | 
|  | card->is_open_record = 1; | 
|  | card->dev_for_record = dev; | 
|  | nm256_startRecording (card, dma_buf, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for inputting samples to DEV. | 
|  | * Each requested buffer will be BSIZE byes long, with a total of | 
|  | * BCOUNT buffers. | 
|  | */ | 
|  |  | 
|  | static int | 
|  | nm256_audio_prepare_for_input(int dev, int bsize, int bcount) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (card->is_open_record && card->dev_for_record != dev) | 
|  | return -EBUSY; | 
|  |  | 
|  | audio_devs[dev]->dmap_in->flags |= DMA_NODMA; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare for outputting samples to `dev' | 
|  | * | 
|  | * Each buffer that will be passed will be `bsize' bytes long, | 
|  | * with a total of `bcount' buffers. | 
|  | * | 
|  | * Called when: | 
|  | *  1. A trigger enables audio output                   (dmabuf.c:978) | 
|  | *  2. We get a write buffer without dma_mode setup     (dmabuf.c:1152) | 
|  | *  3. We restart a transfer                            (dmabuf.c:1324) | 
|  | */ | 
|  |  | 
|  | static int | 
|  | nm256_audio_prepare_for_output(int dev, int bsize, int bcount) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (card->is_open_play && card->dev_for_play != dev) | 
|  | return -EBUSY; | 
|  |  | 
|  | audio_devs[dev]->dmap_out->flags |= DMA_NODMA; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Stop the current operations associated with DEV.  */ | 
|  | static void | 
|  | nm256_audio_reset(int dev) | 
|  | { | 
|  | struct nm256_info *card = nm256_find_card (dev); | 
|  |  | 
|  | if (card != NULL) { | 
|  | if (card->dev_for_play == dev) | 
|  | stopPlay (card); | 
|  | if (card->dev_for_record == dev) | 
|  | stopRecord (card); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | nm256_audio_local_qlen(int dev) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct audio_driver nm256_audio_driver = | 
|  | { | 
|  | .owner			= THIS_MODULE, | 
|  | .open			= nm256_audio_open, | 
|  | .close			= nm256_audio_close, | 
|  | .output_block		= nm256_audio_output_block, | 
|  | .start_input		= nm256_audio_start_input, | 
|  | .ioctl			= nm256_audio_ioctl, | 
|  | .prepare_for_input	= nm256_audio_prepare_for_input, | 
|  | .prepare_for_output	= nm256_audio_prepare_for_output, | 
|  | .halt_io		= nm256_audio_reset, | 
|  | .local_qlen		= nm256_audio_local_qlen, | 
|  | }; | 
|  |  | 
|  | static struct pci_device_id nm256_pci_tbl[] = { | 
|  | {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0}, | 
|  | {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0}, | 
|  | {PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO, | 
|  | PCI_ANY_ID, PCI_ANY_ID, 0, 0}, | 
|  | {0,} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, nm256_pci_tbl); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  |  | 
|  | static struct pci_driver nm256_pci_driver = { | 
|  | .name		= "nm256_audio", | 
|  | .id_table	= nm256_pci_tbl, | 
|  | .probe		= nm256_probe, | 
|  | .remove		= nm256_remove, | 
|  | }; | 
|  |  | 
|  | module_param(usecache, bool, 0); | 
|  | module_param(buffertop, int, 0); | 
|  | module_param(nm256_debug, bool, 0644); | 
|  | module_param(force_load, bool, 0); | 
|  |  | 
|  | static int __init do_init_nm256(void) | 
|  | { | 
|  | printk (KERN_INFO "NeoMagic 256AV/256ZX audio driver, version 1.1p\n"); | 
|  | return pci_register_driver(&nm256_pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit cleanup_nm256 (void) | 
|  | { | 
|  | pci_unregister_driver(&nm256_pci_driver); | 
|  | } | 
|  |  | 
|  | module_init(do_init_nm256); | 
|  | module_exit(cleanup_nm256); | 
|  |  | 
|  | /* | 
|  | * Local variables: | 
|  | *  c-basic-offset: 4 | 
|  | * End: | 
|  | */ |