|  | /* | 
|  | * PPC64 (POWER4) Huge TLB Page Support for Kernel. | 
|  | * | 
|  | * Copyright (C) 2003 David Gibson, IBM Corporation. | 
|  | * | 
|  | * Based on the IA-32 version: | 
|  | * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <asm/mman.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/spu.h> | 
|  |  | 
|  | #define PAGE_SHIFT_64K	16 | 
|  | #define PAGE_SHIFT_16M	24 | 
|  | #define PAGE_SHIFT_16G	34 | 
|  |  | 
|  | #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT) | 
|  | #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT) | 
|  | #define MAX_NUMBER_GPAGES	1024 | 
|  |  | 
|  | /* Tracks the 16G pages after the device tree is scanned and before the | 
|  | * huge_boot_pages list is ready.  */ | 
|  | static unsigned long gpage_freearray[MAX_NUMBER_GPAGES]; | 
|  | static unsigned nr_gpages; | 
|  |  | 
|  | /* Array of valid huge page sizes - non-zero value(hugepte_shift) is | 
|  | * stored for the huge page sizes that are valid. | 
|  | */ | 
|  | unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */ | 
|  |  | 
|  | #define hugepte_shift			mmu_huge_psizes | 
|  | #define PTRS_PER_HUGEPTE(psize)		(1 << hugepte_shift[psize]) | 
|  | #define HUGEPTE_TABLE_SIZE(psize)	(sizeof(pte_t) << hugepte_shift[psize]) | 
|  |  | 
|  | #define HUGEPD_SHIFT(psize)		(mmu_psize_to_shift(psize) \ | 
|  | + hugepte_shift[psize]) | 
|  | #define HUGEPD_SIZE(psize)		(1UL << HUGEPD_SHIFT(psize)) | 
|  | #define HUGEPD_MASK(psize)		(~(HUGEPD_SIZE(psize)-1)) | 
|  |  | 
|  | /* Subtract one from array size because we don't need a cache for 4K since | 
|  | * is not a huge page size */ | 
|  | #define HUGE_PGTABLE_INDEX(psize)	(HUGEPTE_CACHE_NUM + psize - 1) | 
|  | #define HUGEPTE_CACHE_NAME(psize)	(huge_pgtable_cache_name[psize]) | 
|  |  | 
|  | static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = { | 
|  | "unused_4K", "hugepte_cache_64K", "unused_64K_AP", | 
|  | "hugepte_cache_1M", "hugepte_cache_16M", "hugepte_cache_16G" | 
|  | }; | 
|  |  | 
|  | /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad() | 
|  | * will choke on pointers to hugepte tables, which is handy for | 
|  | * catching screwups early. */ | 
|  | #define HUGEPD_OK	0x1 | 
|  |  | 
|  | typedef struct { unsigned long pd; } hugepd_t; | 
|  |  | 
|  | #define hugepd_none(hpd)	((hpd).pd == 0) | 
|  |  | 
|  | static inline int shift_to_mmu_psize(unsigned int shift) | 
|  | { | 
|  | switch (shift) { | 
|  | #ifndef CONFIG_PPC_64K_PAGES | 
|  | case PAGE_SHIFT_64K: | 
|  | return MMU_PAGE_64K; | 
|  | #endif | 
|  | case PAGE_SHIFT_16M: | 
|  | return MMU_PAGE_16M; | 
|  | case PAGE_SHIFT_16G: | 
|  | return MMU_PAGE_16G; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) | 
|  | { | 
|  | if (mmu_psize_defs[mmu_psize].shift) | 
|  | return mmu_psize_defs[mmu_psize].shift; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static inline pte_t *hugepd_page(hugepd_t hpd) | 
|  | { | 
|  | BUG_ON(!(hpd.pd & HUGEPD_OK)); | 
|  | return (pte_t *)(hpd.pd & ~HUGEPD_OK); | 
|  | } | 
|  |  | 
|  | static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, | 
|  | struct hstate *hstate) | 
|  | { | 
|  | unsigned int shift = huge_page_shift(hstate); | 
|  | int psize = shift_to_mmu_psize(shift); | 
|  | unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1)); | 
|  | pte_t *dir = hugepd_page(*hpdp); | 
|  |  | 
|  | return dir + idx; | 
|  | } | 
|  |  | 
|  | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
|  | unsigned long address, unsigned int psize) | 
|  | { | 
|  | pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], | 
|  | GFP_KERNEL|__GFP_REPEAT); | 
|  |  | 
|  | if (! new) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&mm->page_table_lock); | 
|  | if (!hugepd_none(*hpdp)) | 
|  | kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new); | 
|  | else | 
|  | hpdp->pd = (unsigned long)new | HUGEPD_OK; | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate) | 
|  | { | 
|  | if (huge_page_shift(hstate) < PUD_SHIFT) | 
|  | return pud_offset(pgd, addr); | 
|  | else | 
|  | return (pud_t *) pgd; | 
|  | } | 
|  | static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, | 
|  | struct hstate *hstate) | 
|  | { | 
|  | if (huge_page_shift(hstate) < PUD_SHIFT) | 
|  | return pud_alloc(mm, pgd, addr); | 
|  | else | 
|  | return (pud_t *) pgd; | 
|  | } | 
|  | static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate) | 
|  | { | 
|  | if (huge_page_shift(hstate) < PMD_SHIFT) | 
|  | return pmd_offset(pud, addr); | 
|  | else | 
|  | return (pmd_t *) pud; | 
|  | } | 
|  | static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr, | 
|  | struct hstate *hstate) | 
|  | { | 
|  | if (huge_page_shift(hstate) < PMD_SHIFT) | 
|  | return pmd_alloc(mm, pud, addr); | 
|  | else | 
|  | return (pmd_t *) pud; | 
|  | } | 
|  |  | 
|  | /* Build list of addresses of gigantic pages.  This function is used in early | 
|  | * boot before the buddy or bootmem allocator is setup. | 
|  | */ | 
|  | void add_gpage(unsigned long addr, unsigned long page_size, | 
|  | unsigned long number_of_pages) | 
|  | { | 
|  | if (!addr) | 
|  | return; | 
|  | while (number_of_pages > 0) { | 
|  | gpage_freearray[nr_gpages] = addr; | 
|  | nr_gpages++; | 
|  | number_of_pages--; | 
|  | addr += page_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Moves the gigantic page addresses from the temporary list to the | 
|  | * huge_boot_pages list. | 
|  | */ | 
|  | int alloc_bootmem_huge_page(struct hstate *hstate) | 
|  | { | 
|  | struct huge_bootmem_page *m; | 
|  | if (nr_gpages == 0) | 
|  | return 0; | 
|  | m = phys_to_virt(gpage_freearray[--nr_gpages]); | 
|  | gpage_freearray[nr_gpages] = 0; | 
|  | list_add(&m->list, &huge_boot_pages); | 
|  | m->hstate = hstate; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Modelled after find_linux_pte() */ | 
|  | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pg; | 
|  | pud_t *pu; | 
|  | pmd_t *pm; | 
|  |  | 
|  | unsigned int psize; | 
|  | unsigned int shift; | 
|  | unsigned long sz; | 
|  | struct hstate *hstate; | 
|  | psize = get_slice_psize(mm, addr); | 
|  | shift = mmu_psize_to_shift(psize); | 
|  | sz = ((1UL) << shift); | 
|  | hstate = size_to_hstate(sz); | 
|  |  | 
|  | addr &= hstate->mask; | 
|  |  | 
|  | pg = pgd_offset(mm, addr); | 
|  | if (!pgd_none(*pg)) { | 
|  | pu = hpud_offset(pg, addr, hstate); | 
|  | if (!pud_none(*pu)) { | 
|  | pm = hpmd_offset(pu, addr, hstate); | 
|  | if (!pmd_none(*pm)) | 
|  | return hugepte_offset((hugepd_t *)pm, addr, | 
|  | hstate); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | pte_t *huge_pte_alloc(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long sz) | 
|  | { | 
|  | pgd_t *pg; | 
|  | pud_t *pu; | 
|  | pmd_t *pm; | 
|  | hugepd_t *hpdp = NULL; | 
|  | struct hstate *hstate; | 
|  | unsigned int psize; | 
|  | hstate = size_to_hstate(sz); | 
|  |  | 
|  | psize = get_slice_psize(mm, addr); | 
|  | BUG_ON(!mmu_huge_psizes[psize]); | 
|  |  | 
|  | addr &= hstate->mask; | 
|  |  | 
|  | pg = pgd_offset(mm, addr); | 
|  | pu = hpud_alloc(mm, pg, addr, hstate); | 
|  |  | 
|  | if (pu) { | 
|  | pm = hpmd_alloc(mm, pu, addr, hstate); | 
|  | if (pm) | 
|  | hpdp = (hugepd_t *)pm; | 
|  | } | 
|  |  | 
|  | if (! hpdp) | 
|  | return NULL; | 
|  |  | 
|  | if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize)) | 
|  | return NULL; | 
|  |  | 
|  | return hugepte_offset(hpdp, addr, hstate); | 
|  | } | 
|  |  | 
|  | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp, | 
|  | unsigned int psize) | 
|  | { | 
|  | pte_t *hugepte = hugepd_page(*hpdp); | 
|  |  | 
|  | hpdp->pd = 0; | 
|  | tlb->need_flush = 1; | 
|  | pgtable_free_tlb(tlb, pgtable_free_cache(hugepte, | 
|  | HUGEPTE_CACHE_NUM+psize-1, | 
|  | PGF_CACHENUM_MASK)); | 
|  | } | 
|  |  | 
|  | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling, | 
|  | unsigned int psize) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | start = addr; | 
|  | pmd = pmd_offset(pud, addr); | 
|  | do { | 
|  | next = pmd_addr_end(addr, end); | 
|  | if (pmd_none(*pmd)) | 
|  | continue; | 
|  | free_hugepte_range(tlb, (hugepd_t *)pmd, psize); | 
|  | } while (pmd++, addr = next, addr != end); | 
|  |  | 
|  | start &= PUD_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PUD_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pmd = pmd_offset(pud, start); | 
|  | pud_clear(pud); | 
|  | pmd_free_tlb(tlb, pmd, start); | 
|  | } | 
|  |  | 
|  | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pud_t *pud; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  | unsigned int shift; | 
|  | unsigned int psize = get_slice_psize(tlb->mm, addr); | 
|  | shift = mmu_psize_to_shift(psize); | 
|  |  | 
|  | start = addr; | 
|  | pud = pud_offset(pgd, addr); | 
|  | do { | 
|  | next = pud_addr_end(addr, end); | 
|  | if (shift < PMD_SHIFT) { | 
|  | if (pud_none_or_clear_bad(pud)) | 
|  | continue; | 
|  | hugetlb_free_pmd_range(tlb, pud, addr, next, floor, | 
|  | ceiling, psize); | 
|  | } else { | 
|  | if (pud_none(*pud)) | 
|  | continue; | 
|  | free_hugepte_range(tlb, (hugepd_t *)pud, psize); | 
|  | } | 
|  | } while (pud++, addr = next, addr != end); | 
|  |  | 
|  | start &= PGDIR_MASK; | 
|  | if (start < floor) | 
|  | return; | 
|  | if (ceiling) { | 
|  | ceiling &= PGDIR_MASK; | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | return; | 
|  |  | 
|  | pud = pud_offset(pgd, start); | 
|  | pgd_clear(pgd); | 
|  | pud_free_tlb(tlb, pud, start); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function frees user-level page tables of a process. | 
|  | * | 
|  | * Must be called with pagetable lock held. | 
|  | */ | 
|  | void hugetlb_free_pgd_range(struct mmu_gather *tlb, | 
|  | unsigned long addr, unsigned long end, | 
|  | unsigned long floor, unsigned long ceiling) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | unsigned long next; | 
|  | unsigned long start; | 
|  |  | 
|  | /* | 
|  | * Comments below take from the normal free_pgd_range().  They | 
|  | * apply here too.  The tests against HUGEPD_MASK below are | 
|  | * essential, because we *don't* test for this at the bottom | 
|  | * level.  Without them we'll attempt to free a hugepte table | 
|  | * when we unmap just part of it, even if there are other | 
|  | * active mappings using it. | 
|  | * | 
|  | * The next few lines have given us lots of grief... | 
|  | * | 
|  | * Why are we testing HUGEPD* at this top level?  Because | 
|  | * often there will be no work to do at all, and we'd prefer | 
|  | * not to go all the way down to the bottom just to discover | 
|  | * that. | 
|  | * | 
|  | * Why all these "- 1"s?  Because 0 represents both the bottom | 
|  | * of the address space and the top of it (using -1 for the | 
|  | * top wouldn't help much: the masks would do the wrong thing). | 
|  | * The rule is that addr 0 and floor 0 refer to the bottom of | 
|  | * the address space, but end 0 and ceiling 0 refer to the top | 
|  | * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
|  | * that end 0 case should be mythical). | 
|  | * | 
|  | * Wherever addr is brought up or ceiling brought down, we | 
|  | * must be careful to reject "the opposite 0" before it | 
|  | * confuses the subsequent tests.  But what about where end is | 
|  | * brought down by HUGEPD_SIZE below? no, end can't go down to | 
|  | * 0 there. | 
|  | * | 
|  | * Whereas we round start (addr) and ceiling down, by different | 
|  | * masks at different levels, in order to test whether a table | 
|  | * now has no other vmas using it, so can be freed, we don't | 
|  | * bother to round floor or end up - the tests don't need that. | 
|  | */ | 
|  | unsigned int psize = get_slice_psize(tlb->mm, addr); | 
|  |  | 
|  | addr &= HUGEPD_MASK(psize); | 
|  | if (addr < floor) { | 
|  | addr += HUGEPD_SIZE(psize); | 
|  | if (!addr) | 
|  | return; | 
|  | } | 
|  | if (ceiling) { | 
|  | ceiling &= HUGEPD_MASK(psize); | 
|  | if (!ceiling) | 
|  | return; | 
|  | } | 
|  | if (end - 1 > ceiling - 1) | 
|  | end -= HUGEPD_SIZE(psize); | 
|  | if (addr > end - 1) | 
|  | return; | 
|  |  | 
|  | start = addr; | 
|  | pgd = pgd_offset(tlb->mm, addr); | 
|  | do { | 
|  | psize = get_slice_psize(tlb->mm, addr); | 
|  | BUG_ON(!mmu_huge_psizes[psize]); | 
|  | next = pgd_addr_end(addr, end); | 
|  | if (mmu_psize_to_shift(psize) < PUD_SHIFT) { | 
|  | if (pgd_none_or_clear_bad(pgd)) | 
|  | continue; | 
|  | hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
|  | } else { | 
|  | if (pgd_none(*pgd)) | 
|  | continue; | 
|  | free_hugepte_range(tlb, (hugepd_t *)pgd, psize); | 
|  | } | 
|  | } while (pgd++, addr = next, addr != end); | 
|  | } | 
|  |  | 
|  | void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep, pte_t pte) | 
|  | { | 
|  | if (pte_present(*ptep)) { | 
|  | /* We open-code pte_clear because we need to pass the right | 
|  | * argument to hpte_need_flush (huge / !huge). Might not be | 
|  | * necessary anymore if we make hpte_need_flush() get the | 
|  | * page size from the slices | 
|  | */ | 
|  | unsigned int psize = get_slice_psize(mm, addr); | 
|  | unsigned int shift = mmu_psize_to_shift(psize); | 
|  | unsigned long sz = ((1UL) << shift); | 
|  | struct hstate *hstate = size_to_hstate(sz); | 
|  | pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1); | 
|  | } | 
|  | *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); | 
|  | } | 
|  |  | 
|  | pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | 
|  | pte_t *ptep) | 
|  | { | 
|  | unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1); | 
|  | return __pte(old); | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | 
|  | { | 
|  | pte_t *ptep; | 
|  | struct page *page; | 
|  | unsigned int mmu_psize = get_slice_psize(mm, address); | 
|  |  | 
|  | /* Verify it is a huge page else bail. */ | 
|  | if (!mmu_huge_psizes[mmu_psize]) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | ptep = huge_pte_offset(mm, address); | 
|  | page = pte_page(*ptep); | 
|  | if (page) { | 
|  | unsigned int shift = mmu_psize_to_shift(mmu_psize); | 
|  | unsigned long sz = ((1UL) << shift); | 
|  | page += (address % sz) / PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | int pmd_huge(pmd_t pmd) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pud_huge(pud_t pud) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
|  | pmd_t *pmd, int write) | 
|  | { | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long pgoff, | 
|  | unsigned long flags) | 
|  | { | 
|  | struct hstate *hstate = hstate_file(file); | 
|  | int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); | 
|  |  | 
|  | if (!mmu_huge_psizes[mmu_psize]) | 
|  | return -EINVAL; | 
|  | return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); | 
|  | } | 
|  |  | 
|  | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); | 
|  |  | 
|  | return 1UL << mmu_psize_to_shift(psize); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by asm hashtable.S for doing lazy icache flush | 
|  | */ | 
|  | static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags, | 
|  | pte_t pte, int trap, unsigned long sz) | 
|  | { | 
|  | struct page *page; | 
|  | int i; | 
|  |  | 
|  | if (!pfn_valid(pte_pfn(pte))) | 
|  | return rflags; | 
|  |  | 
|  | page = pte_page(pte); | 
|  |  | 
|  | /* page is dirty */ | 
|  | if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) { | 
|  | if (trap == 0x400) { | 
|  | for (i = 0; i < (sz / PAGE_SIZE); i++) | 
|  | __flush_dcache_icache(page_address(page+i)); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | } else { | 
|  | rflags |= HPTE_R_N; | 
|  | } | 
|  | } | 
|  | return rflags; | 
|  | } | 
|  |  | 
|  | int hash_huge_page(struct mm_struct *mm, unsigned long access, | 
|  | unsigned long ea, unsigned long vsid, int local, | 
|  | unsigned long trap) | 
|  | { | 
|  | pte_t *ptep; | 
|  | unsigned long old_pte, new_pte; | 
|  | unsigned long va, rflags, pa, sz; | 
|  | long slot; | 
|  | int err = 1; | 
|  | int ssize = user_segment_size(ea); | 
|  | unsigned int mmu_psize; | 
|  | int shift; | 
|  | mmu_psize = get_slice_psize(mm, ea); | 
|  |  | 
|  | if (!mmu_huge_psizes[mmu_psize]) | 
|  | goto out; | 
|  | ptep = huge_pte_offset(mm, ea); | 
|  |  | 
|  | /* Search the Linux page table for a match with va */ | 
|  | va = hpt_va(ea, vsid, ssize); | 
|  |  | 
|  | /* | 
|  | * If no pte found or not present, send the problem up to | 
|  | * do_page_fault | 
|  | */ | 
|  | if (unlikely(!ptep || pte_none(*ptep))) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Check the user's access rights to the page.  If access should be | 
|  | * prevented then send the problem up to do_page_fault. | 
|  | */ | 
|  | if (unlikely(access & ~pte_val(*ptep))) | 
|  | goto out; | 
|  | /* | 
|  | * At this point, we have a pte (old_pte) which can be used to build | 
|  | * or update an HPTE. There are 2 cases: | 
|  | * | 
|  | * 1. There is a valid (present) pte with no associated HPTE (this is | 
|  | *	the most common case) | 
|  | * 2. There is a valid (present) pte with an associated HPTE. The | 
|  | *	current values of the pp bits in the HPTE prevent access | 
|  | *	because we are doing software DIRTY bit management and the | 
|  | *	page is currently not DIRTY. | 
|  | */ | 
|  |  | 
|  |  | 
|  | do { | 
|  | old_pte = pte_val(*ptep); | 
|  | if (old_pte & _PAGE_BUSY) | 
|  | goto out; | 
|  | new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED; | 
|  | } while(old_pte != __cmpxchg_u64((unsigned long *)ptep, | 
|  | old_pte, new_pte)); | 
|  |  | 
|  | rflags = 0x2 | (!(new_pte & _PAGE_RW)); | 
|  | /* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */ | 
|  | rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N); | 
|  | shift = mmu_psize_to_shift(mmu_psize); | 
|  | sz = ((1UL) << shift); | 
|  | if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) | 
|  | /* No CPU has hugepages but lacks no execute, so we | 
|  | * don't need to worry about that case */ | 
|  | rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte), | 
|  | trap, sz); | 
|  |  | 
|  | /* Check if pte already has an hpte (case 2) */ | 
|  | if (unlikely(old_pte & _PAGE_HASHPTE)) { | 
|  | /* There MIGHT be an HPTE for this pte */ | 
|  | unsigned long hash, slot; | 
|  |  | 
|  | hash = hpt_hash(va, shift, ssize); | 
|  | if (old_pte & _PAGE_F_SECOND) | 
|  | hash = ~hash; | 
|  | slot = (hash & htab_hash_mask) * HPTES_PER_GROUP; | 
|  | slot += (old_pte & _PAGE_F_GIX) >> 12; | 
|  |  | 
|  | if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize, | 
|  | ssize, local) == -1) | 
|  | old_pte &= ~_PAGE_HPTEFLAGS; | 
|  | } | 
|  |  | 
|  | if (likely(!(old_pte & _PAGE_HASHPTE))) { | 
|  | unsigned long hash = hpt_hash(va, shift, ssize); | 
|  | unsigned long hpte_group; | 
|  |  | 
|  | pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT; | 
|  |  | 
|  | repeat: | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  |  | 
|  | /* clear HPTE slot informations in new PTE */ | 
|  | #ifdef CONFIG_PPC_64K_PAGES | 
|  | new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0; | 
|  | #else | 
|  | new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE; | 
|  | #endif | 
|  | /* Add in WIMG bits */ | 
|  | rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE | | 
|  | _PAGE_COHERENT | _PAGE_GUARDED)); | 
|  |  | 
|  | /* Insert into the hash table, primary slot */ | 
|  | slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0, | 
|  | mmu_psize, ssize); | 
|  |  | 
|  | /* Primary is full, try the secondary */ | 
|  | if (unlikely(slot == -1)) { | 
|  | hpte_group = ((~hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP) & ~0x7UL; | 
|  | slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, | 
|  | HPTE_V_SECONDARY, | 
|  | mmu_psize, ssize); | 
|  | if (slot == -1) { | 
|  | if (mftb() & 0x1) | 
|  | hpte_group = ((hash & htab_hash_mask) * | 
|  | HPTES_PER_GROUP)&~0x7UL; | 
|  |  | 
|  | ppc_md.hpte_remove(hpte_group); | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(slot == -2)) | 
|  | panic("hash_huge_page: pte_insert failed\n"); | 
|  |  | 
|  | new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to use ldarx/stdcx here | 
|  | */ | 
|  | *ptep = __pte(new_pte & ~_PAGE_BUSY); | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void __init set_huge_psize(int psize) | 
|  | { | 
|  | /* Check that it is a page size supported by the hardware and | 
|  | * that it fits within pagetable limits. */ | 
|  | if (mmu_psize_defs[psize].shift && | 
|  | mmu_psize_defs[psize].shift < SID_SHIFT_1T && | 
|  | (mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT || | 
|  | mmu_psize_defs[psize].shift == PAGE_SHIFT_64K || | 
|  | mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) { | 
|  | /* Return if huge page size has already been setup or is the | 
|  | * same as the base page size. */ | 
|  | if (mmu_huge_psizes[psize] || | 
|  | mmu_psize_defs[psize].shift == PAGE_SHIFT) | 
|  | return; | 
|  | hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT); | 
|  |  | 
|  | switch (mmu_psize_defs[psize].shift) { | 
|  | case PAGE_SHIFT_64K: | 
|  | /* We only allow 64k hpages with 4k base page, | 
|  | * which was checked above, and always put them | 
|  | * at the PMD */ | 
|  | hugepte_shift[psize] = PMD_SHIFT; | 
|  | break; | 
|  | case PAGE_SHIFT_16M: | 
|  | /* 16M pages can be at two different levels | 
|  | * of pagestables based on base page size */ | 
|  | if (PAGE_SHIFT == PAGE_SHIFT_64K) | 
|  | hugepte_shift[psize] = PMD_SHIFT; | 
|  | else /* 4k base page */ | 
|  | hugepte_shift[psize] = PUD_SHIFT; | 
|  | break; | 
|  | case PAGE_SHIFT_16G: | 
|  | /* 16G pages are always at PGD level */ | 
|  | hugepte_shift[psize] = PGDIR_SHIFT; | 
|  | break; | 
|  | } | 
|  | hugepte_shift[psize] -= mmu_psize_defs[psize].shift; | 
|  | } else | 
|  | hugepte_shift[psize] = 0; | 
|  | } | 
|  |  | 
|  | static int __init hugepage_setup_sz(char *str) | 
|  | { | 
|  | unsigned long long size; | 
|  | int mmu_psize; | 
|  | int shift; | 
|  |  | 
|  | size = memparse(str, &str); | 
|  |  | 
|  | shift = __ffs(size); | 
|  | mmu_psize = shift_to_mmu_psize(shift); | 
|  | if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift) | 
|  | set_huge_psize(mmu_psize); | 
|  | else | 
|  | printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("hugepagesz=", hugepage_setup_sz); | 
|  |  | 
|  | static int __init hugetlbpage_init(void) | 
|  | { | 
|  | unsigned int psize; | 
|  |  | 
|  | if (!cpu_has_feature(CPU_FTR_16M_PAGE)) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* Add supported huge page sizes.  Need to change HUGE_MAX_HSTATE | 
|  | * and adjust PTE_NONCACHE_NUM if the number of supported huge page | 
|  | * sizes changes. | 
|  | */ | 
|  | set_huge_psize(MMU_PAGE_16M); | 
|  | set_huge_psize(MMU_PAGE_16G); | 
|  |  | 
|  | /* Temporarily disable support for 64K huge pages when 64K SPU local | 
|  | * store support is enabled as the current implementation conflicts. | 
|  | */ | 
|  | #ifndef CONFIG_SPU_FS_64K_LS | 
|  | set_huge_psize(MMU_PAGE_64K); | 
|  | #endif | 
|  |  | 
|  | for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
|  | if (mmu_huge_psizes[psize]) { | 
|  | pgtable_cache[HUGE_PGTABLE_INDEX(psize)] = | 
|  | kmem_cache_create( | 
|  | HUGEPTE_CACHE_NAME(psize), | 
|  | HUGEPTE_TABLE_SIZE(psize), | 
|  | HUGEPTE_TABLE_SIZE(psize), | 
|  | 0, | 
|  | NULL); | 
|  | if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)]) | 
|  | panic("hugetlbpage_init(): could not create %s"\ | 
|  | "\n", HUGEPTE_CACHE_NAME(psize)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | module_init(hugetlbpage_init); |