|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/crash_dump.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/mpspec.h> | 
|  | #include <asm/apicdef.h> | 
|  | #include <asm/highmem.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/cpumask.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/stackprotector.h> | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_PER_CPU_MAPS | 
|  | # define DBG(x...) printk(KERN_DEBUG x) | 
|  | #else | 
|  | # define DBG(x...) | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(int, cpu_number); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_number); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load) | 
|  | #else | 
|  | #define BOOT_PERCPU_OFFSET 0 | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET; | 
|  | EXPORT_PER_CPU_SYMBOL(this_cpu_off); | 
|  |  | 
|  | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = { | 
|  | [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET, | 
|  | }; | 
|  | EXPORT_SYMBOL(__per_cpu_offset); | 
|  |  | 
|  | /* | 
|  | * On x86_64 symbols referenced from code should be reachable using | 
|  | * 32bit relocations.  Reserve space for static percpu variables in | 
|  | * modules so that they are always served from the first chunk which | 
|  | * is located at the percpu segment base.  On x86_32, anything can | 
|  | * address anywhere.  No need to reserve space in the first chunk. | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | #define PERCPU_FIRST_CHUNK_RESERVE	PERCPU_MODULE_RESERVE | 
|  | #else | 
|  | #define PERCPU_FIRST_CHUNK_RESERVE	0 | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * pcpu_need_numa - determine percpu allocation needs to consider NUMA | 
|  | * | 
|  | * If NUMA is not configured or there is only one NUMA node available, | 
|  | * there is no reason to consider NUMA.  This function determines | 
|  | * whether percpu allocation should consider NUMA or not. | 
|  | * | 
|  | * RETURNS: | 
|  | * true if NUMA should be considered; otherwise, false. | 
|  | */ | 
|  | static bool __init pcpu_need_numa(void) | 
|  | { | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | pg_data_t *last = NULL; | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int node = early_cpu_to_node(cpu); | 
|  |  | 
|  | if (node_online(node) && NODE_DATA(node) && | 
|  | last && last != NODE_DATA(node)) | 
|  | return true; | 
|  |  | 
|  | last = NODE_DATA(node); | 
|  | } | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu | 
|  | * @cpu: cpu to allocate for | 
|  | * @size: size allocation in bytes | 
|  | * @align: alignment | 
|  | * | 
|  | * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper | 
|  | * does the right thing for NUMA regardless of the current | 
|  | * configuration. | 
|  | * | 
|  | * RETURNS: | 
|  | * Pointer to the allocated area on success, NULL on failure. | 
|  | */ | 
|  | static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size, | 
|  | unsigned long align) | 
|  | { | 
|  | const unsigned long goal = __pa(MAX_DMA_ADDRESS); | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | int node = early_cpu_to_node(cpu); | 
|  | void *ptr; | 
|  |  | 
|  | if (!node_online(node) || !NODE_DATA(node)) { | 
|  | ptr = __alloc_bootmem_nopanic(size, align, goal); | 
|  | pr_info("cpu %d has no node %d or node-local memory\n", | 
|  | cpu, node); | 
|  | pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", | 
|  | cpu, size, __pa(ptr)); | 
|  | } else { | 
|  | ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node), | 
|  | size, align, goal); | 
|  | pr_debug("per cpu data for cpu%d %lu bytes on node%d at " | 
|  | "%016lx\n", cpu, size, node, __pa(ptr)); | 
|  | } | 
|  | return ptr; | 
|  | #else | 
|  | return __alloc_bootmem_nopanic(size, align, goal); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Large page remap allocator | 
|  | * | 
|  | * This allocator uses PMD page as unit.  A PMD page is allocated for | 
|  | * each cpu and each is remapped into vmalloc area using PMD mapping. | 
|  | * As PMD page is quite large, only part of it is used for the first | 
|  | * chunk.  Unused part is returned to the bootmem allocator. | 
|  | * | 
|  | * So, the PMD pages are mapped twice - once to the physical mapping | 
|  | * and to the vmalloc area for the first percpu chunk.  The double | 
|  | * mapping does add one more PMD TLB entry pressure but still is much | 
|  | * better than only using 4k mappings while still being NUMA friendly. | 
|  | */ | 
|  | #ifdef CONFIG_NEED_MULTIPLE_NODES | 
|  | struct pcpul_ent { | 
|  | unsigned int	cpu; | 
|  | void		*ptr; | 
|  | }; | 
|  |  | 
|  | static size_t pcpul_size; | 
|  | static struct pcpul_ent *pcpul_map; | 
|  | static struct vm_struct pcpul_vm; | 
|  |  | 
|  | static struct page * __init pcpul_get_page(unsigned int cpu, int pageno) | 
|  | { | 
|  | size_t off = (size_t)pageno << PAGE_SHIFT; | 
|  |  | 
|  | if (off >= pcpul_size) | 
|  | return NULL; | 
|  |  | 
|  | return virt_to_page(pcpul_map[cpu].ptr + off); | 
|  | } | 
|  |  | 
|  | static ssize_t __init setup_pcpu_lpage(size_t static_size, bool chosen) | 
|  | { | 
|  | size_t map_size, dyn_size; | 
|  | unsigned int cpu; | 
|  | int i, j; | 
|  | ssize_t ret; | 
|  |  | 
|  | if (!chosen) { | 
|  | size_t vm_size = VMALLOC_END - VMALLOC_START; | 
|  | size_t tot_size = num_possible_cpus() * PMD_SIZE; | 
|  |  | 
|  | /* on non-NUMA, embedding is better */ | 
|  | if (!pcpu_need_numa()) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* don't consume more than 20% of vmalloc area */ | 
|  | if (tot_size > vm_size / 5) { | 
|  | pr_info("PERCPU: too large chunk size %zuMB for " | 
|  | "large page remap\n", tot_size >> 20); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* need PSE */ | 
|  | if (!cpu_has_pse) { | 
|  | pr_warning("PERCPU: lpage allocator requires PSE\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently supports only single page.  Supporting multiple | 
|  | * pages won't be too difficult if it ever becomes necessary. | 
|  | */ | 
|  | pcpul_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE + | 
|  | PERCPU_DYNAMIC_RESERVE); | 
|  | if (pcpul_size > PMD_SIZE) { | 
|  | pr_warning("PERCPU: static data is larger than large page, " | 
|  | "can't use large page\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | dyn_size = pcpul_size - static_size - PERCPU_FIRST_CHUNK_RESERVE; | 
|  |  | 
|  | /* allocate pointer array and alloc large pages */ | 
|  | map_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpul_map[0])); | 
|  | pcpul_map = alloc_bootmem(map_size); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | pcpul_map[cpu].cpu = cpu; | 
|  | pcpul_map[cpu].ptr = pcpu_alloc_bootmem(cpu, PMD_SIZE, | 
|  | PMD_SIZE); | 
|  | if (!pcpul_map[cpu].ptr) { | 
|  | pr_warning("PERCPU: failed to allocate large page " | 
|  | "for cpu%u\n", cpu); | 
|  | goto enomem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only use pcpul_size bytes and give back the rest. | 
|  | * | 
|  | * Ingo: The 2MB up-rounding bootmem is needed to make | 
|  | * sure the partial 2MB page is still fully RAM - it's | 
|  | * not well-specified to have a PAT-incompatible area | 
|  | * (unmapped RAM, device memory, etc.) in that hole. | 
|  | */ | 
|  | free_bootmem(__pa(pcpul_map[cpu].ptr + pcpul_size), | 
|  | PMD_SIZE - pcpul_size); | 
|  |  | 
|  | memcpy(pcpul_map[cpu].ptr, __per_cpu_load, static_size); | 
|  | } | 
|  |  | 
|  | /* allocate address and map */ | 
|  | pcpul_vm.flags = VM_ALLOC; | 
|  | pcpul_vm.size = num_possible_cpus() * PMD_SIZE; | 
|  | vm_area_register_early(&pcpul_vm, PMD_SIZE); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | pmd_t *pmd, pmd_v; | 
|  |  | 
|  | pmd = populate_extra_pmd((unsigned long)pcpul_vm.addr + | 
|  | cpu * PMD_SIZE); | 
|  | pmd_v = pfn_pmd(page_to_pfn(virt_to_page(pcpul_map[cpu].ptr)), | 
|  | PAGE_KERNEL_LARGE); | 
|  | set_pmd(pmd, pmd_v); | 
|  | } | 
|  |  | 
|  | /* we're ready, commit */ | 
|  | pr_info("PERCPU: Remapped at %p with large pages, static data " | 
|  | "%zu bytes\n", pcpul_vm.addr, static_size); | 
|  |  | 
|  | ret = pcpu_setup_first_chunk(pcpul_get_page, static_size, | 
|  | PERCPU_FIRST_CHUNK_RESERVE, dyn_size, | 
|  | PMD_SIZE, pcpul_vm.addr, NULL); | 
|  |  | 
|  | /* sort pcpul_map array for pcpu_lpage_remapped() */ | 
|  | for (i = 0; i < num_possible_cpus() - 1; i++) | 
|  | for (j = i + 1; j < num_possible_cpus(); j++) | 
|  | if (pcpul_map[i].ptr > pcpul_map[j].ptr) { | 
|  | struct pcpul_ent tmp = pcpul_map[i]; | 
|  | pcpul_map[i] = pcpul_map[j]; | 
|  | pcpul_map[j] = tmp; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | enomem: | 
|  | for_each_possible_cpu(cpu) | 
|  | if (pcpul_map[cpu].ptr) | 
|  | free_bootmem(__pa(pcpul_map[cpu].ptr), pcpul_size); | 
|  | free_bootmem(__pa(pcpul_map), map_size); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area | 
|  | * @kaddr: the kernel address in question | 
|  | * | 
|  | * Determine whether @kaddr falls in the pcpul recycled area.  This is | 
|  | * used by pageattr to detect VM aliases and break up the pcpu PMD | 
|  | * mapping such that the same physical page is not mapped under | 
|  | * different attributes. | 
|  | * | 
|  | * The recycled area is always at the tail of a partially used PMD | 
|  | * page. | 
|  | * | 
|  | * RETURNS: | 
|  | * Address of corresponding remapped pcpu address if match is found; | 
|  | * otherwise, NULL. | 
|  | */ | 
|  | void *pcpu_lpage_remapped(void *kaddr) | 
|  | { | 
|  | void *pmd_addr = (void *)((unsigned long)kaddr & PMD_MASK); | 
|  | unsigned long offset = (unsigned long)kaddr & ~PMD_MASK; | 
|  | int left = 0, right = num_possible_cpus() - 1; | 
|  | int pos; | 
|  |  | 
|  | /* pcpul in use at all? */ | 
|  | if (!pcpul_map) | 
|  | return NULL; | 
|  |  | 
|  | /* okay, perform binary search */ | 
|  | while (left <= right) { | 
|  | pos = (left + right) / 2; | 
|  |  | 
|  | if (pcpul_map[pos].ptr < pmd_addr) | 
|  | left = pos + 1; | 
|  | else if (pcpul_map[pos].ptr > pmd_addr) | 
|  | right = pos - 1; | 
|  | else { | 
|  | /* it shouldn't be in the area for the first chunk */ | 
|  | WARN_ON(offset < pcpul_size); | 
|  |  | 
|  | return pcpul_vm.addr + | 
|  | pcpul_map[pos].cpu * PMD_SIZE + offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | #else | 
|  | static ssize_t __init setup_pcpu_lpage(size_t static_size, bool chosen) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Embedding allocator | 
|  | * | 
|  | * The first chunk is sized to just contain the static area plus | 
|  | * module and dynamic reserves and embedded into linear physical | 
|  | * mapping so that it can use PMD mapping without additional TLB | 
|  | * pressure. | 
|  | */ | 
|  | static ssize_t __init setup_pcpu_embed(size_t static_size, bool chosen) | 
|  | { | 
|  | size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; | 
|  |  | 
|  | /* | 
|  | * If large page isn't supported, there's no benefit in doing | 
|  | * this.  Also, embedding allocation doesn't play well with | 
|  | * NUMA. | 
|  | */ | 
|  | if (!chosen && (!cpu_has_pse || pcpu_need_numa())) | 
|  | return -EINVAL; | 
|  |  | 
|  | return pcpu_embed_first_chunk(static_size, PERCPU_FIRST_CHUNK_RESERVE, | 
|  | reserve - PERCPU_FIRST_CHUNK_RESERVE, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 4k page allocator | 
|  | * | 
|  | * This is the basic allocator.  Static percpu area is allocated | 
|  | * page-by-page and most of initialization is done by the generic | 
|  | * setup function. | 
|  | */ | 
|  | static struct page **pcpu4k_pages __initdata; | 
|  | static int pcpu4k_nr_static_pages __initdata; | 
|  |  | 
|  | static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno) | 
|  | { | 
|  | if (pageno < pcpu4k_nr_static_pages) | 
|  | return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno]; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __init pcpu4k_populate_pte(unsigned long addr) | 
|  | { | 
|  | populate_extra_pte(addr); | 
|  | } | 
|  |  | 
|  | static ssize_t __init setup_pcpu_4k(size_t static_size) | 
|  | { | 
|  | size_t pages_size; | 
|  | unsigned int cpu; | 
|  | int i, j; | 
|  | ssize_t ret; | 
|  |  | 
|  | pcpu4k_nr_static_pages = PFN_UP(static_size); | 
|  |  | 
|  | /* unaligned allocations can't be freed, round up to page size */ | 
|  | pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus() | 
|  | * sizeof(pcpu4k_pages[0])); | 
|  | pcpu4k_pages = alloc_bootmem(pages_size); | 
|  |  | 
|  | /* allocate and copy */ | 
|  | j = 0; | 
|  | for_each_possible_cpu(cpu) | 
|  | for (i = 0; i < pcpu4k_nr_static_pages; i++) { | 
|  | void *ptr; | 
|  |  | 
|  | ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE); | 
|  | if (!ptr) { | 
|  | pr_warning("PERCPU: failed to allocate " | 
|  | "4k page for cpu%u\n", cpu); | 
|  | goto enomem; | 
|  | } | 
|  |  | 
|  | memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE); | 
|  | pcpu4k_pages[j++] = virt_to_page(ptr); | 
|  | } | 
|  |  | 
|  | /* we're ready, commit */ | 
|  | pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n", | 
|  | pcpu4k_nr_static_pages, static_size); | 
|  |  | 
|  | ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size, | 
|  | PERCPU_FIRST_CHUNK_RESERVE, -1, | 
|  | -1, NULL, pcpu4k_populate_pte); | 
|  | goto out_free_ar; | 
|  |  | 
|  | enomem: | 
|  | while (--j >= 0) | 
|  | free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE); | 
|  | ret = -ENOMEM; | 
|  | out_free_ar: | 
|  | free_bootmem(__pa(pcpu4k_pages), pages_size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* for explicit first chunk allocator selection */ | 
|  | static char pcpu_chosen_alloc[16] __initdata; | 
|  |  | 
|  | static int __init percpu_alloc_setup(char *str) | 
|  | { | 
|  | strncpy(pcpu_chosen_alloc, str, sizeof(pcpu_chosen_alloc) - 1); | 
|  | return 0; | 
|  | } | 
|  | early_param("percpu_alloc", percpu_alloc_setup); | 
|  |  | 
|  | static inline void setup_percpu_segment(int cpu) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | struct desc_struct gdt; | 
|  |  | 
|  | pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF, | 
|  | 0x2 | DESCTYPE_S, 0x8); | 
|  | gdt.s = 1; | 
|  | write_gdt_entry(get_cpu_gdt_table(cpu), | 
|  | GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | size_t static_size = __per_cpu_end - __per_cpu_start; | 
|  | unsigned int cpu; | 
|  | unsigned long delta; | 
|  | size_t pcpu_unit_size; | 
|  | ssize_t ret; | 
|  |  | 
|  | pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n", | 
|  | NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids); | 
|  |  | 
|  | /* | 
|  | * Allocate percpu area.  If PSE is supported, try to make use | 
|  | * of large page mappings.  Please read comments on top of | 
|  | * each allocator for details. | 
|  | */ | 
|  | ret = -EINVAL; | 
|  | if (strlen(pcpu_chosen_alloc)) { | 
|  | if (strcmp(pcpu_chosen_alloc, "4k")) { | 
|  | if (!strcmp(pcpu_chosen_alloc, "lpage")) | 
|  | ret = setup_pcpu_lpage(static_size, true); | 
|  | else if (!strcmp(pcpu_chosen_alloc, "embed")) | 
|  | ret = setup_pcpu_embed(static_size, true); | 
|  | else | 
|  | pr_warning("PERCPU: unknown allocator %s " | 
|  | "specified\n", pcpu_chosen_alloc); | 
|  | if (ret < 0) | 
|  | pr_warning("PERCPU: %s allocator failed (%zd), " | 
|  | "falling back to 4k\n", | 
|  | pcpu_chosen_alloc, ret); | 
|  | } | 
|  | } else { | 
|  | ret = setup_pcpu_lpage(static_size, false); | 
|  | if (ret < 0) | 
|  | ret = setup_pcpu_embed(static_size, false); | 
|  | } | 
|  | if (ret < 0) | 
|  | ret = setup_pcpu_4k(static_size); | 
|  | if (ret < 0) | 
|  | panic("cannot allocate static percpu area (%zu bytes, err=%zd)", | 
|  | static_size, ret); | 
|  |  | 
|  | pcpu_unit_size = ret; | 
|  |  | 
|  | /* alrighty, percpu areas up and running */ | 
|  | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | 
|  | for_each_possible_cpu(cpu) { | 
|  | per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size; | 
|  | per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu); | 
|  | per_cpu(cpu_number, cpu) = cpu; | 
|  | setup_percpu_segment(cpu); | 
|  | setup_stack_canary_segment(cpu); | 
|  | /* | 
|  | * Copy data used in early init routines from the | 
|  | * initial arrays to the per cpu data areas.  These | 
|  | * arrays then become expendable and the *_early_ptr's | 
|  | * are zeroed indicating that the static arrays are | 
|  | * gone. | 
|  | */ | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | per_cpu(x86_cpu_to_apicid, cpu) = | 
|  | early_per_cpu_map(x86_cpu_to_apicid, cpu); | 
|  | per_cpu(x86_bios_cpu_apicid, cpu) = | 
|  | early_per_cpu_map(x86_bios_cpu_apicid, cpu); | 
|  | #endif | 
|  | #ifdef CONFIG_X86_64 | 
|  | per_cpu(irq_stack_ptr, cpu) = | 
|  | per_cpu(irq_stack_union.irq_stack, cpu) + | 
|  | IRQ_STACK_SIZE - 64; | 
|  | #ifdef CONFIG_NUMA | 
|  | per_cpu(x86_cpu_to_node_map, cpu) = | 
|  | early_per_cpu_map(x86_cpu_to_node_map, cpu); | 
|  | #endif | 
|  | #endif | 
|  | /* | 
|  | * Up to this point, the boot CPU has been using .data.init | 
|  | * area.  Reload any changed state for the boot CPU. | 
|  | */ | 
|  | if (cpu == boot_cpu_id) | 
|  | switch_to_new_gdt(cpu); | 
|  | } | 
|  |  | 
|  | /* indicate the early static arrays will soon be gone */ | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | early_per_cpu_ptr(x86_cpu_to_apicid) = NULL; | 
|  | early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL; | 
|  | #endif | 
|  | #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA) | 
|  | early_per_cpu_ptr(x86_cpu_to_node_map) = NULL; | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA) | 
|  | /* | 
|  | * make sure boot cpu node_number is right, when boot cpu is on the | 
|  | * node that doesn't have mem installed | 
|  | */ | 
|  | per_cpu(node_number, boot_cpu_id) = cpu_to_node(boot_cpu_id); | 
|  | #endif | 
|  |  | 
|  | /* Setup node to cpumask map */ | 
|  | setup_node_to_cpumask_map(); | 
|  |  | 
|  | /* Setup cpu initialized, callin, callout masks */ | 
|  | setup_cpu_local_masks(); | 
|  | } |