|  | /* | 
|  | * pSeries NUMA support | 
|  | * | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  | #include <linux/threads.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/lmb.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <asm/sparsemem.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/smp.h> | 
|  |  | 
|  | static int numa_enabled = 1; | 
|  |  | 
|  | static char *cmdline __initdata; | 
|  |  | 
|  | static int numa_debug; | 
|  | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
|  |  | 
|  | int numa_cpu_lookup_table[NR_CPUS]; | 
|  | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
|  | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  |  | 
|  | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
|  | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | static int min_common_depth; | 
|  | static int n_mem_addr_cells, n_mem_size_cells; | 
|  |  | 
|  | static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, | 
|  | unsigned int *nid) | 
|  | { | 
|  | unsigned long long mem; | 
|  | char *p = cmdline; | 
|  | static unsigned int fake_nid; | 
|  | static unsigned long long curr_boundary; | 
|  |  | 
|  | /* | 
|  | * Modify node id, iff we started creating NUMA nodes | 
|  | * We want to continue from where we left of the last time | 
|  | */ | 
|  | if (fake_nid) | 
|  | *nid = fake_nid; | 
|  | /* | 
|  | * In case there are no more arguments to parse, the | 
|  | * node_id should be the same as the last fake node id | 
|  | * (we've handled this above). | 
|  | */ | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | mem = memparse(p, &p); | 
|  | if (!mem) | 
|  | return 0; | 
|  |  | 
|  | if (mem < curr_boundary) | 
|  | return 0; | 
|  |  | 
|  | curr_boundary = mem; | 
|  |  | 
|  | if ((end_pfn << PAGE_SHIFT) > mem) { | 
|  | /* | 
|  | * Skip commas and spaces | 
|  | */ | 
|  | while (*p == ',' || *p == ' ' || *p == '\t') | 
|  | p++; | 
|  |  | 
|  | cmdline = p; | 
|  | fake_nid++; | 
|  | *nid = fake_nid; | 
|  | dbg("created new fake_node with id %d\n", fake_nid); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_active_region_work_fn - A helper function for get_node_active_region | 
|  | *	Returns datax set to the start_pfn and end_pfn if they contain | 
|  | *	the initial value of datax->start_pfn between them | 
|  | * @start_pfn: start page(inclusive) of region to check | 
|  | * @end_pfn: end page(exclusive) of region to check | 
|  | * @datax: comes in with ->start_pfn set to value to search for and | 
|  | *	goes out with active range if it contains it | 
|  | * Returns 1 if search value is in range else 0 | 
|  | */ | 
|  | static int __init get_active_region_work_fn(unsigned long start_pfn, | 
|  | unsigned long end_pfn, void *datax) | 
|  | { | 
|  | struct node_active_region *data; | 
|  | data = (struct node_active_region *)datax; | 
|  |  | 
|  | if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) { | 
|  | data->start_pfn = start_pfn; | 
|  | data->end_pfn = end_pfn; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get_node_active_region - Return active region containing start_pfn | 
|  | * Active range returned is empty if none found. | 
|  | * @start_pfn: The page to return the region for. | 
|  | * @node_ar: Returned set to the active region containing start_pfn | 
|  | */ | 
|  | static void __init get_node_active_region(unsigned long start_pfn, | 
|  | struct node_active_region *node_ar) | 
|  | { | 
|  | int nid = early_pfn_to_nid(start_pfn); | 
|  |  | 
|  | node_ar->nid = nid; | 
|  | node_ar->start_pfn = start_pfn; | 
|  | node_ar->end_pfn = start_pfn; | 
|  | work_with_active_regions(nid, get_active_region_work_fn, node_ar); | 
|  | } | 
|  |  | 
|  | static void __cpuinit map_cpu_to_node(int cpu, int node) | 
|  | { | 
|  | numa_cpu_lookup_table[cpu] = node; | 
|  |  | 
|  | dbg("adding cpu %d to node %d\n", cpu, node); | 
|  |  | 
|  | if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) | 
|  | cpu_set(cpu, numa_cpumask_lookup_table[node]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void unmap_cpu_from_node(unsigned long cpu) | 
|  | { | 
|  | int node = numa_cpu_lookup_table[cpu]; | 
|  |  | 
|  | dbg("removing cpu %lu from node %d\n", cpu, node); | 
|  |  | 
|  | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
|  | cpu_clear(cpu, numa_cpumask_lookup_table[node]); | 
|  | } else { | 
|  | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
|  | cpu, node); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* must hold reference to node during call */ | 
|  | static const int *of_get_associativity(struct device_node *dev) | 
|  | { | 
|  | return of_get_property(dev, "ibm,associativity", NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the property linux,drconf-usable-memory if | 
|  | * it exists (the property exists only in kexec/kdump kernels, | 
|  | * added by kexec-tools) | 
|  | */ | 
|  | static const u32 *of_get_usable_memory(struct device_node *memory) | 
|  | { | 
|  | const u32 *prop; | 
|  | u32 len; | 
|  | prop = of_get_property(memory, "linux,drconf-usable-memory", &len); | 
|  | if (!prop || len < sizeof(unsigned int)) | 
|  | return 0; | 
|  | return prop; | 
|  | } | 
|  |  | 
|  | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
|  | * info is found. | 
|  | */ | 
|  | static int of_node_to_nid_single(struct device_node *device) | 
|  | { | 
|  | int nid = -1; | 
|  | const unsigned int *tmp; | 
|  |  | 
|  | if (min_common_depth == -1) | 
|  | goto out; | 
|  |  | 
|  | tmp = of_get_associativity(device); | 
|  | if (!tmp) | 
|  | goto out; | 
|  |  | 
|  | if (tmp[0] >= min_common_depth) | 
|  | nid = tmp[min_common_depth]; | 
|  |  | 
|  | /* POWER4 LPAR uses 0xffff as invalid node */ | 
|  | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | nid = -1; | 
|  | out: | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* Walk the device tree upwards, looking for an associativity id */ | 
|  | int of_node_to_nid(struct device_node *device) | 
|  | { | 
|  | struct device_node *tmp; | 
|  | int nid = -1; | 
|  |  | 
|  | of_node_get(device); | 
|  | while (device) { | 
|  | nid = of_node_to_nid_single(device); | 
|  | if (nid != -1) | 
|  | break; | 
|  |  | 
|  | tmp = device; | 
|  | device = of_get_parent(tmp); | 
|  | of_node_put(tmp); | 
|  | } | 
|  | of_node_put(device); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_node_to_nid); | 
|  |  | 
|  | /* | 
|  | * In theory, the "ibm,associativity" property may contain multiple | 
|  | * associativity lists because a resource may be multiply connected | 
|  | * into the machine.  This resource then has different associativity | 
|  | * characteristics relative to its multiple connections.  We ignore | 
|  | * this for now.  We also assume that all cpu and memory sets have | 
|  | * their distances represented at a common level.  This won't be | 
|  | * true for hierarchical NUMA. | 
|  | * | 
|  | * In any case the ibm,associativity-reference-points should give | 
|  | * the correct depth for a normal NUMA system. | 
|  | * | 
|  | * - Dave Hansen <haveblue@us.ibm.com> | 
|  | */ | 
|  | static int __init find_min_common_depth(void) | 
|  | { | 
|  | int depth; | 
|  | const unsigned int *ref_points; | 
|  | struct device_node *rtas_root; | 
|  | unsigned int len; | 
|  |  | 
|  | rtas_root = of_find_node_by_path("/rtas"); | 
|  |  | 
|  | if (!rtas_root) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * this property is 2 32-bit integers, each representing a level of | 
|  | * depth in the associativity nodes.  The first is for an SMP | 
|  | * configuration (should be all 0's) and the second is for a normal | 
|  | * NUMA configuration. | 
|  | */ | 
|  | ref_points = of_get_property(rtas_root, | 
|  | "ibm,associativity-reference-points", &len); | 
|  |  | 
|  | if ((len >= 2 * sizeof(unsigned int)) && ref_points) { | 
|  | depth = ref_points[1]; | 
|  | } else { | 
|  | dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
|  | depth = -1; | 
|  | } | 
|  | of_node_put(rtas_root); | 
|  |  | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  |  | 
|  | memory = of_find_node_by_type(memory, "memory"); | 
|  | if (!memory) | 
|  | panic("numa.c: No memory nodes found!"); | 
|  |  | 
|  | *n_addr_cells = of_n_addr_cells(memory); | 
|  | *n_size_cells = of_n_size_cells(memory); | 
|  | of_node_put(memory); | 
|  | } | 
|  |  | 
|  | static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) | 
|  | { | 
|  | unsigned long result = 0; | 
|  |  | 
|  | while (n--) { | 
|  | result = (result << 32) | **buf; | 
|  | (*buf)++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | struct of_drconf_cell { | 
|  | u64	base_addr; | 
|  | u32	drc_index; | 
|  | u32	reserved; | 
|  | u32	aa_index; | 
|  | u32	flags; | 
|  | }; | 
|  |  | 
|  | #define DRCONF_MEM_ASSIGNED	0x00000008 | 
|  | #define DRCONF_MEM_AI_INVALID	0x00000040 | 
|  | #define DRCONF_MEM_RESERVED	0x00000080 | 
|  |  | 
|  | /* | 
|  | * Read the next lmb list entry from the ibm,dynamic-memory property | 
|  | * and return the information in the provided of_drconf_cell structure. | 
|  | */ | 
|  | static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) | 
|  | { | 
|  | const u32 *cp; | 
|  |  | 
|  | drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); | 
|  |  | 
|  | cp = *cellp; | 
|  | drmem->drc_index = cp[0]; | 
|  | drmem->reserved = cp[1]; | 
|  | drmem->aa_index = cp[2]; | 
|  | drmem->flags = cp[3]; | 
|  |  | 
|  | *cellp = cp + 4; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retreive and validate the ibm,dynamic-memory property of the device tree. | 
|  | * | 
|  | * The layout of the ibm,dynamic-memory property is a number N of lmb | 
|  | * list entries followed by N lmb list entries.  Each lmb list entry | 
|  | * contains information as layed out in the of_drconf_cell struct above. | 
|  | */ | 
|  | static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) | 
|  | { | 
|  | const u32 *prop; | 
|  | u32 len, entries; | 
|  |  | 
|  | prop = of_get_property(memory, "ibm,dynamic-memory", &len); | 
|  | if (!prop || len < sizeof(unsigned int)) | 
|  | return 0; | 
|  |  | 
|  | entries = *prop++; | 
|  |  | 
|  | /* Now that we know the number of entries, revalidate the size | 
|  | * of the property read in to ensure we have everything | 
|  | */ | 
|  | if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) | 
|  | return 0; | 
|  |  | 
|  | *dm = prop; | 
|  | return entries; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retreive and validate the ibm,lmb-size property for drconf memory | 
|  | * from the device tree. | 
|  | */ | 
|  | static u64 of_get_lmb_size(struct device_node *memory) | 
|  | { | 
|  | const u32 *prop; | 
|  | u32 len; | 
|  |  | 
|  | prop = of_get_property(memory, "ibm,lmb-size", &len); | 
|  | if (!prop || len < sizeof(unsigned int)) | 
|  | return 0; | 
|  |  | 
|  | return read_n_cells(n_mem_size_cells, &prop); | 
|  | } | 
|  |  | 
|  | struct assoc_arrays { | 
|  | u32	n_arrays; | 
|  | u32	array_sz; | 
|  | const u32 *arrays; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Retreive and validate the list of associativity arrays for drconf | 
|  | * memory from the ibm,associativity-lookup-arrays property of the | 
|  | * device tree.. | 
|  | * | 
|  | * The layout of the ibm,associativity-lookup-arrays property is a number N | 
|  | * indicating the number of associativity arrays, followed by a number M | 
|  | * indicating the size of each associativity array, followed by a list | 
|  | * of N associativity arrays. | 
|  | */ | 
|  | static int of_get_assoc_arrays(struct device_node *memory, | 
|  | struct assoc_arrays *aa) | 
|  | { | 
|  | const u32 *prop; | 
|  | u32 len; | 
|  |  | 
|  | prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
|  | if (!prop || len < 2 * sizeof(unsigned int)) | 
|  | return -1; | 
|  |  | 
|  | aa->n_arrays = *prop++; | 
|  | aa->array_sz = *prop++; | 
|  |  | 
|  | /* Now that we know the number of arrrays and size of each array, | 
|  | * revalidate the size of the property read in. | 
|  | */ | 
|  | if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
|  | return -1; | 
|  |  | 
|  | aa->arrays = prop; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is like of_node_to_nid_single() for memory represented in the | 
|  | * ibm,dynamic-reconfiguration-memory node. | 
|  | */ | 
|  | static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, | 
|  | struct assoc_arrays *aa) | 
|  | { | 
|  | int default_nid = 0; | 
|  | int nid = default_nid; | 
|  | int index; | 
|  |  | 
|  | if (min_common_depth > 0 && min_common_depth <= aa->array_sz && | 
|  | !(drmem->flags & DRCONF_MEM_AI_INVALID) && | 
|  | drmem->aa_index < aa->n_arrays) { | 
|  | index = drmem->aa_index * aa->array_sz + min_common_depth - 1; | 
|  | nid = aa->arrays[index]; | 
|  |  | 
|  | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | nid = default_nid; | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out to which domain a cpu belongs and stick it there. | 
|  | * Return the id of the domain used. | 
|  | */ | 
|  | static int __cpuinit numa_setup_cpu(unsigned long lcpu) | 
|  | { | 
|  | int nid = 0; | 
|  | struct device_node *cpu = of_get_cpu_node(lcpu, NULL); | 
|  |  | 
|  | if (!cpu) { | 
|  | WARN_ON(1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nid = of_node_to_nid_single(cpu); | 
|  |  | 
|  | if (nid < 0 || !node_online(nid)) | 
|  | nid = any_online_node(NODE_MASK_ALL); | 
|  | out: | 
|  | map_cpu_to_node(lcpu, nid); | 
|  |  | 
|  | of_node_put(cpu); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | unsigned long lcpu = (unsigned long)hcpu; | 
|  | int ret = NOTIFY_DONE; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | numa_setup_cpu(lcpu); | 
|  | ret = NOTIFY_OK; | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | unmap_cpu_from_node(lcpu); | 
|  | break; | 
|  | ret = NOTIFY_OK; | 
|  | #endif | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and possibly modify a memory region to enforce the memory limit. | 
|  | * | 
|  | * Returns the size the region should have to enforce the memory limit. | 
|  | * This will either be the original value of size, a truncated value, | 
|  | * or zero. If the returned value of size is 0 the region should be | 
|  | * discarded as it lies wholy above the memory limit. | 
|  | */ | 
|  | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
|  | unsigned long size) | 
|  | { | 
|  | /* | 
|  | * We use lmb_end_of_DRAM() in here instead of memory_limit because | 
|  | * we've already adjusted it for the limit and it takes care of | 
|  | * having memory holes below the limit.  Also, in the case of | 
|  | * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
|  | */ | 
|  |  | 
|  | if (start + size <= lmb_end_of_DRAM()) | 
|  | return size; | 
|  |  | 
|  | if (start >= lmb_end_of_DRAM()) | 
|  | return 0; | 
|  |  | 
|  | return lmb_end_of_DRAM() - start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the counter for a given entry in | 
|  | * linux,drconf-usable-memory property | 
|  | */ | 
|  | static inline int __init read_usm_ranges(const u32 **usm) | 
|  | { | 
|  | /* | 
|  | * For each lmb in ibm,dynamic-memory a corresponding | 
|  | * entry in linux,drconf-usable-memory property contains | 
|  | * a counter followed by that many (base, size) duple. | 
|  | * read the counter from linux,drconf-usable-memory | 
|  | */ | 
|  | return read_n_cells(n_mem_size_cells, usm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
|  | * node.  This assumes n_mem_{addr,size}_cells have been set. | 
|  | */ | 
|  | static void __init parse_drconf_memory(struct device_node *memory) | 
|  | { | 
|  | const u32 *dm, *usm; | 
|  | unsigned int n, rc, ranges, is_kexec_kdump = 0; | 
|  | unsigned long lmb_size, base, size, sz; | 
|  | int nid; | 
|  | struct assoc_arrays aa; | 
|  |  | 
|  | n = of_get_drconf_memory(memory, &dm); | 
|  | if (!n) | 
|  | return; | 
|  |  | 
|  | lmb_size = of_get_lmb_size(memory); | 
|  | if (!lmb_size) | 
|  | return; | 
|  |  | 
|  | rc = of_get_assoc_arrays(memory, &aa); | 
|  | if (rc) | 
|  | return; | 
|  |  | 
|  | /* check if this is a kexec/kdump kernel */ | 
|  | usm = of_get_usable_memory(memory); | 
|  | if (usm != NULL) | 
|  | is_kexec_kdump = 1; | 
|  |  | 
|  | for (; n != 0; --n) { | 
|  | struct of_drconf_cell drmem; | 
|  |  | 
|  | read_drconf_cell(&drmem, &dm); | 
|  |  | 
|  | /* skip this block if the reserved bit is set in flags (0x80) | 
|  | or if the block is not assigned to this partition (0x8) */ | 
|  | if ((drmem.flags & DRCONF_MEM_RESERVED) | 
|  | || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
|  | continue; | 
|  |  | 
|  | base = drmem.base_addr; | 
|  | size = lmb_size; | 
|  | ranges = 1; | 
|  |  | 
|  | if (is_kexec_kdump) { | 
|  | ranges = read_usm_ranges(&usm); | 
|  | if (!ranges) /* there are no (base, size) duple */ | 
|  | continue; | 
|  | } | 
|  | do { | 
|  | if (is_kexec_kdump) { | 
|  | base = read_n_cells(n_mem_addr_cells, &usm); | 
|  | size = read_n_cells(n_mem_size_cells, &usm); | 
|  | } | 
|  | nid = of_drconf_to_nid_single(&drmem, &aa); | 
|  | fake_numa_create_new_node( | 
|  | ((base + size) >> PAGE_SHIFT), | 
|  | &nid); | 
|  | node_set_online(nid); | 
|  | sz = numa_enforce_memory_limit(base, size); | 
|  | if (sz) | 
|  | add_active_range(nid, base >> PAGE_SHIFT, | 
|  | (base >> PAGE_SHIFT) | 
|  | + (sz >> PAGE_SHIFT)); | 
|  | } while (--ranges); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init parse_numa_properties(void) | 
|  | { | 
|  | struct device_node *cpu = NULL; | 
|  | struct device_node *memory = NULL; | 
|  | int default_nid = 0; | 
|  | unsigned long i; | 
|  |  | 
|  | if (numa_enabled == 0) { | 
|  | printk(KERN_WARNING "NUMA disabled by user\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | min_common_depth = find_min_common_depth(); | 
|  |  | 
|  | if (min_common_depth < 0) | 
|  | return min_common_depth; | 
|  |  | 
|  | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
|  |  | 
|  | /* | 
|  | * Even though we connect cpus to numa domains later in SMP | 
|  | * init, we need to know the node ids now. This is because | 
|  | * each node to be onlined must have NODE_DATA etc backing it. | 
|  | */ | 
|  | for_each_present_cpu(i) { | 
|  | int nid; | 
|  |  | 
|  | cpu = of_get_cpu_node(i, NULL); | 
|  | BUG_ON(!cpu); | 
|  | nid = of_node_to_nid_single(cpu); | 
|  | of_node_put(cpu); | 
|  |  | 
|  | /* | 
|  | * Don't fall back to default_nid yet -- we will plug | 
|  | * cpus into nodes once the memory scan has discovered | 
|  | * the topology. | 
|  | */ | 
|  | if (nid < 0) | 
|  | continue; | 
|  | node_set_online(nid); | 
|  | } | 
|  |  | 
|  | get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
|  | memory = NULL; | 
|  | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  | int nid; | 
|  | int ranges; | 
|  | const unsigned int *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = of_get_property(memory, | 
|  | "linux,usable-memory", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | new_range: | 
|  | /* these are order-sensitive, and modify the buffer pointer */ | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  |  | 
|  | /* | 
|  | * Assumption: either all memory nodes or none will | 
|  | * have associativity properties.  If none, then | 
|  | * everything goes to default_nid. | 
|  | */ | 
|  | nid = of_node_to_nid_single(memory); | 
|  | if (nid < 0) | 
|  | nid = default_nid; | 
|  |  | 
|  | fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
|  | node_set_online(nid); | 
|  |  | 
|  | if (!(size = numa_enforce_memory_limit(start, size))) { | 
|  | if (--ranges) | 
|  | goto new_range; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | add_active_range(nid, start >> PAGE_SHIFT, | 
|  | (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); | 
|  |  | 
|  | if (--ranges) | 
|  | goto new_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now do the same thing for each LMB listed in the ibm,dynamic-memory | 
|  | * property in the ibm,dynamic-reconfiguration-memory node. | 
|  | */ | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (memory) | 
|  | parse_drconf_memory(memory); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init setup_nonnuma(void) | 
|  | { | 
|  | unsigned long top_of_ram = lmb_end_of_DRAM(); | 
|  | unsigned long total_ram = lmb_phys_mem_size(); | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned int i, nid = 0; | 
|  |  | 
|  | printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
|  | top_of_ram, total_ram); | 
|  | printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
|  | (top_of_ram - total_ram) >> 20); | 
|  |  | 
|  | for (i = 0; i < lmb.memory.cnt; ++i) { | 
|  | start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; | 
|  | end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); | 
|  |  | 
|  | fake_numa_create_new_node(end_pfn, &nid); | 
|  | add_active_range(nid, start_pfn, end_pfn); | 
|  | node_set_online(nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init dump_numa_cpu_topology(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int cpu, count; | 
|  |  | 
|  | if (min_common_depth == -1 || !numa_enabled) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | printk(KERN_DEBUG "Node %d CPUs:", node); | 
|  |  | 
|  | count = 0; | 
|  | /* | 
|  | * If we used a CPU iterator here we would miss printing | 
|  | * the holes in the cpumap. | 
|  | */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
|  | if (count == 0) | 
|  | printk(" %u", cpu); | 
|  | ++count; | 
|  | } else { | 
|  | if (count > 1) | 
|  | printk("-%u", cpu - 1); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (count > 1) | 
|  | printk("-%u", NR_CPUS - 1); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init dump_numa_memory_topology(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int count; | 
|  |  | 
|  | if (min_common_depth == -1 || !numa_enabled) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | unsigned long i; | 
|  |  | 
|  | printk(KERN_DEBUG "Node %d Memory:", node); | 
|  |  | 
|  | count = 0; | 
|  |  | 
|  | for (i = 0; i < lmb_end_of_DRAM(); | 
|  | i += (1 << SECTION_SIZE_BITS)) { | 
|  | if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { | 
|  | if (count == 0) | 
|  | printk(" 0x%lx", i); | 
|  | ++count; | 
|  | } else { | 
|  | if (count > 0) | 
|  | printk("-0x%lx", i); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (count > 0) | 
|  | printk("-0x%lx", i); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate some memory, satisfying the lmb or bootmem allocator where | 
|  | * required. nid is the preferred node and end is the physical address of | 
|  | * the highest address in the node. | 
|  | * | 
|  | * Returns the virtual address of the memory. | 
|  | */ | 
|  | static void __init *careful_zallocation(int nid, unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | void *ret; | 
|  | int new_nid; | 
|  | unsigned long ret_paddr; | 
|  |  | 
|  | ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); | 
|  |  | 
|  | /* retry over all memory */ | 
|  | if (!ret_paddr) | 
|  | ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM()); | 
|  |  | 
|  | if (!ret_paddr) | 
|  | panic("numa.c: cannot allocate %lu bytes for node %d", | 
|  | size, nid); | 
|  |  | 
|  | ret = __va(ret_paddr); | 
|  |  | 
|  | /* | 
|  | * We initialize the nodes in numeric order: 0, 1, 2... | 
|  | * and hand over control from the LMB allocator to the | 
|  | * bootmem allocator.  If this function is called for | 
|  | * node 5, then we know that all nodes <5 are using the | 
|  | * bootmem allocator instead of the LMB allocator. | 
|  | * | 
|  | * So, check the nid from which this allocation came | 
|  | * and double check to see if we need to use bootmem | 
|  | * instead of the LMB.  We don't free the LMB memory | 
|  | * since it would be useless. | 
|  | */ | 
|  | new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT); | 
|  | if (new_nid < nid) { | 
|  | ret = __alloc_bootmem_node(NODE_DATA(new_nid), | 
|  | size, align, 0); | 
|  |  | 
|  | dbg("alloc_bootmem %p %lx\n", ret, size); | 
|  | } | 
|  |  | 
|  | memset(ret, 0, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata ppc64_numa_nb = { | 
|  | .notifier_call = cpu_numa_callback, | 
|  | .priority = 1 /* Must run before sched domains notifier. */ | 
|  | }; | 
|  |  | 
|  | static void mark_reserved_regions_for_nid(int nid) | 
|  | { | 
|  | struct pglist_data *node = NODE_DATA(nid); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < lmb.reserved.cnt; i++) { | 
|  | unsigned long physbase = lmb.reserved.region[i].base; | 
|  | unsigned long size = lmb.reserved.region[i].size; | 
|  | unsigned long start_pfn = physbase >> PAGE_SHIFT; | 
|  | unsigned long end_pfn = PFN_UP(physbase + size); | 
|  | struct node_active_region node_ar; | 
|  | unsigned long node_end_pfn = node->node_start_pfn + | 
|  | node->node_spanned_pages; | 
|  |  | 
|  | /* | 
|  | * Check to make sure that this lmb.reserved area is | 
|  | * within the bounds of the node that we care about. | 
|  | * Checking the nid of the start and end points is not | 
|  | * sufficient because the reserved area could span the | 
|  | * entire node. | 
|  | */ | 
|  | if (end_pfn <= node->node_start_pfn || | 
|  | start_pfn >= node_end_pfn) | 
|  | continue; | 
|  |  | 
|  | get_node_active_region(start_pfn, &node_ar); | 
|  | while (start_pfn < end_pfn && | 
|  | node_ar.start_pfn < node_ar.end_pfn) { | 
|  | unsigned long reserve_size = size; | 
|  | /* | 
|  | * if reserved region extends past active region | 
|  | * then trim size to active region | 
|  | */ | 
|  | if (end_pfn > node_ar.end_pfn) | 
|  | reserve_size = (node_ar.end_pfn << PAGE_SHIFT) | 
|  | - physbase; | 
|  | /* | 
|  | * Only worry about *this* node, others may not | 
|  | * yet have valid NODE_DATA(). | 
|  | */ | 
|  | if (node_ar.nid == nid) { | 
|  | dbg("reserve_bootmem %lx %lx nid=%d\n", | 
|  | physbase, reserve_size, node_ar.nid); | 
|  | reserve_bootmem_node(NODE_DATA(node_ar.nid), | 
|  | physbase, reserve_size, | 
|  | BOOTMEM_DEFAULT); | 
|  | } | 
|  | /* | 
|  | * if reserved region is contained in the active region | 
|  | * then done. | 
|  | */ | 
|  | if (end_pfn <= node_ar.end_pfn) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * reserved region extends past the active region | 
|  | *   get next active region that contains this | 
|  | *   reserved region | 
|  | */ | 
|  | start_pfn = node_ar.end_pfn; | 
|  | physbase = start_pfn << PAGE_SHIFT; | 
|  | size = size - reserve_size; | 
|  | get_node_active_region(start_pfn, &node_ar); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void __init do_init_bootmem(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | min_low_pfn = 0; | 
|  | max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
|  | max_pfn = max_low_pfn; | 
|  |  | 
|  | if (parse_numa_properties()) | 
|  | setup_nonnuma(); | 
|  | else | 
|  | dump_numa_memory_topology(); | 
|  |  | 
|  | register_cpu_notifier(&ppc64_numa_nb); | 
|  | cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, | 
|  | (void *)(unsigned long)boot_cpuid); | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  | void *bootmem_vaddr; | 
|  | unsigned long bootmap_pages; | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  |  | 
|  | /* | 
|  | * Allocate the node structure node local if possible | 
|  | * | 
|  | * Be careful moving this around, as it relies on all | 
|  | * previous nodes' bootmem to be initialized and have | 
|  | * all reserved areas marked. | 
|  | */ | 
|  | NODE_DATA(nid) = careful_zallocation(nid, | 
|  | sizeof(struct pglist_data), | 
|  | SMP_CACHE_BYTES, end_pfn); | 
|  |  | 
|  | dbg("node %d\n", nid); | 
|  | dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | 
|  |  | 
|  | NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; | 
|  | NODE_DATA(nid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; | 
|  |  | 
|  | if (NODE_DATA(nid)->node_spanned_pages == 0) | 
|  | continue; | 
|  |  | 
|  | dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); | 
|  | dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); | 
|  |  | 
|  | bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); | 
|  | bootmem_vaddr = careful_zallocation(nid, | 
|  | bootmap_pages << PAGE_SHIFT, | 
|  | PAGE_SIZE, end_pfn); | 
|  |  | 
|  | dbg("bootmap_vaddr = %p\n", bootmem_vaddr); | 
|  |  | 
|  | init_bootmem_node(NODE_DATA(nid), | 
|  | __pa(bootmem_vaddr) >> PAGE_SHIFT, | 
|  | start_pfn, end_pfn); | 
|  |  | 
|  | free_bootmem_with_active_regions(nid, end_pfn); | 
|  | /* | 
|  | * Be very careful about moving this around.  Future | 
|  | * calls to careful_zallocation() depend on this getting | 
|  | * done correctly. | 
|  | */ | 
|  | mark_reserved_regions_for_nid(nid); | 
|  | sparse_memory_present_with_active_regions(nid); | 
|  | } | 
|  |  | 
|  | init_bootmem_done = 1; | 
|  | } | 
|  |  | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  | max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | } | 
|  |  | 
|  | static int __init early_numa(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (strstr(p, "off")) | 
|  | numa_enabled = 0; | 
|  |  | 
|  | if (strstr(p, "debug")) | 
|  | numa_debug = 1; | 
|  |  | 
|  | p = strstr(p, "fake="); | 
|  | if (p) | 
|  | cmdline = p + strlen("fake="); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", early_numa); | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Find the node associated with a hot added memory section for | 
|  | * memory represented in the device tree by the property | 
|  | * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
|  | */ | 
|  | static int hot_add_drconf_scn_to_nid(struct device_node *memory, | 
|  | unsigned long scn_addr) | 
|  | { | 
|  | const u32 *dm; | 
|  | unsigned int drconf_cell_cnt, rc; | 
|  | unsigned long lmb_size; | 
|  | struct assoc_arrays aa; | 
|  | int nid = -1; | 
|  |  | 
|  | drconf_cell_cnt = of_get_drconf_memory(memory, &dm); | 
|  | if (!drconf_cell_cnt) | 
|  | return -1; | 
|  |  | 
|  | lmb_size = of_get_lmb_size(memory); | 
|  | if (!lmb_size) | 
|  | return -1; | 
|  |  | 
|  | rc = of_get_assoc_arrays(memory, &aa); | 
|  | if (rc) | 
|  | return -1; | 
|  |  | 
|  | for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { | 
|  | struct of_drconf_cell drmem; | 
|  |  | 
|  | read_drconf_cell(&drmem, &dm); | 
|  |  | 
|  | /* skip this block if it is reserved or not assigned to | 
|  | * this partition */ | 
|  | if ((drmem.flags & DRCONF_MEM_RESERVED) | 
|  | || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
|  | continue; | 
|  |  | 
|  | if ((scn_addr < drmem.base_addr) | 
|  | || (scn_addr >= (drmem.base_addr + lmb_size))) | 
|  | continue; | 
|  |  | 
|  | nid = of_drconf_to_nid_single(&drmem, &aa); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the node associated with a hot added memory section for memory | 
|  | * represented in the device tree as a node (i.e. memory@XXXX) for | 
|  | * each lmb. | 
|  | */ | 
|  | int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  | int nid = -1; | 
|  |  | 
|  | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
|  | unsigned long start, size; | 
|  | int ranges; | 
|  | const unsigned int *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  |  | 
|  | while (ranges--) { | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  |  | 
|  | if ((scn_addr < start) || (scn_addr >= (start + size))) | 
|  | continue; | 
|  |  | 
|  | nid = of_node_to_nid_single(memory); | 
|  | break; | 
|  | } | 
|  |  | 
|  | of_node_put(memory); | 
|  | if (nid >= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the node associated with a hot added memory section.  Section | 
|  | * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that | 
|  | * sections are fully contained within a single LMB. | 
|  | */ | 
|  | int hot_add_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  | int nid, found = 0; | 
|  |  | 
|  | if (!numa_enabled || (min_common_depth < 0)) | 
|  | return any_online_node(NODE_MASK_ALL); | 
|  |  | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (memory) { | 
|  | nid = hot_add_drconf_scn_to_nid(memory, scn_addr); | 
|  | of_node_put(memory); | 
|  | } else { | 
|  | nid = hot_add_node_scn_to_nid(scn_addr); | 
|  | } | 
|  |  | 
|  | if (nid < 0 || !node_online(nid)) | 
|  | nid = any_online_node(NODE_MASK_ALL); | 
|  |  | 
|  | if (NODE_DATA(nid)->node_spanned_pages) | 
|  | return nid; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (NODE_DATA(nid)->node_spanned_pages) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | BUG_ON(!found); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ |