|  | /* | 
|  | * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. | 
|  | * Author: Joerg Roedel <joerg.roedel@amd.com> | 
|  | *         Leo Duran <leo.duran@amd.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/iommu-helper.h> | 
|  | #include <linux/iommu.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/gart.h> | 
|  | #include <asm/amd_iommu_types.h> | 
|  | #include <asm/amd_iommu.h> | 
|  |  | 
|  | #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) | 
|  |  | 
|  | #define EXIT_LOOP_COUNT 10000000 | 
|  |  | 
|  | static DEFINE_RWLOCK(amd_iommu_devtable_lock); | 
|  |  | 
|  | /* A list of preallocated protection domains */ | 
|  | static LIST_HEAD(iommu_pd_list); | 
|  | static DEFINE_SPINLOCK(iommu_pd_list_lock); | 
|  |  | 
|  | #ifdef CONFIG_IOMMU_API | 
|  | static struct iommu_ops amd_iommu_ops; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * general struct to manage commands send to an IOMMU | 
|  | */ | 
|  | struct iommu_cmd { | 
|  | u32 data[4]; | 
|  | }; | 
|  |  | 
|  | static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, | 
|  | struct unity_map_entry *e); | 
|  | static struct dma_ops_domain *find_protection_domain(u16 devid); | 
|  | static u64* alloc_pte(struct protection_domain *dom, | 
|  | unsigned long address, u64 | 
|  | **pte_page, gfp_t gfp); | 
|  | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, | 
|  | unsigned long start_page, | 
|  | unsigned int pages); | 
|  |  | 
|  | #ifndef BUS_NOTIFY_UNBOUND_DRIVER | 
|  | #define BUS_NOTIFY_UNBOUND_DRIVER 0x0005 | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_AMD_IOMMU_STATS | 
|  |  | 
|  | /* | 
|  | * Initialization code for statistics collection | 
|  | */ | 
|  |  | 
|  | DECLARE_STATS_COUNTER(compl_wait); | 
|  | DECLARE_STATS_COUNTER(cnt_map_single); | 
|  | DECLARE_STATS_COUNTER(cnt_unmap_single); | 
|  | DECLARE_STATS_COUNTER(cnt_map_sg); | 
|  | DECLARE_STATS_COUNTER(cnt_unmap_sg); | 
|  | DECLARE_STATS_COUNTER(cnt_alloc_coherent); | 
|  | DECLARE_STATS_COUNTER(cnt_free_coherent); | 
|  | DECLARE_STATS_COUNTER(cross_page); | 
|  | DECLARE_STATS_COUNTER(domain_flush_single); | 
|  | DECLARE_STATS_COUNTER(domain_flush_all); | 
|  | DECLARE_STATS_COUNTER(alloced_io_mem); | 
|  | DECLARE_STATS_COUNTER(total_map_requests); | 
|  |  | 
|  | static struct dentry *stats_dir; | 
|  | static struct dentry *de_isolate; | 
|  | static struct dentry *de_fflush; | 
|  |  | 
|  | static void amd_iommu_stats_add(struct __iommu_counter *cnt) | 
|  | { | 
|  | if (stats_dir == NULL) | 
|  | return; | 
|  |  | 
|  | cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, | 
|  | &cnt->value); | 
|  | } | 
|  |  | 
|  | static void amd_iommu_stats_init(void) | 
|  | { | 
|  | stats_dir = debugfs_create_dir("amd-iommu", NULL); | 
|  | if (stats_dir == NULL) | 
|  | return; | 
|  |  | 
|  | de_isolate = debugfs_create_bool("isolation", 0444, stats_dir, | 
|  | (u32 *)&amd_iommu_isolate); | 
|  |  | 
|  | de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir, | 
|  | (u32 *)&amd_iommu_unmap_flush); | 
|  |  | 
|  | amd_iommu_stats_add(&compl_wait); | 
|  | amd_iommu_stats_add(&cnt_map_single); | 
|  | amd_iommu_stats_add(&cnt_unmap_single); | 
|  | amd_iommu_stats_add(&cnt_map_sg); | 
|  | amd_iommu_stats_add(&cnt_unmap_sg); | 
|  | amd_iommu_stats_add(&cnt_alloc_coherent); | 
|  | amd_iommu_stats_add(&cnt_free_coherent); | 
|  | amd_iommu_stats_add(&cross_page); | 
|  | amd_iommu_stats_add(&domain_flush_single); | 
|  | amd_iommu_stats_add(&domain_flush_all); | 
|  | amd_iommu_stats_add(&alloced_io_mem); | 
|  | amd_iommu_stats_add(&total_map_requests); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* returns !0 if the IOMMU is caching non-present entries in its TLB */ | 
|  | static int iommu_has_npcache(struct amd_iommu *iommu) | 
|  | { | 
|  | return iommu->cap & (1UL << IOMMU_CAP_NPCACHE); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * Interrupt handling functions | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static void iommu_print_event(void *__evt) | 
|  | { | 
|  | u32 *event = __evt; | 
|  | int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK; | 
|  | int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; | 
|  | int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; | 
|  | int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; | 
|  | u64 address = (u64)(((u64)event[3]) << 32) | event[2]; | 
|  |  | 
|  | printk(KERN_ERR "AMD IOMMU: Event logged ["); | 
|  |  | 
|  | switch (type) { | 
|  | case EVENT_TYPE_ILL_DEV: | 
|  | printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " | 
|  | "address=0x%016llx flags=0x%04x]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | address, flags); | 
|  | break; | 
|  | case EVENT_TYPE_IO_FAULT: | 
|  | printk("IO_PAGE_FAULT device=%02x:%02x.%x " | 
|  | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | domid, address, flags); | 
|  | break; | 
|  | case EVENT_TYPE_DEV_TAB_ERR: | 
|  | printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " | 
|  | "address=0x%016llx flags=0x%04x]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | address, flags); | 
|  | break; | 
|  | case EVENT_TYPE_PAGE_TAB_ERR: | 
|  | printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " | 
|  | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | domid, address, flags); | 
|  | break; | 
|  | case EVENT_TYPE_ILL_CMD: | 
|  | printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); | 
|  | break; | 
|  | case EVENT_TYPE_CMD_HARD_ERR: | 
|  | printk("COMMAND_HARDWARE_ERROR address=0x%016llx " | 
|  | "flags=0x%04x]\n", address, flags); | 
|  | break; | 
|  | case EVENT_TYPE_IOTLB_INV_TO: | 
|  | printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " | 
|  | "address=0x%016llx]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | address); | 
|  | break; | 
|  | case EVENT_TYPE_INV_DEV_REQ: | 
|  | printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " | 
|  | "address=0x%016llx flags=0x%04x]\n", | 
|  | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), | 
|  | address, flags); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void iommu_poll_events(struct amd_iommu *iommu) | 
|  | { | 
|  | u32 head, tail; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  |  | 
|  | head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); | 
|  | tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); | 
|  |  | 
|  | while (head != tail) { | 
|  | iommu_print_event(iommu->evt_buf + head); | 
|  | head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; | 
|  | } | 
|  |  | 
|  | writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | irqreturn_t amd_iommu_int_handler(int irq, void *data) | 
|  | { | 
|  | struct amd_iommu *iommu; | 
|  |  | 
|  | for_each_iommu(iommu) | 
|  | iommu_poll_events(iommu); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * IOMMU command queuing functions | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Writes the command to the IOMMUs command buffer and informs the | 
|  | * hardware about the new command. Must be called with iommu->lock held. | 
|  | */ | 
|  | static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) | 
|  | { | 
|  | u32 tail, head; | 
|  | u8 *target; | 
|  |  | 
|  | tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); | 
|  | target = iommu->cmd_buf + tail; | 
|  | memcpy_toio(target, cmd, sizeof(*cmd)); | 
|  | tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; | 
|  | head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); | 
|  | if (tail == head) | 
|  | return -ENOMEM; | 
|  | writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * General queuing function for commands. Takes iommu->lock and calls | 
|  | * __iommu_queue_command(). | 
|  | */ | 
|  | static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | ret = __iommu_queue_command(iommu, cmd); | 
|  | if (!ret) | 
|  | iommu->need_sync = true; | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function waits until an IOMMU has completed a completion | 
|  | * wait command | 
|  | */ | 
|  | static void __iommu_wait_for_completion(struct amd_iommu *iommu) | 
|  | { | 
|  | int ready = 0; | 
|  | unsigned status = 0; | 
|  | unsigned long i = 0; | 
|  |  | 
|  | INC_STATS_COUNTER(compl_wait); | 
|  |  | 
|  | while (!ready && (i < EXIT_LOOP_COUNT)) { | 
|  | ++i; | 
|  | /* wait for the bit to become one */ | 
|  | status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); | 
|  | ready = status & MMIO_STATUS_COM_WAIT_INT_MASK; | 
|  | } | 
|  |  | 
|  | /* set bit back to zero */ | 
|  | status &= ~MMIO_STATUS_COM_WAIT_INT_MASK; | 
|  | writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET); | 
|  |  | 
|  | if (unlikely(i == EXIT_LOOP_COUNT)) | 
|  | panic("AMD IOMMU: Completion wait loop failed\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function queues a completion wait command into the command | 
|  | * buffer of an IOMMU | 
|  | */ | 
|  | static int __iommu_completion_wait(struct amd_iommu *iommu) | 
|  | { | 
|  | struct iommu_cmd cmd; | 
|  |  | 
|  | memset(&cmd, 0, sizeof(cmd)); | 
|  | cmd.data[0] = CMD_COMPL_WAIT_INT_MASK; | 
|  | CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT); | 
|  |  | 
|  | return __iommu_queue_command(iommu, &cmd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called whenever we need to ensure that the IOMMU has | 
|  | * completed execution of all commands we sent. It sends a | 
|  | * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs | 
|  | * us about that by writing a value to a physical address we pass with | 
|  | * the command. | 
|  | */ | 
|  | static int iommu_completion_wait(struct amd_iommu *iommu) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  |  | 
|  | if (!iommu->need_sync) | 
|  | goto out; | 
|  |  | 
|  | ret = __iommu_completion_wait(iommu); | 
|  |  | 
|  | iommu->need_sync = false; | 
|  |  | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | __iommu_wait_for_completion(iommu); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Command send function for invalidating a device table entry | 
|  | */ | 
|  | static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid) | 
|  | { | 
|  | struct iommu_cmd cmd; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(iommu == NULL); | 
|  |  | 
|  | memset(&cmd, 0, sizeof(cmd)); | 
|  | CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY); | 
|  | cmd.data[0] = devid; | 
|  |  | 
|  | ret = iommu_queue_command(iommu, &cmd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, | 
|  | u16 domid, int pde, int s) | 
|  | { | 
|  | memset(cmd, 0, sizeof(*cmd)); | 
|  | address &= PAGE_MASK; | 
|  | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); | 
|  | cmd->data[1] |= domid; | 
|  | cmd->data[2] = lower_32_bits(address); | 
|  | cmd->data[3] = upper_32_bits(address); | 
|  | if (s) /* size bit - we flush more than one 4kb page */ | 
|  | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; | 
|  | if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ | 
|  | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic command send function for invalidaing TLB entries | 
|  | */ | 
|  | static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu, | 
|  | u64 address, u16 domid, int pde, int s) | 
|  | { | 
|  | struct iommu_cmd cmd; | 
|  | int ret; | 
|  |  | 
|  | __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s); | 
|  |  | 
|  | ret = iommu_queue_command(iommu, &cmd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TLB invalidation function which is called from the mapping functions. | 
|  | * It invalidates a single PTE if the range to flush is within a single | 
|  | * page. Otherwise it flushes the whole TLB of the IOMMU. | 
|  | */ | 
|  | static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid, | 
|  | u64 address, size_t size) | 
|  | { | 
|  | int s = 0; | 
|  | unsigned pages = iommu_num_pages(address, size, PAGE_SIZE); | 
|  |  | 
|  | address &= PAGE_MASK; | 
|  |  | 
|  | if (pages > 1) { | 
|  | /* | 
|  | * If we have to flush more than one page, flush all | 
|  | * TLB entries for this domain | 
|  | */ | 
|  | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; | 
|  | s = 1; | 
|  | } | 
|  |  | 
|  | iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Flush the whole IO/TLB for a given protection domain */ | 
|  | static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid) | 
|  | { | 
|  | u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; | 
|  |  | 
|  | INC_STATS_COUNTER(domain_flush_single); | 
|  |  | 
|  | iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1); | 
|  | } | 
|  |  | 
|  | /* Flush the whole IO/TLB for a given protection domain - including PDE */ | 
|  | static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid) | 
|  | { | 
|  | u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; | 
|  |  | 
|  | INC_STATS_COUNTER(domain_flush_single); | 
|  |  | 
|  | iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is used to flush the IO/TLB for a given protection domain | 
|  | * on every IOMMU in the system | 
|  | */ | 
|  | static void iommu_flush_domain(u16 domid) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct iommu_cmd cmd; | 
|  |  | 
|  | INC_STATS_COUNTER(domain_flush_all); | 
|  |  | 
|  | __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, | 
|  | domid, 1, 1); | 
|  |  | 
|  | for_each_iommu(iommu) { | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | __iommu_queue_command(iommu, &cmd); | 
|  | __iommu_completion_wait(iommu); | 
|  | __iommu_wait_for_completion(iommu); | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | void amd_iommu_flush_all_domains(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i < MAX_DOMAIN_ID; ++i) { | 
|  | if (!test_bit(i, amd_iommu_pd_alloc_bitmap)) | 
|  | continue; | 
|  | iommu_flush_domain(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void amd_iommu_flush_all_devices(void) | 
|  | { | 
|  | struct amd_iommu *iommu; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i <= amd_iommu_last_bdf; ++i) { | 
|  | if (amd_iommu_pd_table[i] == NULL) | 
|  | continue; | 
|  |  | 
|  | iommu = amd_iommu_rlookup_table[i]; | 
|  | if (!iommu) | 
|  | continue; | 
|  |  | 
|  | iommu_queue_inv_dev_entry(iommu, i); | 
|  | iommu_completion_wait(iommu); | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * The functions below are used the create the page table mappings for | 
|  | * unity mapped regions. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Generic mapping functions. It maps a physical address into a DMA | 
|  | * address space. It allocates the page table pages if necessary. | 
|  | * In the future it can be extended to a generic mapping function | 
|  | * supporting all features of AMD IOMMU page tables like level skipping | 
|  | * and full 64 bit address spaces. | 
|  | */ | 
|  | static int iommu_map_page(struct protection_domain *dom, | 
|  | unsigned long bus_addr, | 
|  | unsigned long phys_addr, | 
|  | int prot) | 
|  | { | 
|  | u64 __pte, *pte; | 
|  |  | 
|  | bus_addr  = PAGE_ALIGN(bus_addr); | 
|  | phys_addr = PAGE_ALIGN(phys_addr); | 
|  |  | 
|  | /* only support 512GB address spaces for now */ | 
|  | if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK)) | 
|  | return -EINVAL; | 
|  |  | 
|  | pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL); | 
|  |  | 
|  | if (IOMMU_PTE_PRESENT(*pte)) | 
|  | return -EBUSY; | 
|  |  | 
|  | __pte = phys_addr | IOMMU_PTE_P; | 
|  | if (prot & IOMMU_PROT_IR) | 
|  | __pte |= IOMMU_PTE_IR; | 
|  | if (prot & IOMMU_PROT_IW) | 
|  | __pte |= IOMMU_PTE_IW; | 
|  |  | 
|  | *pte = __pte; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void iommu_unmap_page(struct protection_domain *dom, | 
|  | unsigned long bus_addr) | 
|  | { | 
|  | u64 *pte; | 
|  |  | 
|  | pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)]; | 
|  |  | 
|  | *pte = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function checks if a specific unity mapping entry is needed for | 
|  | * this specific IOMMU. | 
|  | */ | 
|  | static int iommu_for_unity_map(struct amd_iommu *iommu, | 
|  | struct unity_map_entry *entry) | 
|  | { | 
|  | u16 bdf, i; | 
|  |  | 
|  | for (i = entry->devid_start; i <= entry->devid_end; ++i) { | 
|  | bdf = amd_iommu_alias_table[i]; | 
|  | if (amd_iommu_rlookup_table[bdf] == iommu) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init the unity mappings for a specific IOMMU in the system | 
|  | * | 
|  | * Basically iterates over all unity mapping entries and applies them to | 
|  | * the default domain DMA of that IOMMU if necessary. | 
|  | */ | 
|  | static int iommu_init_unity_mappings(struct amd_iommu *iommu) | 
|  | { | 
|  | struct unity_map_entry *entry; | 
|  | int ret; | 
|  |  | 
|  | list_for_each_entry(entry, &amd_iommu_unity_map, list) { | 
|  | if (!iommu_for_unity_map(iommu, entry)) | 
|  | continue; | 
|  | ret = dma_ops_unity_map(iommu->default_dom, entry); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function actually applies the mapping to the page table of the | 
|  | * dma_ops domain. | 
|  | */ | 
|  | static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, | 
|  | struct unity_map_entry *e) | 
|  | { | 
|  | u64 addr; | 
|  | int ret; | 
|  |  | 
|  | for (addr = e->address_start; addr < e->address_end; | 
|  | addr += PAGE_SIZE) { | 
|  | ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * if unity mapping is in aperture range mark the page | 
|  | * as allocated in the aperture | 
|  | */ | 
|  | if (addr < dma_dom->aperture_size) | 
|  | __set_bit(addr >> PAGE_SHIFT, | 
|  | dma_dom->aperture[0]->bitmap); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inits the unity mappings required for a specific device | 
|  | */ | 
|  | static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, | 
|  | u16 devid) | 
|  | { | 
|  | struct unity_map_entry *e; | 
|  | int ret; | 
|  |  | 
|  | list_for_each_entry(e, &amd_iommu_unity_map, list) { | 
|  | if (!(devid >= e->devid_start && devid <= e->devid_end)) | 
|  | continue; | 
|  | ret = dma_ops_unity_map(dma_dom, e); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * The next functions belong to the address allocator for the dma_ops | 
|  | * interface functions. They work like the allocators in the other IOMMU | 
|  | * drivers. Its basically a bitmap which marks the allocated pages in | 
|  | * the aperture. Maybe it could be enhanced in the future to a more | 
|  | * efficient allocator. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * The address allocator core functions. | 
|  | * | 
|  | * called with domain->lock held | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This function checks if there is a PTE for a given dma address. If | 
|  | * there is one, it returns the pointer to it. | 
|  | */ | 
|  | static u64* fetch_pte(struct protection_domain *domain, | 
|  | unsigned long address) | 
|  | { | 
|  | u64 *pte; | 
|  |  | 
|  | pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return NULL; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L1_INDEX(address)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return NULL; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L0_INDEX(address)]; | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is used to add a new aperture range to an existing | 
|  | * aperture in case of dma_ops domain allocation or address allocation | 
|  | * failure. | 
|  | */ | 
|  | static int alloc_new_range(struct amd_iommu *iommu, | 
|  | struct dma_ops_domain *dma_dom, | 
|  | bool populate, gfp_t gfp) | 
|  | { | 
|  | int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; | 
|  | int i; | 
|  |  | 
|  | #ifdef CONFIG_IOMMU_STRESS | 
|  | populate = false; | 
|  | #endif | 
|  |  | 
|  | if (index >= APERTURE_MAX_RANGES) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); | 
|  | if (!dma_dom->aperture[index]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); | 
|  | if (!dma_dom->aperture[index]->bitmap) | 
|  | goto out_free; | 
|  |  | 
|  | dma_dom->aperture[index]->offset = dma_dom->aperture_size; | 
|  |  | 
|  | if (populate) { | 
|  | unsigned long address = dma_dom->aperture_size; | 
|  | int i, num_ptes = APERTURE_RANGE_PAGES / 512; | 
|  | u64 *pte, *pte_page; | 
|  |  | 
|  | for (i = 0; i < num_ptes; ++i) { | 
|  | pte = alloc_pte(&dma_dom->domain, address, | 
|  | &pte_page, gfp); | 
|  | if (!pte) | 
|  | goto out_free; | 
|  |  | 
|  | dma_dom->aperture[index]->pte_pages[i] = pte_page; | 
|  |  | 
|  | address += APERTURE_RANGE_SIZE / 64; | 
|  | } | 
|  | } | 
|  |  | 
|  | dma_dom->aperture_size += APERTURE_RANGE_SIZE; | 
|  |  | 
|  | /* Intialize the exclusion range if necessary */ | 
|  | if (iommu->exclusion_start && | 
|  | iommu->exclusion_start >= dma_dom->aperture[index]->offset && | 
|  | iommu->exclusion_start < dma_dom->aperture_size) { | 
|  | unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT; | 
|  | int pages = iommu_num_pages(iommu->exclusion_start, | 
|  | iommu->exclusion_length, | 
|  | PAGE_SIZE); | 
|  | dma_ops_reserve_addresses(dma_dom, startpage, pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for areas already mapped as present in the new aperture | 
|  | * range and mark those pages as reserved in the allocator. Such | 
|  | * mappings may already exist as a result of requested unity | 
|  | * mappings for devices. | 
|  | */ | 
|  | for (i = dma_dom->aperture[index]->offset; | 
|  | i < dma_dom->aperture_size; | 
|  | i += PAGE_SIZE) { | 
|  | u64 *pte = fetch_pte(&dma_dom->domain, i); | 
|  | if (!pte || !IOMMU_PTE_PRESENT(*pte)) | 
|  | continue; | 
|  |  | 
|  | dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | free_page((unsigned long)dma_dom->aperture[index]->bitmap); | 
|  |  | 
|  | kfree(dma_dom->aperture[index]); | 
|  | dma_dom->aperture[index] = NULL; | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static unsigned long dma_ops_area_alloc(struct device *dev, | 
|  | struct dma_ops_domain *dom, | 
|  | unsigned int pages, | 
|  | unsigned long align_mask, | 
|  | u64 dma_mask, | 
|  | unsigned long start) | 
|  | { | 
|  | unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; | 
|  | int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; | 
|  | int i = start >> APERTURE_RANGE_SHIFT; | 
|  | unsigned long boundary_size; | 
|  | unsigned long address = -1; | 
|  | unsigned long limit; | 
|  |  | 
|  | next_bit >>= PAGE_SHIFT; | 
|  |  | 
|  | boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, | 
|  | PAGE_SIZE) >> PAGE_SHIFT; | 
|  |  | 
|  | for (;i < max_index; ++i) { | 
|  | unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; | 
|  |  | 
|  | if (dom->aperture[i]->offset >= dma_mask) | 
|  | break; | 
|  |  | 
|  | limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, | 
|  | dma_mask >> PAGE_SHIFT); | 
|  |  | 
|  | address = iommu_area_alloc(dom->aperture[i]->bitmap, | 
|  | limit, next_bit, pages, 0, | 
|  | boundary_size, align_mask); | 
|  | if (address != -1) { | 
|  | address = dom->aperture[i]->offset + | 
|  | (address << PAGE_SHIFT); | 
|  | dom->next_address = address + (pages << PAGE_SHIFT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | next_bit = 0; | 
|  | } | 
|  |  | 
|  | return address; | 
|  | } | 
|  |  | 
|  | static unsigned long dma_ops_alloc_addresses(struct device *dev, | 
|  | struct dma_ops_domain *dom, | 
|  | unsigned int pages, | 
|  | unsigned long align_mask, | 
|  | u64 dma_mask) | 
|  | { | 
|  | unsigned long address; | 
|  |  | 
|  | #ifdef CONFIG_IOMMU_STRESS | 
|  | dom->next_address = 0; | 
|  | dom->need_flush = true; | 
|  | #endif | 
|  |  | 
|  | address = dma_ops_area_alloc(dev, dom, pages, align_mask, | 
|  | dma_mask, dom->next_address); | 
|  |  | 
|  | if (address == -1) { | 
|  | dom->next_address = 0; | 
|  | address = dma_ops_area_alloc(dev, dom, pages, align_mask, | 
|  | dma_mask, 0); | 
|  | dom->need_flush = true; | 
|  | } | 
|  |  | 
|  | if (unlikely(address == -1)) | 
|  | address = bad_dma_address; | 
|  |  | 
|  | WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); | 
|  |  | 
|  | return address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The address free function. | 
|  | * | 
|  | * called with domain->lock held | 
|  | */ | 
|  | static void dma_ops_free_addresses(struct dma_ops_domain *dom, | 
|  | unsigned long address, | 
|  | unsigned int pages) | 
|  | { | 
|  | unsigned i = address >> APERTURE_RANGE_SHIFT; | 
|  | struct aperture_range *range = dom->aperture[i]; | 
|  |  | 
|  | BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); | 
|  |  | 
|  | #ifdef CONFIG_IOMMU_STRESS | 
|  | if (i < 4) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (address >= dom->next_address) | 
|  | dom->need_flush = true; | 
|  |  | 
|  | address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; | 
|  |  | 
|  | iommu_area_free(range->bitmap, address, pages); | 
|  |  | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * | 
|  | * The next functions belong to the domain allocation. A domain is | 
|  | * allocated for every IOMMU as the default domain. If device isolation | 
|  | * is enabled, every device get its own domain. The most important thing | 
|  | * about domains is the page table mapping the DMA address space they | 
|  | * contain. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static u16 domain_id_alloc(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | int id; | 
|  |  | 
|  | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  | id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); | 
|  | BUG_ON(id == 0); | 
|  | if (id > 0 && id < MAX_DOMAIN_ID) | 
|  | __set_bit(id, amd_iommu_pd_alloc_bitmap); | 
|  | else | 
|  | id = 0; | 
|  | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  |  | 
|  | return id; | 
|  | } | 
|  |  | 
|  | static void domain_id_free(int id) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  | if (id > 0 && id < MAX_DOMAIN_ID) | 
|  | __clear_bit(id, amd_iommu_pd_alloc_bitmap); | 
|  | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to reserve address ranges in the aperture (e.g. for exclusion | 
|  | * ranges. | 
|  | */ | 
|  | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, | 
|  | unsigned long start_page, | 
|  | unsigned int pages) | 
|  | { | 
|  | unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; | 
|  |  | 
|  | if (start_page + pages > last_page) | 
|  | pages = last_page - start_page; | 
|  |  | 
|  | for (i = start_page; i < start_page + pages; ++i) { | 
|  | int index = i / APERTURE_RANGE_PAGES; | 
|  | int page  = i % APERTURE_RANGE_PAGES; | 
|  | __set_bit(page, dom->aperture[index]->bitmap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_pagetable(struct protection_domain *domain) | 
|  | { | 
|  | int i, j; | 
|  | u64 *p1, *p2, *p3; | 
|  |  | 
|  | p1 = domain->pt_root; | 
|  |  | 
|  | if (!p1) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 512; ++i) { | 
|  | if (!IOMMU_PTE_PRESENT(p1[i])) | 
|  | continue; | 
|  |  | 
|  | p2 = IOMMU_PTE_PAGE(p1[i]); | 
|  | for (j = 0; j < 512; ++j) { | 
|  | if (!IOMMU_PTE_PRESENT(p2[j])) | 
|  | continue; | 
|  | p3 = IOMMU_PTE_PAGE(p2[j]); | 
|  | free_page((unsigned long)p3); | 
|  | } | 
|  |  | 
|  | free_page((unsigned long)p2); | 
|  | } | 
|  |  | 
|  | free_page((unsigned long)p1); | 
|  |  | 
|  | domain->pt_root = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free a domain, only used if something went wrong in the | 
|  | * allocation path and we need to free an already allocated page table | 
|  | */ | 
|  | static void dma_ops_domain_free(struct dma_ops_domain *dom) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!dom) | 
|  | return; | 
|  |  | 
|  | free_pagetable(&dom->domain); | 
|  |  | 
|  | for (i = 0; i < APERTURE_MAX_RANGES; ++i) { | 
|  | if (!dom->aperture[i]) | 
|  | continue; | 
|  | free_page((unsigned long)dom->aperture[i]->bitmap); | 
|  | kfree(dom->aperture[i]); | 
|  | } | 
|  |  | 
|  | kfree(dom); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates a new protection domain usable for the dma_ops functions. | 
|  | * It also intializes the page table and the address allocator data | 
|  | * structures required for the dma_ops interface | 
|  | */ | 
|  | static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu) | 
|  | { | 
|  | struct dma_ops_domain *dma_dom; | 
|  |  | 
|  | dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); | 
|  | if (!dma_dom) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_init(&dma_dom->domain.lock); | 
|  |  | 
|  | dma_dom->domain.id = domain_id_alloc(); | 
|  | if (dma_dom->domain.id == 0) | 
|  | goto free_dma_dom; | 
|  | dma_dom->domain.mode = PAGE_MODE_3_LEVEL; | 
|  | dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | dma_dom->domain.flags = PD_DMA_OPS_MASK; | 
|  | dma_dom->domain.priv = dma_dom; | 
|  | if (!dma_dom->domain.pt_root) | 
|  | goto free_dma_dom; | 
|  |  | 
|  | dma_dom->need_flush = false; | 
|  | dma_dom->target_dev = 0xffff; | 
|  |  | 
|  | if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL)) | 
|  | goto free_dma_dom; | 
|  |  | 
|  | /* | 
|  | * mark the first page as allocated so we never return 0 as | 
|  | * a valid dma-address. So we can use 0 as error value | 
|  | */ | 
|  | dma_dom->aperture[0]->bitmap[0] = 1; | 
|  | dma_dom->next_address = 0; | 
|  |  | 
|  |  | 
|  | return dma_dom; | 
|  |  | 
|  | free_dma_dom: | 
|  | dma_ops_domain_free(dma_dom); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * little helper function to check whether a given protection domain is a | 
|  | * dma_ops domain | 
|  | */ | 
|  | static bool dma_ops_domain(struct protection_domain *domain) | 
|  | { | 
|  | return domain->flags & PD_DMA_OPS_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find out the protection domain structure for a given PCI device. This | 
|  | * will give us the pointer to the page table root for example. | 
|  | */ | 
|  | static struct protection_domain *domain_for_device(u16 devid) | 
|  | { | 
|  | struct protection_domain *dom; | 
|  | unsigned long flags; | 
|  |  | 
|  | read_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  | dom = amd_iommu_pd_table[devid]; | 
|  | read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  |  | 
|  | return dom; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a device is not yet associated with a domain, this function does | 
|  | * assigns it visible for the hardware | 
|  | */ | 
|  | static void attach_device(struct amd_iommu *iommu, | 
|  | struct protection_domain *domain, | 
|  | u16 devid) | 
|  | { | 
|  | unsigned long flags; | 
|  | u64 pte_root = virt_to_phys(domain->pt_root); | 
|  |  | 
|  | domain->dev_cnt += 1; | 
|  |  | 
|  | pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) | 
|  | << DEV_ENTRY_MODE_SHIFT; | 
|  | pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; | 
|  |  | 
|  | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  | amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root); | 
|  | amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root); | 
|  | amd_iommu_dev_table[devid].data[2] = domain->id; | 
|  |  | 
|  | amd_iommu_pd_table[devid] = domain; | 
|  | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  |  | 
|  | /* | 
|  | * We might boot into a crash-kernel here. The crashed kernel | 
|  | * left the caches in the IOMMU dirty. So we have to flush | 
|  | * here to evict all dirty stuff. | 
|  | */ | 
|  | iommu_queue_inv_dev_entry(iommu, devid); | 
|  | iommu_flush_tlb_pde(iommu, domain->id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removes a device from a protection domain (unlocked) | 
|  | */ | 
|  | static void __detach_device(struct protection_domain *domain, u16 devid) | 
|  | { | 
|  |  | 
|  | /* lock domain */ | 
|  | spin_lock(&domain->lock); | 
|  |  | 
|  | /* remove domain from the lookup table */ | 
|  | amd_iommu_pd_table[devid] = NULL; | 
|  |  | 
|  | /* remove entry from the device table seen by the hardware */ | 
|  | amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; | 
|  | amd_iommu_dev_table[devid].data[1] = 0; | 
|  | amd_iommu_dev_table[devid].data[2] = 0; | 
|  |  | 
|  | /* decrease reference counter */ | 
|  | domain->dev_cnt -= 1; | 
|  |  | 
|  | /* ready */ | 
|  | spin_unlock(&domain->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removes a device from a protection domain (with devtable_lock held) | 
|  | */ | 
|  | static void detach_device(struct protection_domain *domain, u16 devid) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* lock device table */ | 
|  | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  | __detach_device(domain, devid); | 
|  | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  | } | 
|  |  | 
|  | static int device_change_notifier(struct notifier_block *nb, | 
|  | unsigned long action, void *data) | 
|  | { | 
|  | struct device *dev = data; | 
|  | struct pci_dev *pdev = to_pci_dev(dev); | 
|  | u16 devid = calc_devid(pdev->bus->number, pdev->devfn); | 
|  | struct protection_domain *domain; | 
|  | struct dma_ops_domain *dma_domain; | 
|  | struct amd_iommu *iommu; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (devid > amd_iommu_last_bdf) | 
|  | goto out; | 
|  |  | 
|  | devid = amd_iommu_alias_table[devid]; | 
|  |  | 
|  | iommu = amd_iommu_rlookup_table[devid]; | 
|  | if (iommu == NULL) | 
|  | goto out; | 
|  |  | 
|  | domain = domain_for_device(devid); | 
|  |  | 
|  | if (domain && !dma_ops_domain(domain)) | 
|  | WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound " | 
|  | "to a non-dma-ops domain\n", dev_name(dev)); | 
|  |  | 
|  | switch (action) { | 
|  | case BUS_NOTIFY_UNBOUND_DRIVER: | 
|  | if (!domain) | 
|  | goto out; | 
|  | detach_device(domain, devid); | 
|  | break; | 
|  | case BUS_NOTIFY_ADD_DEVICE: | 
|  | /* allocate a protection domain if a device is added */ | 
|  | dma_domain = find_protection_domain(devid); | 
|  | if (dma_domain) | 
|  | goto out; | 
|  | dma_domain = dma_ops_domain_alloc(iommu); | 
|  | if (!dma_domain) | 
|  | goto out; | 
|  | dma_domain->target_dev = devid; | 
|  |  | 
|  | spin_lock_irqsave(&iommu_pd_list_lock, flags); | 
|  | list_add_tail(&dma_domain->list, &iommu_pd_list); | 
|  | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); | 
|  |  | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | iommu_queue_inv_dev_entry(iommu, devid); | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct notifier_block device_nb = { | 
|  | .notifier_call = device_change_notifier, | 
|  | }; | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | * The next functions belong to the dma_ops mapping/unmapping code. | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * This function checks if the driver got a valid device from the caller to | 
|  | * avoid dereferencing invalid pointers. | 
|  | */ | 
|  | static bool check_device(struct device *dev) | 
|  | { | 
|  | if (!dev || !dev->dma_mask) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In this function the list of preallocated protection domains is traversed to | 
|  | * find the domain for a specific device | 
|  | */ | 
|  | static struct dma_ops_domain *find_protection_domain(u16 devid) | 
|  | { | 
|  | struct dma_ops_domain *entry, *ret = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (list_empty(&iommu_pd_list)) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irqsave(&iommu_pd_list_lock, flags); | 
|  |  | 
|  | list_for_each_entry(entry, &iommu_pd_list, list) { | 
|  | if (entry->target_dev == devid) { | 
|  | ret = entry; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the dma_ops path we only have the struct device. This function | 
|  | * finds the corresponding IOMMU, the protection domain and the | 
|  | * requestor id for a given device. | 
|  | * If the device is not yet associated with a domain this is also done | 
|  | * in this function. | 
|  | */ | 
|  | static int get_device_resources(struct device *dev, | 
|  | struct amd_iommu **iommu, | 
|  | struct protection_domain **domain, | 
|  | u16 *bdf) | 
|  | { | 
|  | struct dma_ops_domain *dma_dom; | 
|  | struct pci_dev *pcidev; | 
|  | u16 _bdf; | 
|  |  | 
|  | *iommu = NULL; | 
|  | *domain = NULL; | 
|  | *bdf = 0xffff; | 
|  |  | 
|  | if (dev->bus != &pci_bus_type) | 
|  | return 0; | 
|  |  | 
|  | pcidev = to_pci_dev(dev); | 
|  | _bdf = calc_devid(pcidev->bus->number, pcidev->devfn); | 
|  |  | 
|  | /* device not translated by any IOMMU in the system? */ | 
|  | if (_bdf > amd_iommu_last_bdf) | 
|  | return 0; | 
|  |  | 
|  | *bdf = amd_iommu_alias_table[_bdf]; | 
|  |  | 
|  | *iommu = amd_iommu_rlookup_table[*bdf]; | 
|  | if (*iommu == NULL) | 
|  | return 0; | 
|  | *domain = domain_for_device(*bdf); | 
|  | if (*domain == NULL) { | 
|  | dma_dom = find_protection_domain(*bdf); | 
|  | if (!dma_dom) | 
|  | dma_dom = (*iommu)->default_dom; | 
|  | *domain = &dma_dom->domain; | 
|  | attach_device(*iommu, *domain, *bdf); | 
|  | DUMP_printk("Using protection domain %d for device %s\n", | 
|  | (*domain)->id, dev_name(dev)); | 
|  | } | 
|  |  | 
|  | if (domain_for_device(_bdf) == NULL) | 
|  | attach_device(*iommu, *domain, _bdf); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the pte_page is not yet allocated this function is called | 
|  | */ | 
|  | static u64* alloc_pte(struct protection_domain *dom, | 
|  | unsigned long address, u64 **pte_page, gfp_t gfp) | 
|  | { | 
|  | u64 *pte, *page; | 
|  |  | 
|  | pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) { | 
|  | page = (u64 *)get_zeroed_page(gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  | *pte = IOMMU_L2_PDE(virt_to_phys(page)); | 
|  | } | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L1_INDEX(address)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) { | 
|  | page = (u64 *)get_zeroed_page(gfp); | 
|  | if (!page) | 
|  | return NULL; | 
|  | *pte = IOMMU_L1_PDE(virt_to_phys(page)); | 
|  | } | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  |  | 
|  | if (pte_page) | 
|  | *pte_page = pte; | 
|  |  | 
|  | pte = &pte[IOMMU_PTE_L0_INDEX(address)]; | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function fetches the PTE for a given address in the aperture | 
|  | */ | 
|  | static u64* dma_ops_get_pte(struct dma_ops_domain *dom, | 
|  | unsigned long address) | 
|  | { | 
|  | struct aperture_range *aperture; | 
|  | u64 *pte, *pte_page; | 
|  |  | 
|  | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; | 
|  | if (!aperture) | 
|  | return NULL; | 
|  |  | 
|  | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; | 
|  | if (!pte) { | 
|  | pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC); | 
|  | aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; | 
|  | } else | 
|  | pte += IOMMU_PTE_L0_INDEX(address); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the generic map function. It maps one 4kb page at paddr to | 
|  | * the given address in the DMA address space for the domain. | 
|  | */ | 
|  | static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu, | 
|  | struct dma_ops_domain *dom, | 
|  | unsigned long address, | 
|  | phys_addr_t paddr, | 
|  | int direction) | 
|  | { | 
|  | u64 *pte, __pte; | 
|  |  | 
|  | WARN_ON(address > dom->aperture_size); | 
|  |  | 
|  | paddr &= PAGE_MASK; | 
|  |  | 
|  | pte  = dma_ops_get_pte(dom, address); | 
|  | if (!pte) | 
|  | return bad_dma_address; | 
|  |  | 
|  | __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; | 
|  |  | 
|  | if (direction == DMA_TO_DEVICE) | 
|  | __pte |= IOMMU_PTE_IR; | 
|  | else if (direction == DMA_FROM_DEVICE) | 
|  | __pte |= IOMMU_PTE_IW; | 
|  | else if (direction == DMA_BIDIRECTIONAL) | 
|  | __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; | 
|  |  | 
|  | WARN_ON(*pte); | 
|  |  | 
|  | *pte = __pte; | 
|  |  | 
|  | return (dma_addr_t)address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The generic unmapping function for on page in the DMA address space. | 
|  | */ | 
|  | static void dma_ops_domain_unmap(struct amd_iommu *iommu, | 
|  | struct dma_ops_domain *dom, | 
|  | unsigned long address) | 
|  | { | 
|  | struct aperture_range *aperture; | 
|  | u64 *pte; | 
|  |  | 
|  | if (address >= dom->aperture_size) | 
|  | return; | 
|  |  | 
|  | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; | 
|  | if (!aperture) | 
|  | return; | 
|  |  | 
|  | pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; | 
|  | if (!pte) | 
|  | return; | 
|  |  | 
|  | pte += IOMMU_PTE_L0_INDEX(address); | 
|  |  | 
|  | WARN_ON(!*pte); | 
|  |  | 
|  | *pte = 0ULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function contains common code for mapping of a physically | 
|  | * contiguous memory region into DMA address space. It is used by all | 
|  | * mapping functions provided with this IOMMU driver. | 
|  | * Must be called with the domain lock held. | 
|  | */ | 
|  | static dma_addr_t __map_single(struct device *dev, | 
|  | struct amd_iommu *iommu, | 
|  | struct dma_ops_domain *dma_dom, | 
|  | phys_addr_t paddr, | 
|  | size_t size, | 
|  | int dir, | 
|  | bool align, | 
|  | u64 dma_mask) | 
|  | { | 
|  | dma_addr_t offset = paddr & ~PAGE_MASK; | 
|  | dma_addr_t address, start, ret; | 
|  | unsigned int pages; | 
|  | unsigned long align_mask = 0; | 
|  | int i; | 
|  |  | 
|  | pages = iommu_num_pages(paddr, size, PAGE_SIZE); | 
|  | paddr &= PAGE_MASK; | 
|  |  | 
|  | INC_STATS_COUNTER(total_map_requests); | 
|  |  | 
|  | if (pages > 1) | 
|  | INC_STATS_COUNTER(cross_page); | 
|  |  | 
|  | if (align) | 
|  | align_mask = (1UL << get_order(size)) - 1; | 
|  |  | 
|  | retry: | 
|  | address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, | 
|  | dma_mask); | 
|  | if (unlikely(address == bad_dma_address)) { | 
|  | /* | 
|  | * setting next_address here will let the address | 
|  | * allocator only scan the new allocated range in the | 
|  | * first run. This is a small optimization. | 
|  | */ | 
|  | dma_dom->next_address = dma_dom->aperture_size; | 
|  |  | 
|  | if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * aperture was sucessfully enlarged by 128 MB, try | 
|  | * allocation again | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | start = address; | 
|  | for (i = 0; i < pages; ++i) { | 
|  | ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir); | 
|  | if (ret == bad_dma_address) | 
|  | goto out_unmap; | 
|  |  | 
|  | paddr += PAGE_SIZE; | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  | address += offset; | 
|  |  | 
|  | ADD_STATS_COUNTER(alloced_io_mem, size); | 
|  |  | 
|  | if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { | 
|  | iommu_flush_tlb(iommu, dma_dom->domain.id); | 
|  | dma_dom->need_flush = false; | 
|  | } else if (unlikely(iommu_has_npcache(iommu))) | 
|  | iommu_flush_pages(iommu, dma_dom->domain.id, address, size); | 
|  |  | 
|  | out: | 
|  | return address; | 
|  |  | 
|  | out_unmap: | 
|  |  | 
|  | for (--i; i >= 0; --i) { | 
|  | start -= PAGE_SIZE; | 
|  | dma_ops_domain_unmap(iommu, dma_dom, start); | 
|  | } | 
|  |  | 
|  | dma_ops_free_addresses(dma_dom, address, pages); | 
|  |  | 
|  | return bad_dma_address; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does the reverse of the __map_single function. Must be called with | 
|  | * the domain lock held too | 
|  | */ | 
|  | static void __unmap_single(struct amd_iommu *iommu, | 
|  | struct dma_ops_domain *dma_dom, | 
|  | dma_addr_t dma_addr, | 
|  | size_t size, | 
|  | int dir) | 
|  | { | 
|  | dma_addr_t i, start; | 
|  | unsigned int pages; | 
|  |  | 
|  | if ((dma_addr == bad_dma_address) || | 
|  | (dma_addr + size > dma_dom->aperture_size)) | 
|  | return; | 
|  |  | 
|  | pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); | 
|  | dma_addr &= PAGE_MASK; | 
|  | start = dma_addr; | 
|  |  | 
|  | for (i = 0; i < pages; ++i) { | 
|  | dma_ops_domain_unmap(iommu, dma_dom, start); | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | SUB_STATS_COUNTER(alloced_io_mem, size); | 
|  |  | 
|  | dma_ops_free_addresses(dma_dom, dma_addr, pages); | 
|  |  | 
|  | if (amd_iommu_unmap_flush || dma_dom->need_flush) { | 
|  | iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size); | 
|  | dma_dom->need_flush = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported map_single function for dma_ops. | 
|  | */ | 
|  | static dma_addr_t map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | u16 devid; | 
|  | dma_addr_t addr; | 
|  | u64 dma_mask; | 
|  | phys_addr_t paddr = page_to_phys(page) + offset; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_map_single); | 
|  |  | 
|  | if (!check_device(dev)) | 
|  | return bad_dma_address; | 
|  |  | 
|  | dma_mask = *dev->dma_mask; | 
|  |  | 
|  | get_device_resources(dev, &iommu, &domain, &devid); | 
|  |  | 
|  | if (iommu == NULL || domain == NULL) | 
|  | /* device not handled by any AMD IOMMU */ | 
|  | return (dma_addr_t)paddr; | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | return bad_dma_address; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  | addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false, | 
|  | dma_mask); | 
|  | if (addr == bad_dma_address) | 
|  | goto out; | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported unmap_single function for dma_ops. | 
|  | */ | 
|  | static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, | 
|  | enum dma_data_direction dir, struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | u16 devid; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_unmap_single); | 
|  |  | 
|  | if (!check_device(dev) || | 
|  | !get_device_resources(dev, &iommu, &domain, &devid)) | 
|  | /* device not handled by any AMD IOMMU */ | 
|  | return; | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  |  | 
|  | __unmap_single(iommu, domain->priv, dma_addr, size, dir); | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a special map_sg function which is used if we should map a | 
|  | * device which is not handled by an AMD IOMMU in the system. | 
|  | */ | 
|  | static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, | 
|  | int nelems, int dir) | 
|  | { | 
|  | struct scatterlist *s; | 
|  | int i; | 
|  |  | 
|  | for_each_sg(sglist, s, nelems, i) { | 
|  | s->dma_address = (dma_addr_t)sg_phys(s); | 
|  | s->dma_length  = s->length; | 
|  | } | 
|  |  | 
|  | return nelems; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported map_sg function for dma_ops (handles scatter-gather | 
|  | * lists). | 
|  | */ | 
|  | static int map_sg(struct device *dev, struct scatterlist *sglist, | 
|  | int nelems, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | u16 devid; | 
|  | int i; | 
|  | struct scatterlist *s; | 
|  | phys_addr_t paddr; | 
|  | int mapped_elems = 0; | 
|  | u64 dma_mask; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_map_sg); | 
|  |  | 
|  | if (!check_device(dev)) | 
|  | return 0; | 
|  |  | 
|  | dma_mask = *dev->dma_mask; | 
|  |  | 
|  | get_device_resources(dev, &iommu, &domain, &devid); | 
|  |  | 
|  | if (!iommu || !domain) | 
|  | return map_sg_no_iommu(dev, sglist, nelems, dir); | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  |  | 
|  | for_each_sg(sglist, s, nelems, i) { | 
|  | paddr = sg_phys(s); | 
|  |  | 
|  | s->dma_address = __map_single(dev, iommu, domain->priv, | 
|  | paddr, s->length, dir, false, | 
|  | dma_mask); | 
|  |  | 
|  | if (s->dma_address) { | 
|  | s->dma_length = s->length; | 
|  | mapped_elems++; | 
|  | } else | 
|  | goto unmap; | 
|  | } | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | out: | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | return mapped_elems; | 
|  | unmap: | 
|  | for_each_sg(sglist, s, mapped_elems, i) { | 
|  | if (s->dma_address) | 
|  | __unmap_single(iommu, domain->priv, s->dma_address, | 
|  | s->dma_length, dir); | 
|  | s->dma_address = s->dma_length = 0; | 
|  | } | 
|  |  | 
|  | mapped_elems = 0; | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported map_sg function for dma_ops (handles scatter-gather | 
|  | * lists). | 
|  | */ | 
|  | static void unmap_sg(struct device *dev, struct scatterlist *sglist, | 
|  | int nelems, enum dma_data_direction dir, | 
|  | struct dma_attrs *attrs) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | struct scatterlist *s; | 
|  | u16 devid; | 
|  | int i; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_unmap_sg); | 
|  |  | 
|  | if (!check_device(dev) || | 
|  | !get_device_resources(dev, &iommu, &domain, &devid)) | 
|  | return; | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  |  | 
|  | for_each_sg(sglist, s, nelems, i) { | 
|  | __unmap_single(iommu, domain->priv, s->dma_address, | 
|  | s->dma_length, dir); | 
|  | s->dma_address = s->dma_length = 0; | 
|  | } | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported alloc_coherent function for dma_ops. | 
|  | */ | 
|  | static void *alloc_coherent(struct device *dev, size_t size, | 
|  | dma_addr_t *dma_addr, gfp_t flag) | 
|  | { | 
|  | unsigned long flags; | 
|  | void *virt_addr; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | u16 devid; | 
|  | phys_addr_t paddr; | 
|  | u64 dma_mask = dev->coherent_dma_mask; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_alloc_coherent); | 
|  |  | 
|  | if (!check_device(dev)) | 
|  | return NULL; | 
|  |  | 
|  | if (!get_device_resources(dev, &iommu, &domain, &devid)) | 
|  | flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); | 
|  |  | 
|  | flag |= __GFP_ZERO; | 
|  | virt_addr = (void *)__get_free_pages(flag, get_order(size)); | 
|  | if (!virt_addr) | 
|  | return NULL; | 
|  |  | 
|  | paddr = virt_to_phys(virt_addr); | 
|  |  | 
|  | if (!iommu || !domain) { | 
|  | *dma_addr = (dma_addr_t)paddr; | 
|  | return virt_addr; | 
|  | } | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | goto out_free; | 
|  |  | 
|  | if (!dma_mask) | 
|  | dma_mask = *dev->dma_mask; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  |  | 
|  | *dma_addr = __map_single(dev, iommu, domain->priv, paddr, | 
|  | size, DMA_BIDIRECTIONAL, true, dma_mask); | 
|  |  | 
|  | if (*dma_addr == bad_dma_address) { | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | return virt_addr; | 
|  |  | 
|  | out_free: | 
|  |  | 
|  | free_pages((unsigned long)virt_addr, get_order(size)); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exported free_coherent function for dma_ops. | 
|  | */ | 
|  | static void free_coherent(struct device *dev, size_t size, | 
|  | void *virt_addr, dma_addr_t dma_addr) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_iommu *iommu; | 
|  | struct protection_domain *domain; | 
|  | u16 devid; | 
|  |  | 
|  | INC_STATS_COUNTER(cnt_free_coherent); | 
|  |  | 
|  | if (!check_device(dev)) | 
|  | return; | 
|  |  | 
|  | get_device_resources(dev, &iommu, &domain, &devid); | 
|  |  | 
|  | if (!iommu || !domain) | 
|  | goto free_mem; | 
|  |  | 
|  | if (!dma_ops_domain(domain)) | 
|  | goto free_mem; | 
|  |  | 
|  | spin_lock_irqsave(&domain->lock, flags); | 
|  |  | 
|  | __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | spin_unlock_irqrestore(&domain->lock, flags); | 
|  |  | 
|  | free_mem: | 
|  | free_pages((unsigned long)virt_addr, get_order(size)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called by the DMA layer to find out if we can handle a | 
|  | * particular device. It is part of the dma_ops. | 
|  | */ | 
|  | static int amd_iommu_dma_supported(struct device *dev, u64 mask) | 
|  | { | 
|  | u16 bdf; | 
|  | struct pci_dev *pcidev; | 
|  |  | 
|  | /* No device or no PCI device */ | 
|  | if (!dev || dev->bus != &pci_bus_type) | 
|  | return 0; | 
|  |  | 
|  | pcidev = to_pci_dev(dev); | 
|  |  | 
|  | bdf = calc_devid(pcidev->bus->number, pcidev->devfn); | 
|  |  | 
|  | /* Out of our scope? */ | 
|  | if (bdf > amd_iommu_last_bdf) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The function for pre-allocating protection domains. | 
|  | * | 
|  | * If the driver core informs the DMA layer if a driver grabs a device | 
|  | * we don't need to preallocate the protection domains anymore. | 
|  | * For now we have to. | 
|  | */ | 
|  | static void prealloc_protection_domains(void) | 
|  | { | 
|  | struct pci_dev *dev = NULL; | 
|  | struct dma_ops_domain *dma_dom; | 
|  | struct amd_iommu *iommu; | 
|  | u16 devid; | 
|  |  | 
|  | while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { | 
|  | devid = calc_devid(dev->bus->number, dev->devfn); | 
|  | if (devid > amd_iommu_last_bdf) | 
|  | continue; | 
|  | devid = amd_iommu_alias_table[devid]; | 
|  | if (domain_for_device(devid)) | 
|  | continue; | 
|  | iommu = amd_iommu_rlookup_table[devid]; | 
|  | if (!iommu) | 
|  | continue; | 
|  | dma_dom = dma_ops_domain_alloc(iommu); | 
|  | if (!dma_dom) | 
|  | continue; | 
|  | init_unity_mappings_for_device(dma_dom, devid); | 
|  | dma_dom->target_dev = devid; | 
|  |  | 
|  | list_add_tail(&dma_dom->list, &iommu_pd_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct dma_map_ops amd_iommu_dma_ops = { | 
|  | .alloc_coherent = alloc_coherent, | 
|  | .free_coherent = free_coherent, | 
|  | .map_page = map_page, | 
|  | .unmap_page = unmap_page, | 
|  | .map_sg = map_sg, | 
|  | .unmap_sg = unmap_sg, | 
|  | .dma_supported = amd_iommu_dma_supported, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The function which clues the AMD IOMMU driver into dma_ops. | 
|  | */ | 
|  | int __init amd_iommu_init_dma_ops(void) | 
|  | { | 
|  | struct amd_iommu *iommu; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * first allocate a default protection domain for every IOMMU we | 
|  | * found in the system. Devices not assigned to any other | 
|  | * protection domain will be assigned to the default one. | 
|  | */ | 
|  | for_each_iommu(iommu) { | 
|  | iommu->default_dom = dma_ops_domain_alloc(iommu); | 
|  | if (iommu->default_dom == NULL) | 
|  | return -ENOMEM; | 
|  | iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; | 
|  | ret = iommu_init_unity_mappings(iommu); | 
|  | if (ret) | 
|  | goto free_domains; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If device isolation is enabled, pre-allocate the protection | 
|  | * domains for each device. | 
|  | */ | 
|  | if (amd_iommu_isolate) | 
|  | prealloc_protection_domains(); | 
|  |  | 
|  | iommu_detected = 1; | 
|  | force_iommu = 1; | 
|  | bad_dma_address = 0; | 
|  | #ifdef CONFIG_GART_IOMMU | 
|  | gart_iommu_aperture_disabled = 1; | 
|  | gart_iommu_aperture = 0; | 
|  | #endif | 
|  |  | 
|  | /* Make the driver finally visible to the drivers */ | 
|  | dma_ops = &amd_iommu_dma_ops; | 
|  |  | 
|  | register_iommu(&amd_iommu_ops); | 
|  |  | 
|  | bus_register_notifier(&pci_bus_type, &device_nb); | 
|  |  | 
|  | amd_iommu_stats_init(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_domains: | 
|  |  | 
|  | for_each_iommu(iommu) { | 
|  | if (iommu->default_dom) | 
|  | dma_ops_domain_free(iommu->default_dom); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | * The following functions belong to the exported interface of AMD IOMMU | 
|  | * | 
|  | * This interface allows access to lower level functions of the IOMMU | 
|  | * like protection domain handling and assignement of devices to domains | 
|  | * which is not possible with the dma_ops interface. | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | static void cleanup_domain(struct protection_domain *domain) | 
|  | { | 
|  | unsigned long flags; | 
|  | u16 devid; | 
|  |  | 
|  | write_lock_irqsave(&amd_iommu_devtable_lock, flags); | 
|  |  | 
|  | for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) | 
|  | if (amd_iommu_pd_table[devid] == domain) | 
|  | __detach_device(domain, devid); | 
|  |  | 
|  | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); | 
|  | } | 
|  |  | 
|  | static int amd_iommu_domain_init(struct iommu_domain *dom) | 
|  | { | 
|  | struct protection_domain *domain; | 
|  |  | 
|  | domain = kzalloc(sizeof(*domain), GFP_KERNEL); | 
|  | if (!domain) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock_init(&domain->lock); | 
|  | domain->mode = PAGE_MODE_3_LEVEL; | 
|  | domain->id = domain_id_alloc(); | 
|  | if (!domain->id) | 
|  | goto out_free; | 
|  | domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!domain->pt_root) | 
|  | goto out_free; | 
|  |  | 
|  | dom->priv = domain; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | kfree(domain); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void amd_iommu_domain_destroy(struct iommu_domain *dom) | 
|  | { | 
|  | struct protection_domain *domain = dom->priv; | 
|  |  | 
|  | if (!domain) | 
|  | return; | 
|  |  | 
|  | if (domain->dev_cnt > 0) | 
|  | cleanup_domain(domain); | 
|  |  | 
|  | BUG_ON(domain->dev_cnt != 0); | 
|  |  | 
|  | free_pagetable(domain); | 
|  |  | 
|  | domain_id_free(domain->id); | 
|  |  | 
|  | kfree(domain); | 
|  |  | 
|  | dom->priv = NULL; | 
|  | } | 
|  |  | 
|  | static void amd_iommu_detach_device(struct iommu_domain *dom, | 
|  | struct device *dev) | 
|  | { | 
|  | struct protection_domain *domain = dom->priv; | 
|  | struct amd_iommu *iommu; | 
|  | struct pci_dev *pdev; | 
|  | u16 devid; | 
|  |  | 
|  | if (dev->bus != &pci_bus_type) | 
|  | return; | 
|  |  | 
|  | pdev = to_pci_dev(dev); | 
|  |  | 
|  | devid = calc_devid(pdev->bus->number, pdev->devfn); | 
|  |  | 
|  | if (devid > 0) | 
|  | detach_device(domain, devid); | 
|  |  | 
|  | iommu = amd_iommu_rlookup_table[devid]; | 
|  | if (!iommu) | 
|  | return; | 
|  |  | 
|  | iommu_queue_inv_dev_entry(iommu, devid); | 
|  | iommu_completion_wait(iommu); | 
|  | } | 
|  |  | 
|  | static int amd_iommu_attach_device(struct iommu_domain *dom, | 
|  | struct device *dev) | 
|  | { | 
|  | struct protection_domain *domain = dom->priv; | 
|  | struct protection_domain *old_domain; | 
|  | struct amd_iommu *iommu; | 
|  | struct pci_dev *pdev; | 
|  | u16 devid; | 
|  |  | 
|  | if (dev->bus != &pci_bus_type) | 
|  | return -EINVAL; | 
|  |  | 
|  | pdev = to_pci_dev(dev); | 
|  |  | 
|  | devid = calc_devid(pdev->bus->number, pdev->devfn); | 
|  |  | 
|  | if (devid >= amd_iommu_last_bdf || | 
|  | devid != amd_iommu_alias_table[devid]) | 
|  | return -EINVAL; | 
|  |  | 
|  | iommu = amd_iommu_rlookup_table[devid]; | 
|  | if (!iommu) | 
|  | return -EINVAL; | 
|  |  | 
|  | old_domain = domain_for_device(devid); | 
|  | if (old_domain) | 
|  | detach_device(old_domain, devid); | 
|  |  | 
|  | attach_device(iommu, domain, devid); | 
|  |  | 
|  | iommu_completion_wait(iommu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int amd_iommu_map_range(struct iommu_domain *dom, | 
|  | unsigned long iova, phys_addr_t paddr, | 
|  | size_t size, int iommu_prot) | 
|  | { | 
|  | struct protection_domain *domain = dom->priv; | 
|  | unsigned long i,  npages = iommu_num_pages(paddr, size, PAGE_SIZE); | 
|  | int prot = 0; | 
|  | int ret; | 
|  |  | 
|  | if (iommu_prot & IOMMU_READ) | 
|  | prot |= IOMMU_PROT_IR; | 
|  | if (iommu_prot & IOMMU_WRITE) | 
|  | prot |= IOMMU_PROT_IW; | 
|  |  | 
|  | iova  &= PAGE_MASK; | 
|  | paddr &= PAGE_MASK; | 
|  |  | 
|  | for (i = 0; i < npages; ++i) { | 
|  | ret = iommu_map_page(domain, iova, paddr, prot); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | iova  += PAGE_SIZE; | 
|  | paddr += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void amd_iommu_unmap_range(struct iommu_domain *dom, | 
|  | unsigned long iova, size_t size) | 
|  | { | 
|  |  | 
|  | struct protection_domain *domain = dom->priv; | 
|  | unsigned long i,  npages = iommu_num_pages(iova, size, PAGE_SIZE); | 
|  |  | 
|  | iova  &= PAGE_MASK; | 
|  |  | 
|  | for (i = 0; i < npages; ++i) { | 
|  | iommu_unmap_page(domain, iova); | 
|  | iova  += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | iommu_flush_domain(domain->id); | 
|  | } | 
|  |  | 
|  | static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, | 
|  | unsigned long iova) | 
|  | { | 
|  | struct protection_domain *domain = dom->priv; | 
|  | unsigned long offset = iova & ~PAGE_MASK; | 
|  | phys_addr_t paddr; | 
|  | u64 *pte; | 
|  |  | 
|  | pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return 0; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L1_INDEX(iova)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return 0; | 
|  |  | 
|  | pte = IOMMU_PTE_PAGE(*pte); | 
|  | pte = &pte[IOMMU_PTE_L0_INDEX(iova)]; | 
|  |  | 
|  | if (!IOMMU_PTE_PRESENT(*pte)) | 
|  | return 0; | 
|  |  | 
|  | paddr  = *pte & IOMMU_PAGE_MASK; | 
|  | paddr |= offset; | 
|  |  | 
|  | return paddr; | 
|  | } | 
|  |  | 
|  | static int amd_iommu_domain_has_cap(struct iommu_domain *domain, | 
|  | unsigned long cap) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct iommu_ops amd_iommu_ops = { | 
|  | .domain_init = amd_iommu_domain_init, | 
|  | .domain_destroy = amd_iommu_domain_destroy, | 
|  | .attach_dev = amd_iommu_attach_device, | 
|  | .detach_dev = amd_iommu_detach_device, | 
|  | .map = amd_iommu_map_range, | 
|  | .unmap = amd_iommu_unmap_range, | 
|  | .iova_to_phys = amd_iommu_iova_to_phys, | 
|  | .domain_has_cap = amd_iommu_domain_has_cap, | 
|  | }; | 
|  |  |