|  | /*---------------------------------------------------------------------------+ | 
|  | |  poly_sin.c                                                               | | 
|  | |                                                                           | | 
|  | |  Computation of an approximation of the sin function and the cosine       | | 
|  | |  function by a polynomial.                                                | | 
|  | |                                                                           | | 
|  | | Copyright (C) 1992,1993,1994,1997,1999                                    | | 
|  | |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | | 
|  | |                  E-mail   billm@melbpc.org.au                             | | 
|  | |                                                                           | | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  |  | 
|  | #include "exception.h" | 
|  | #include "reg_constant.h" | 
|  | #include "fpu_emu.h" | 
|  | #include "fpu_system.h" | 
|  | #include "control_w.h" | 
|  | #include "poly.h" | 
|  |  | 
|  | #define	N_COEFF_P	4 | 
|  | #define	N_COEFF_N	4 | 
|  |  | 
|  | static const unsigned long long pos_terms_l[N_COEFF_P] = { | 
|  | 0xaaaaaaaaaaaaaaabLL, | 
|  | 0x00d00d00d00cf906LL, | 
|  | 0x000006b99159a8bbLL, | 
|  | 0x000000000d7392e6LL | 
|  | }; | 
|  |  | 
|  | static const unsigned long long neg_terms_l[N_COEFF_N] = { | 
|  | 0x2222222222222167LL, | 
|  | 0x0002e3bc74aab624LL, | 
|  | 0x0000000b09229062LL, | 
|  | 0x00000000000c7973LL | 
|  | }; | 
|  |  | 
|  | #define	N_COEFF_PH	4 | 
|  | #define	N_COEFF_NH	4 | 
|  | static const unsigned long long pos_terms_h[N_COEFF_PH] = { | 
|  | 0x0000000000000000LL, | 
|  | 0x05b05b05b05b0406LL, | 
|  | 0x000049f93edd91a9LL, | 
|  | 0x00000000c9c9ed62LL | 
|  | }; | 
|  |  | 
|  | static const unsigned long long neg_terms_h[N_COEFF_NH] = { | 
|  | 0xaaaaaaaaaaaaaa98LL, | 
|  | 0x001a01a01a019064LL, | 
|  | 0x0000008f76c68a77LL, | 
|  | 0x0000000000d58f5eLL | 
|  | }; | 
|  |  | 
|  | /*--- poly_sine() -----------------------------------------------------------+ | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  | void poly_sine(FPU_REG *st0_ptr) | 
|  | { | 
|  | int exponent, echange; | 
|  | Xsig accumulator, argSqrd, argTo4; | 
|  | unsigned long fix_up, adj; | 
|  | unsigned long long fixed_arg; | 
|  | FPU_REG result; | 
|  |  | 
|  | exponent = exponent(st0_ptr); | 
|  |  | 
|  | accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
|  |  | 
|  | /* Split into two ranges, for arguments below and above 1.0 */ | 
|  | /* The boundary between upper and lower is approx 0.88309101259 */ | 
|  | if ((exponent < -1) | 
|  | || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) { | 
|  | /* The argument is <= 0.88309101259 */ | 
|  |  | 
|  | argSqrd.msw = st0_ptr->sigh; | 
|  | argSqrd.midw = st0_ptr->sigl; | 
|  | argSqrd.lsw = 0; | 
|  | mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
|  | shr_Xsig(&argSqrd, 2 * (-1 - exponent)); | 
|  | argTo4.msw = argSqrd.msw; | 
|  | argTo4.midw = argSqrd.midw; | 
|  | argTo4.lsw = argSqrd.lsw; | 
|  | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
|  | N_COEFF_N - 1); | 
|  | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
|  | N_COEFF_P - 1); | 
|  |  | 
|  | shr_Xsig(&accumulator, 2);	/* Divide by four */ | 
|  | accumulator.msw |= 0x80000000;	/* Add 1.0 */ | 
|  |  | 
|  | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  |  | 
|  | /* Divide by four, FPU_REG compatible, etc */ | 
|  | exponent = 3 * exponent; | 
|  |  | 
|  | /* The minimum exponent difference is 3 */ | 
|  | shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); | 
|  |  | 
|  | negate_Xsig(&accumulator); | 
|  | XSIG_LL(accumulator) += significand(st0_ptr); | 
|  |  | 
|  | echange = round_Xsig(&accumulator); | 
|  |  | 
|  | setexponentpos(&result, exponent(st0_ptr) + echange); | 
|  | } else { | 
|  | /* The argument is > 0.88309101259 */ | 
|  | /* We use sin(st(0)) = cos(pi/2-st(0)) */ | 
|  |  | 
|  | fixed_arg = significand(st0_ptr); | 
|  |  | 
|  | if (exponent == 0) { | 
|  | /* The argument is >= 1.0 */ | 
|  |  | 
|  | /* Put the binary point at the left. */ | 
|  | fixed_arg <<= 1; | 
|  | } | 
|  | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
|  | /* There is a special case which arises due to rounding, to fix here. */ | 
|  | if (fixed_arg == 0xffffffffffffffffLL) | 
|  | fixed_arg = 0; | 
|  |  | 
|  | XSIG_LL(argSqrd) = fixed_arg; | 
|  | argSqrd.lsw = 0; | 
|  | mul64_Xsig(&argSqrd, &fixed_arg); | 
|  |  | 
|  | XSIG_LL(argTo4) = XSIG_LL(argSqrd); | 
|  | argTo4.lsw = argSqrd.lsw; | 
|  | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
|  | N_COEFF_NH - 1); | 
|  | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
|  | N_COEFF_PH - 1); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | mul64_Xsig(&accumulator, &fixed_arg); | 
|  |  | 
|  | shr_Xsig(&accumulator, 3); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | add_Xsig_Xsig(&accumulator, &argSqrd); | 
|  |  | 
|  | shr_Xsig(&accumulator, 1); | 
|  |  | 
|  | accumulator.lsw |= 1;	/* A zero accumulator here would cause problems */ | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | /* The basic computation is complete. Now fix the answer to | 
|  | compensate for the error due to the approximation used for | 
|  | pi/2 | 
|  | */ | 
|  |  | 
|  | /* This has an exponent of -65 */ | 
|  | fix_up = 0x898cc517; | 
|  | /* The fix-up needs to be improved for larger args */ | 
|  | if (argSqrd.msw & 0xffc00000) { | 
|  | /* Get about 32 bit precision in these: */ | 
|  | fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; | 
|  | } | 
|  | fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); | 
|  |  | 
|  | adj = accumulator.lsw;	/* temp save */ | 
|  | accumulator.lsw -= fix_up; | 
|  | if (accumulator.lsw > adj) | 
|  | XSIG_LL(accumulator)--; | 
|  |  | 
|  | echange = round_Xsig(&accumulator); | 
|  |  | 
|  | setexponentpos(&result, echange - 1); | 
|  | } | 
|  |  | 
|  | significand(&result) = XSIG_LL(accumulator); | 
|  | setsign(&result, getsign(st0_ptr)); | 
|  | FPU_copy_to_reg0(&result, TAG_Valid); | 
|  |  | 
|  | #ifdef PARANOID | 
|  | if ((exponent(&result) >= 0) | 
|  | && (significand(&result) > 0x8000000000000000LL)) { | 
|  | EXCEPTION(EX_INTERNAL | 0x150); | 
|  | } | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | } | 
|  |  | 
|  | /*--- poly_cos() ------------------------------------------------------------+ | 
|  | |                                                                           | | 
|  | +---------------------------------------------------------------------------*/ | 
|  | void poly_cos(FPU_REG *st0_ptr) | 
|  | { | 
|  | FPU_REG result; | 
|  | long int exponent, exp2, echange; | 
|  | Xsig accumulator, argSqrd, fix_up, argTo4; | 
|  | unsigned long long fixed_arg; | 
|  |  | 
|  | #ifdef PARANOID | 
|  | if ((exponent(st0_ptr) > 0) | 
|  | || ((exponent(st0_ptr) == 0) | 
|  | && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) { | 
|  | EXCEPTION(EX_Invalid); | 
|  | FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); | 
|  | return; | 
|  | } | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | exponent = exponent(st0_ptr); | 
|  |  | 
|  | accumulator.lsw = accumulator.midw = accumulator.msw = 0; | 
|  |  | 
|  | if ((exponent < -1) | 
|  | || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) { | 
|  | /* arg is < 0.687705 */ | 
|  |  | 
|  | argSqrd.msw = st0_ptr->sigh; | 
|  | argSqrd.midw = st0_ptr->sigl; | 
|  | argSqrd.lsw = 0; | 
|  | mul64_Xsig(&argSqrd, &significand(st0_ptr)); | 
|  |  | 
|  | if (exponent < -1) { | 
|  | /* shift the argument right by the required places */ | 
|  | shr_Xsig(&argSqrd, 2 * (-1 - exponent)); | 
|  | } | 
|  |  | 
|  | argTo4.msw = argSqrd.msw; | 
|  | argTo4.midw = argSqrd.midw; | 
|  | argTo4.lsw = argSqrd.lsw; | 
|  | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, | 
|  | N_COEFF_NH - 1); | 
|  | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, | 
|  | N_COEFF_PH - 1); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | mul64_Xsig(&accumulator, &significand(st0_ptr)); | 
|  | shr_Xsig(&accumulator, -2 * (1 + exponent)); | 
|  |  | 
|  | shr_Xsig(&accumulator, 3); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | add_Xsig_Xsig(&accumulator, &argSqrd); | 
|  |  | 
|  | shr_Xsig(&accumulator, 1); | 
|  |  | 
|  | /* It doesn't matter if accumulator is all zero here, the | 
|  | following code will work ok */ | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | if (accumulator.lsw & 0x80000000) | 
|  | XSIG_LL(accumulator)++; | 
|  | if (accumulator.msw == 0) { | 
|  | /* The result is 1.0 */ | 
|  | FPU_copy_to_reg0(&CONST_1, TAG_Valid); | 
|  | return; | 
|  | } else { | 
|  | significand(&result) = XSIG_LL(accumulator); | 
|  |  | 
|  | /* will be a valid positive nr with expon = -1 */ | 
|  | setexponentpos(&result, -1); | 
|  | } | 
|  | } else { | 
|  | fixed_arg = significand(st0_ptr); | 
|  |  | 
|  | if (exponent == 0) { | 
|  | /* The argument is >= 1.0 */ | 
|  |  | 
|  | /* Put the binary point at the left. */ | 
|  | fixed_arg <<= 1; | 
|  | } | 
|  | /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ | 
|  | fixed_arg = 0x921fb54442d18469LL - fixed_arg; | 
|  | /* There is a special case which arises due to rounding, to fix here. */ | 
|  | if (fixed_arg == 0xffffffffffffffffLL) | 
|  | fixed_arg = 0; | 
|  |  | 
|  | exponent = -1; | 
|  | exp2 = -1; | 
|  |  | 
|  | /* A shift is needed here only for a narrow range of arguments, | 
|  | i.e. for fixed_arg approx 2^-32, but we pick up more... */ | 
|  | if (!(LL_MSW(fixed_arg) & 0xffff0000)) { | 
|  | fixed_arg <<= 16; | 
|  | exponent -= 16; | 
|  | exp2 -= 16; | 
|  | } | 
|  |  | 
|  | XSIG_LL(argSqrd) = fixed_arg; | 
|  | argSqrd.lsw = 0; | 
|  | mul64_Xsig(&argSqrd, &fixed_arg); | 
|  |  | 
|  | if (exponent < -1) { | 
|  | /* shift the argument right by the required places */ | 
|  | shr_Xsig(&argSqrd, 2 * (-1 - exponent)); | 
|  | } | 
|  |  | 
|  | argTo4.msw = argSqrd.msw; | 
|  | argTo4.midw = argSqrd.midw; | 
|  | argTo4.lsw = argSqrd.lsw; | 
|  | mul_Xsig_Xsig(&argTo4, &argTo4); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, | 
|  | N_COEFF_N - 1); | 
|  | mul_Xsig_Xsig(&accumulator, &argSqrd); | 
|  | negate_Xsig(&accumulator); | 
|  |  | 
|  | polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, | 
|  | N_COEFF_P - 1); | 
|  |  | 
|  | shr_Xsig(&accumulator, 2);	/* Divide by four */ | 
|  | accumulator.msw |= 0x80000000;	/* Add 1.0 */ | 
|  |  | 
|  | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | mul64_Xsig(&accumulator, &fixed_arg); | 
|  | mul64_Xsig(&accumulator, &fixed_arg); | 
|  |  | 
|  | /* Divide by four, FPU_REG compatible, etc */ | 
|  | exponent = 3 * exponent; | 
|  |  | 
|  | /* The minimum exponent difference is 3 */ | 
|  | shr_Xsig(&accumulator, exp2 - exponent); | 
|  |  | 
|  | negate_Xsig(&accumulator); | 
|  | XSIG_LL(accumulator) += fixed_arg; | 
|  |  | 
|  | /* The basic computation is complete. Now fix the answer to | 
|  | compensate for the error due to the approximation used for | 
|  | pi/2 | 
|  | */ | 
|  |  | 
|  | /* This has an exponent of -65 */ | 
|  | XSIG_LL(fix_up) = 0x898cc51701b839a2ll; | 
|  | fix_up.lsw = 0; | 
|  |  | 
|  | /* The fix-up needs to be improved for larger args */ | 
|  | if (argSqrd.msw & 0xffc00000) { | 
|  | /* Get about 32 bit precision in these: */ | 
|  | fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; | 
|  | fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; | 
|  | } | 
|  |  | 
|  | exp2 += norm_Xsig(&accumulator); | 
|  | shr_Xsig(&accumulator, 1);	/* Prevent overflow */ | 
|  | exp2++; | 
|  | shr_Xsig(&fix_up, 65 + exp2); | 
|  |  | 
|  | add_Xsig_Xsig(&accumulator, &fix_up); | 
|  |  | 
|  | echange = round_Xsig(&accumulator); | 
|  |  | 
|  | setexponentpos(&result, exp2 + echange); | 
|  | significand(&result) = XSIG_LL(accumulator); | 
|  | } | 
|  |  | 
|  | FPU_copy_to_reg0(&result, TAG_Valid); | 
|  |  | 
|  | #ifdef PARANOID | 
|  | if ((exponent(&result) >= 0) | 
|  | && (significand(&result) > 0x8000000000000000LL)) { | 
|  | EXCEPTION(EX_INTERNAL | 0x151); | 
|  | } | 
|  | #endif /* PARANOID */ | 
|  |  | 
|  | } |