|  | /* audit.c -- Auditing support | 
|  | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. | 
|  | * System-call specific features have moved to auditsc.c | 
|  | * | 
|  | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | * | 
|  | * Written by Rickard E. (Rik) Faith <faith@redhat.com> | 
|  | * | 
|  | * Goals: 1) Integrate fully with Security Modules. | 
|  | *	  2) Minimal run-time overhead: | 
|  | *	     a) Minimal when syscall auditing is disabled (audit_enable=0). | 
|  | *	     b) Small when syscall auditing is enabled and no audit record | 
|  | *		is generated (defer as much work as possible to record | 
|  | *		generation time): | 
|  | *		i) context is allocated, | 
|  | *		ii) names from getname are stored without a copy, and | 
|  | *		iii) inode information stored from path_lookup. | 
|  | *	  3) Ability to disable syscall auditing at boot time (audit=0). | 
|  | *	  4) Usable by other parts of the kernel (if audit_log* is called, | 
|  | *	     then a syscall record will be generated automatically for the | 
|  | *	     current syscall). | 
|  | *	  5) Netlink interface to user-space. | 
|  | *	  6) Support low-overhead kernel-based filtering to minimize the | 
|  | *	     information that must be passed to user-space. | 
|  | * | 
|  | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <asm/types.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/kthread.h> | 
|  |  | 
|  | #include <linux/audit.h> | 
|  |  | 
|  | #include <net/sock.h> | 
|  | #include <net/netlink.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <linux/inotify.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/tty.h> | 
|  |  | 
|  | #include "audit.h" | 
|  |  | 
|  | /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. | 
|  | * (Initialization happens after skb_init is called.) */ | 
|  | #define AUDIT_DISABLED		-1 | 
|  | #define AUDIT_UNINITIALIZED	0 | 
|  | #define AUDIT_INITIALIZED	1 | 
|  | static int	audit_initialized; | 
|  |  | 
|  | #define AUDIT_OFF	0 | 
|  | #define AUDIT_ON	1 | 
|  | #define AUDIT_LOCKED	2 | 
|  | int		audit_enabled; | 
|  | int		audit_ever_enabled; | 
|  |  | 
|  | /* Default state when kernel boots without any parameters. */ | 
|  | static int	audit_default; | 
|  |  | 
|  | /* If auditing cannot proceed, audit_failure selects what happens. */ | 
|  | static int	audit_failure = AUDIT_FAIL_PRINTK; | 
|  |  | 
|  | /* | 
|  | * If audit records are to be written to the netlink socket, audit_pid | 
|  | * contains the pid of the auditd process and audit_nlk_pid contains | 
|  | * the pid to use to send netlink messages to that process. | 
|  | */ | 
|  | int		audit_pid; | 
|  | static int	audit_nlk_pid; | 
|  |  | 
|  | /* If audit_rate_limit is non-zero, limit the rate of sending audit records | 
|  | * to that number per second.  This prevents DoS attacks, but results in | 
|  | * audit records being dropped. */ | 
|  | static int	audit_rate_limit; | 
|  |  | 
|  | /* Number of outstanding audit_buffers allowed. */ | 
|  | static int	audit_backlog_limit = 64; | 
|  | static int	audit_backlog_wait_time = 60 * HZ; | 
|  | static int	audit_backlog_wait_overflow = 0; | 
|  |  | 
|  | /* The identity of the user shutting down the audit system. */ | 
|  | uid_t		audit_sig_uid = -1; | 
|  | pid_t		audit_sig_pid = -1; | 
|  | u32		audit_sig_sid = 0; | 
|  |  | 
|  | /* Records can be lost in several ways: | 
|  | 0) [suppressed in audit_alloc] | 
|  | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] | 
|  | 2) out of memory in audit_log_move [alloc_skb] | 
|  | 3) suppressed due to audit_rate_limit | 
|  | 4) suppressed due to audit_backlog_limit | 
|  | */ | 
|  | static atomic_t    audit_lost = ATOMIC_INIT(0); | 
|  |  | 
|  | /* The netlink socket. */ | 
|  | static struct sock *audit_sock; | 
|  |  | 
|  | /* Hash for inode-based rules */ | 
|  | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; | 
|  |  | 
|  | /* The audit_freelist is a list of pre-allocated audit buffers (if more | 
|  | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of | 
|  | * being placed on the freelist). */ | 
|  | static DEFINE_SPINLOCK(audit_freelist_lock); | 
|  | static int	   audit_freelist_count; | 
|  | static LIST_HEAD(audit_freelist); | 
|  |  | 
|  | static struct sk_buff_head audit_skb_queue; | 
|  | /* queue of skbs to send to auditd when/if it comes back */ | 
|  | static struct sk_buff_head audit_skb_hold_queue; | 
|  | static struct task_struct *kauditd_task; | 
|  | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); | 
|  | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); | 
|  |  | 
|  | /* Serialize requests from userspace. */ | 
|  | DEFINE_MUTEX(audit_cmd_mutex); | 
|  |  | 
|  | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting | 
|  | * audit records.  Since printk uses a 1024 byte buffer, this buffer | 
|  | * should be at least that large. */ | 
|  | #define AUDIT_BUFSIZ 1024 | 
|  |  | 
|  | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the | 
|  | * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */ | 
|  | #define AUDIT_MAXFREE  (2*NR_CPUS) | 
|  |  | 
|  | /* The audit_buffer is used when formatting an audit record.  The caller | 
|  | * locks briefly to get the record off the freelist or to allocate the | 
|  | * buffer, and locks briefly to send the buffer to the netlink layer or | 
|  | * to place it on a transmit queue.  Multiple audit_buffers can be in | 
|  | * use simultaneously. */ | 
|  | struct audit_buffer { | 
|  | struct list_head     list; | 
|  | struct sk_buff       *skb;	/* formatted skb ready to send */ | 
|  | struct audit_context *ctx;	/* NULL or associated context */ | 
|  | gfp_t		     gfp_mask; | 
|  | }; | 
|  |  | 
|  | struct audit_reply { | 
|  | int pid; | 
|  | struct sk_buff *skb; | 
|  | }; | 
|  |  | 
|  | static void audit_set_pid(struct audit_buffer *ab, pid_t pid) | 
|  | { | 
|  | if (ab) { | 
|  | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | 
|  | nlh->nlmsg_pid = pid; | 
|  | } | 
|  | } | 
|  |  | 
|  | void audit_panic(const char *message) | 
|  | { | 
|  | switch (audit_failure) | 
|  | { | 
|  | case AUDIT_FAIL_SILENT: | 
|  | break; | 
|  | case AUDIT_FAIL_PRINTK: | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "audit: %s\n", message); | 
|  | break; | 
|  | case AUDIT_FAIL_PANIC: | 
|  | /* test audit_pid since printk is always losey, why bother? */ | 
|  | if (audit_pid) | 
|  | panic("audit: %s\n", message); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int audit_rate_check(void) | 
|  | { | 
|  | static unsigned long	last_check = 0; | 
|  | static int		messages   = 0; | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | unsigned long		flags; | 
|  | unsigned long		now; | 
|  | unsigned long		elapsed; | 
|  | int			retval	   = 0; | 
|  |  | 
|  | if (!audit_rate_limit) return 1; | 
|  |  | 
|  | spin_lock_irqsave(&lock, flags); | 
|  | if (++messages < audit_rate_limit) { | 
|  | retval = 1; | 
|  | } else { | 
|  | now     = jiffies; | 
|  | elapsed = now - last_check; | 
|  | if (elapsed > HZ) { | 
|  | last_check = now; | 
|  | messages   = 0; | 
|  | retval     = 1; | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&lock, flags); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_lost - conditionally log lost audit message event | 
|  | * @message: the message stating reason for lost audit message | 
|  | * | 
|  | * Emit at least 1 message per second, even if audit_rate_check is | 
|  | * throttling. | 
|  | * Always increment the lost messages counter. | 
|  | */ | 
|  | void audit_log_lost(const char *message) | 
|  | { | 
|  | static unsigned long	last_msg = 0; | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | unsigned long		flags; | 
|  | unsigned long		now; | 
|  | int			print; | 
|  |  | 
|  | atomic_inc(&audit_lost); | 
|  |  | 
|  | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); | 
|  |  | 
|  | if (!print) { | 
|  | spin_lock_irqsave(&lock, flags); | 
|  | now = jiffies; | 
|  | if (now - last_msg > HZ) { | 
|  | print = 1; | 
|  | last_msg = now; | 
|  | } | 
|  | spin_unlock_irqrestore(&lock, flags); | 
|  | } | 
|  |  | 
|  | if (print) { | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_WARNING | 
|  | "audit: audit_lost=%d audit_rate_limit=%d " | 
|  | "audit_backlog_limit=%d\n", | 
|  | atomic_read(&audit_lost), | 
|  | audit_rate_limit, | 
|  | audit_backlog_limit); | 
|  | audit_panic(message); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int audit_log_config_change(char *function_name, int new, int old, | 
|  | uid_t loginuid, u32 sessionid, u32 sid, | 
|  | int allow_changes) | 
|  | { | 
|  | struct audit_buffer *ab; | 
|  | int rc = 0; | 
|  |  | 
|  | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); | 
|  | audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new, | 
|  | old, loginuid, sessionid); | 
|  | if (sid) { | 
|  | char *ctx = NULL; | 
|  | u32 len; | 
|  |  | 
|  | rc = security_secid_to_secctx(sid, &ctx, &len); | 
|  | if (rc) { | 
|  | audit_log_format(ab, " sid=%u", sid); | 
|  | allow_changes = 0; /* Something weird, deny request */ | 
|  | } else { | 
|  | audit_log_format(ab, " subj=%s", ctx); | 
|  | security_release_secctx(ctx, len); | 
|  | } | 
|  | } | 
|  | audit_log_format(ab, " res=%d", allow_changes); | 
|  | audit_log_end(ab); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int audit_do_config_change(char *function_name, int *to_change, | 
|  | int new, uid_t loginuid, u32 sessionid, | 
|  | u32 sid) | 
|  | { | 
|  | int allow_changes, rc = 0, old = *to_change; | 
|  |  | 
|  | /* check if we are locked */ | 
|  | if (audit_enabled == AUDIT_LOCKED) | 
|  | allow_changes = 0; | 
|  | else | 
|  | allow_changes = 1; | 
|  |  | 
|  | if (audit_enabled != AUDIT_OFF) { | 
|  | rc = audit_log_config_change(function_name, new, old, loginuid, | 
|  | sessionid, sid, allow_changes); | 
|  | if (rc) | 
|  | allow_changes = 0; | 
|  | } | 
|  |  | 
|  | /* If we are allowed, make the change */ | 
|  | if (allow_changes == 1) | 
|  | *to_change = new; | 
|  | /* Not allowed, update reason */ | 
|  | else if (rc == 0) | 
|  | rc = -EPERM; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid, | 
|  | u32 sid) | 
|  | { | 
|  | return audit_do_config_change("audit_rate_limit", &audit_rate_limit, | 
|  | limit, loginuid, sessionid, sid); | 
|  | } | 
|  |  | 
|  | static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid, | 
|  | u32 sid) | 
|  | { | 
|  | return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, | 
|  | limit, loginuid, sessionid, sid); | 
|  | } | 
|  |  | 
|  | static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid) | 
|  | { | 
|  | int rc; | 
|  | if (state < AUDIT_OFF || state > AUDIT_LOCKED) | 
|  | return -EINVAL; | 
|  |  | 
|  | rc =  audit_do_config_change("audit_enabled", &audit_enabled, state, | 
|  | loginuid, sessionid, sid); | 
|  |  | 
|  | if (!rc) | 
|  | audit_ever_enabled |= !!state; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid) | 
|  | { | 
|  | if (state != AUDIT_FAIL_SILENT | 
|  | && state != AUDIT_FAIL_PRINTK | 
|  | && state != AUDIT_FAIL_PANIC) | 
|  | return -EINVAL; | 
|  |  | 
|  | return audit_do_config_change("audit_failure", &audit_failure, state, | 
|  | loginuid, sessionid, sid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue skbs to be sent to auditd when/if it comes back.  These skbs should | 
|  | * already have been sent via prink/syslog and so if these messages are dropped | 
|  | * it is not a huge concern since we already passed the audit_log_lost() | 
|  | * notification and stuff.  This is just nice to get audit messages during | 
|  | * boot before auditd is running or messages generated while auditd is stopped. | 
|  | * This only holds messages is audit_default is set, aka booting with audit=1 | 
|  | * or building your kernel that way. | 
|  | */ | 
|  | static void audit_hold_skb(struct sk_buff *skb) | 
|  | { | 
|  | if (audit_default && | 
|  | skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit) | 
|  | skb_queue_tail(&audit_skb_hold_queue, skb); | 
|  | else | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For one reason or another this nlh isn't getting delivered to the userspace | 
|  | * audit daemon, just send it to printk. | 
|  | */ | 
|  | static void audit_printk_skb(struct sk_buff *skb) | 
|  | { | 
|  | struct nlmsghdr *nlh = nlmsg_hdr(skb); | 
|  | char *data = NLMSG_DATA(nlh); | 
|  |  | 
|  | if (nlh->nlmsg_type != AUDIT_EOE) { | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data); | 
|  | else | 
|  | audit_log_lost("printk limit exceeded\n"); | 
|  | } | 
|  |  | 
|  | audit_hold_skb(skb); | 
|  | } | 
|  |  | 
|  | static void kauditd_send_skb(struct sk_buff *skb) | 
|  | { | 
|  | int err; | 
|  | /* take a reference in case we can't send it and we want to hold it */ | 
|  | skb_get(skb); | 
|  | err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0); | 
|  | if (err < 0) { | 
|  | BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */ | 
|  | printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid); | 
|  | audit_log_lost("auditd dissapeared\n"); | 
|  | audit_pid = 0; | 
|  | /* we might get lucky and get this in the next auditd */ | 
|  | audit_hold_skb(skb); | 
|  | } else | 
|  | /* drop the extra reference if sent ok */ | 
|  | kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | static int kauditd_thread(void *dummy) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | set_freezable(); | 
|  | while (!kthread_should_stop()) { | 
|  | /* | 
|  | * if auditd just started drain the queue of messages already | 
|  | * sent to syslog/printk.  remember loss here is ok.  we already | 
|  | * called audit_log_lost() if it didn't go out normally.  so the | 
|  | * race between the skb_dequeue and the next check for audit_pid | 
|  | * doesn't matter. | 
|  | * | 
|  | * if you ever find kauditd to be too slow we can get a perf win | 
|  | * by doing our own locking and keeping better track if there | 
|  | * are messages in this queue.  I don't see the need now, but | 
|  | * in 5 years when I want to play with this again I'll see this | 
|  | * note and still have no friggin idea what i'm thinking today. | 
|  | */ | 
|  | if (audit_default && audit_pid) { | 
|  | skb = skb_dequeue(&audit_skb_hold_queue); | 
|  | if (unlikely(skb)) { | 
|  | while (skb && audit_pid) { | 
|  | kauditd_send_skb(skb); | 
|  | skb = skb_dequeue(&audit_skb_hold_queue); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | skb = skb_dequeue(&audit_skb_queue); | 
|  | wake_up(&audit_backlog_wait); | 
|  | if (skb) { | 
|  | if (audit_pid) | 
|  | kauditd_send_skb(skb); | 
|  | else | 
|  | audit_printk_skb(skb); | 
|  | } else { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | add_wait_queue(&kauditd_wait, &wait); | 
|  |  | 
|  | if (!skb_queue_len(&audit_skb_queue)) { | 
|  | try_to_freeze(); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(&kauditd_wait, &wait); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | int err; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = find_task_by_vpid(pid); | 
|  | err = -ESRCH; | 
|  | if (!tsk) | 
|  | goto out; | 
|  | err = 0; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | if (!tsk->signal->audit_tty) | 
|  | err = -EPERM; | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | tty_audit_push_task(tsk, loginuid, sessionid); | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int audit_send_list(void *_dest) | 
|  | { | 
|  | struct audit_netlink_list *dest = _dest; | 
|  | int pid = dest->pid; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* wait for parent to finish and send an ACK */ | 
|  | mutex_lock(&audit_cmd_mutex); | 
|  | mutex_unlock(&audit_cmd_mutex); | 
|  |  | 
|  | while ((skb = __skb_dequeue(&dest->q)) != NULL) | 
|  | netlink_unicast(audit_sock, skb, pid, 0); | 
|  |  | 
|  | kfree(dest); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct sk_buff *audit_make_reply(int pid, int seq, int type, int done, | 
|  | int multi, void *payload, int size) | 
|  | { | 
|  | struct sk_buff	*skb; | 
|  | struct nlmsghdr	*nlh; | 
|  | void		*data; | 
|  | int		flags = multi ? NLM_F_MULTI : 0; | 
|  | int		t     = done  ? NLMSG_DONE  : type; | 
|  |  | 
|  | skb = nlmsg_new(size, GFP_KERNEL); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | nlh	= NLMSG_NEW(skb, pid, seq, t, size, flags); | 
|  | data	= NLMSG_DATA(nlh); | 
|  | memcpy(data, payload, size); | 
|  | return skb; | 
|  |  | 
|  | nlmsg_failure:			/* Used by NLMSG_NEW */ | 
|  | if (skb) | 
|  | kfree_skb(skb); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int audit_send_reply_thread(void *arg) | 
|  | { | 
|  | struct audit_reply *reply = (struct audit_reply *)arg; | 
|  |  | 
|  | mutex_lock(&audit_cmd_mutex); | 
|  | mutex_unlock(&audit_cmd_mutex); | 
|  |  | 
|  | /* Ignore failure. It'll only happen if the sender goes away, | 
|  | because our timeout is set to infinite. */ | 
|  | netlink_unicast(audit_sock, reply->skb, reply->pid, 0); | 
|  | kfree(reply); | 
|  | return 0; | 
|  | } | 
|  | /** | 
|  | * audit_send_reply - send an audit reply message via netlink | 
|  | * @pid: process id to send reply to | 
|  | * @seq: sequence number | 
|  | * @type: audit message type | 
|  | * @done: done (last) flag | 
|  | * @multi: multi-part message flag | 
|  | * @payload: payload data | 
|  | * @size: payload size | 
|  | * | 
|  | * Allocates an skb, builds the netlink message, and sends it to the pid. | 
|  | * No failure notifications. | 
|  | */ | 
|  | void audit_send_reply(int pid, int seq, int type, int done, int multi, | 
|  | void *payload, int size) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct task_struct *tsk; | 
|  | struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!reply) | 
|  | return; | 
|  |  | 
|  | skb = audit_make_reply(pid, seq, type, done, multi, payload, size); | 
|  | if (!skb) | 
|  | goto out; | 
|  |  | 
|  | reply->pid = pid; | 
|  | reply->skb = skb; | 
|  |  | 
|  | tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); | 
|  | if (!IS_ERR(tsk)) | 
|  | return; | 
|  | kfree_skb(skb); | 
|  | out: | 
|  | kfree(reply); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit | 
|  | * control messages. | 
|  | */ | 
|  | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | switch (msg_type) { | 
|  | case AUDIT_GET: | 
|  | case AUDIT_LIST: | 
|  | case AUDIT_LIST_RULES: | 
|  | case AUDIT_SET: | 
|  | case AUDIT_ADD: | 
|  | case AUDIT_ADD_RULE: | 
|  | case AUDIT_DEL: | 
|  | case AUDIT_DEL_RULE: | 
|  | case AUDIT_SIGNAL_INFO: | 
|  | case AUDIT_TTY_GET: | 
|  | case AUDIT_TTY_SET: | 
|  | case AUDIT_TRIM: | 
|  | case AUDIT_MAKE_EQUIV: | 
|  | if (security_netlink_recv(skb, CAP_AUDIT_CONTROL)) | 
|  | err = -EPERM; | 
|  | break; | 
|  | case AUDIT_USER: | 
|  | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | 
|  | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | 
|  | if (security_netlink_recv(skb, CAP_AUDIT_WRITE)) | 
|  | err = -EPERM; | 
|  | break; | 
|  | default:  /* bad msg */ | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type, | 
|  | u32 pid, u32 uid, uid_t auid, u32 ses, | 
|  | u32 sid) | 
|  | { | 
|  | int rc = 0; | 
|  | char *ctx = NULL; | 
|  | u32 len; | 
|  |  | 
|  | if (!audit_enabled) { | 
|  | *ab = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); | 
|  | audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u", | 
|  | pid, uid, auid, ses); | 
|  | if (sid) { | 
|  | rc = security_secid_to_secctx(sid, &ctx, &len); | 
|  | if (rc) | 
|  | audit_log_format(*ab, " ssid=%u", sid); | 
|  | else { | 
|  | audit_log_format(*ab, " subj=%s", ctx); | 
|  | security_release_secctx(ctx, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | 
|  | { | 
|  | u32			uid, pid, seq, sid; | 
|  | void			*data; | 
|  | struct audit_status	*status_get, status_set; | 
|  | int			err; | 
|  | struct audit_buffer	*ab; | 
|  | u16			msg_type = nlh->nlmsg_type; | 
|  | uid_t			loginuid; /* loginuid of sender */ | 
|  | u32			sessionid; | 
|  | struct audit_sig_info   *sig_data; | 
|  | char			*ctx = NULL; | 
|  | u32			len; | 
|  |  | 
|  | err = audit_netlink_ok(skb, msg_type); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* As soon as there's any sign of userspace auditd, | 
|  | * start kauditd to talk to it */ | 
|  | if (!kauditd_task) | 
|  | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); | 
|  | if (IS_ERR(kauditd_task)) { | 
|  | err = PTR_ERR(kauditd_task); | 
|  | kauditd_task = NULL; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | pid  = NETLINK_CREDS(skb)->pid; | 
|  | uid  = NETLINK_CREDS(skb)->uid; | 
|  | loginuid = NETLINK_CB(skb).loginuid; | 
|  | sessionid = NETLINK_CB(skb).sessionid; | 
|  | sid  = NETLINK_CB(skb).sid; | 
|  | seq  = nlh->nlmsg_seq; | 
|  | data = NLMSG_DATA(nlh); | 
|  |  | 
|  | switch (msg_type) { | 
|  | case AUDIT_GET: | 
|  | status_set.enabled	 = audit_enabled; | 
|  | status_set.failure	 = audit_failure; | 
|  | status_set.pid		 = audit_pid; | 
|  | status_set.rate_limit	 = audit_rate_limit; | 
|  | status_set.backlog_limit = audit_backlog_limit; | 
|  | status_set.lost		 = atomic_read(&audit_lost); | 
|  | status_set.backlog	 = skb_queue_len(&audit_skb_queue); | 
|  | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0, | 
|  | &status_set, sizeof(status_set)); | 
|  | break; | 
|  | case AUDIT_SET: | 
|  | if (nlh->nlmsg_len < sizeof(struct audit_status)) | 
|  | return -EINVAL; | 
|  | status_get   = (struct audit_status *)data; | 
|  | if (status_get->mask & AUDIT_STATUS_ENABLED) { | 
|  | err = audit_set_enabled(status_get->enabled, | 
|  | loginuid, sessionid, sid); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | if (status_get->mask & AUDIT_STATUS_FAILURE) { | 
|  | err = audit_set_failure(status_get->failure, | 
|  | loginuid, sessionid, sid); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | if (status_get->mask & AUDIT_STATUS_PID) { | 
|  | int new_pid = status_get->pid; | 
|  |  | 
|  | if (audit_enabled != AUDIT_OFF) | 
|  | audit_log_config_change("audit_pid", new_pid, | 
|  | audit_pid, loginuid, | 
|  | sessionid, sid, 1); | 
|  |  | 
|  | audit_pid = new_pid; | 
|  | audit_nlk_pid = NETLINK_CB(skb).pid; | 
|  | } | 
|  | if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) { | 
|  | err = audit_set_rate_limit(status_get->rate_limit, | 
|  | loginuid, sessionid, sid); | 
|  | if (err < 0) | 
|  | return err; | 
|  | } | 
|  | if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT) | 
|  | err = audit_set_backlog_limit(status_get->backlog_limit, | 
|  | loginuid, sessionid, sid); | 
|  | break; | 
|  | case AUDIT_USER: | 
|  | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: | 
|  | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: | 
|  | if (!audit_enabled && msg_type != AUDIT_USER_AVC) | 
|  | return 0; | 
|  |  | 
|  | err = audit_filter_user(&NETLINK_CB(skb)); | 
|  | if (err == 1) { | 
|  | err = 0; | 
|  | if (msg_type == AUDIT_USER_TTY) { | 
|  | err = audit_prepare_user_tty(pid, loginuid, | 
|  | sessionid); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | audit_log_common_recv_msg(&ab, msg_type, pid, uid, | 
|  | loginuid, sessionid, sid); | 
|  |  | 
|  | if (msg_type != AUDIT_USER_TTY) | 
|  | audit_log_format(ab, " msg='%.1024s'", | 
|  | (char *)data); | 
|  | else { | 
|  | int size; | 
|  |  | 
|  | audit_log_format(ab, " msg="); | 
|  | size = nlmsg_len(nlh); | 
|  | if (size > 0 && | 
|  | ((unsigned char *)data)[size - 1] == '\0') | 
|  | size--; | 
|  | audit_log_n_untrustedstring(ab, data, size); | 
|  | } | 
|  | audit_set_pid(ab, pid); | 
|  | audit_log_end(ab); | 
|  | } | 
|  | break; | 
|  | case AUDIT_ADD: | 
|  | case AUDIT_DEL: | 
|  | if (nlmsg_len(nlh) < sizeof(struct audit_rule)) | 
|  | return -EINVAL; | 
|  | if (audit_enabled == AUDIT_LOCKED) { | 
|  | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 
|  | uid, loginuid, sessionid, sid); | 
|  |  | 
|  | audit_log_format(ab, " audit_enabled=%d res=0", | 
|  | audit_enabled); | 
|  | audit_log_end(ab); | 
|  | return -EPERM; | 
|  | } | 
|  | /* fallthrough */ | 
|  | case AUDIT_LIST: | 
|  | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, | 
|  | uid, seq, data, nlmsg_len(nlh), | 
|  | loginuid, sessionid, sid); | 
|  | break; | 
|  | case AUDIT_ADD_RULE: | 
|  | case AUDIT_DEL_RULE: | 
|  | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) | 
|  | return -EINVAL; | 
|  | if (audit_enabled == AUDIT_LOCKED) { | 
|  | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 
|  | uid, loginuid, sessionid, sid); | 
|  |  | 
|  | audit_log_format(ab, " audit_enabled=%d res=0", | 
|  | audit_enabled); | 
|  | audit_log_end(ab); | 
|  | return -EPERM; | 
|  | } | 
|  | /* fallthrough */ | 
|  | case AUDIT_LIST_RULES: | 
|  | err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid, | 
|  | uid, seq, data, nlmsg_len(nlh), | 
|  | loginuid, sessionid, sid); | 
|  | break; | 
|  | case AUDIT_TRIM: | 
|  | audit_trim_trees(); | 
|  |  | 
|  | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 
|  | uid, loginuid, sessionid, sid); | 
|  |  | 
|  | audit_log_format(ab, " op=trim res=1"); | 
|  | audit_log_end(ab); | 
|  | break; | 
|  | case AUDIT_MAKE_EQUIV: { | 
|  | void *bufp = data; | 
|  | u32 sizes[2]; | 
|  | size_t msglen = nlmsg_len(nlh); | 
|  | char *old, *new; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (msglen < 2 * sizeof(u32)) | 
|  | break; | 
|  | memcpy(sizes, bufp, 2 * sizeof(u32)); | 
|  | bufp += 2 * sizeof(u32); | 
|  | msglen -= 2 * sizeof(u32); | 
|  | old = audit_unpack_string(&bufp, &msglen, sizes[0]); | 
|  | if (IS_ERR(old)) { | 
|  | err = PTR_ERR(old); | 
|  | break; | 
|  | } | 
|  | new = audit_unpack_string(&bufp, &msglen, sizes[1]); | 
|  | if (IS_ERR(new)) { | 
|  | err = PTR_ERR(new); | 
|  | kfree(old); | 
|  | break; | 
|  | } | 
|  | /* OK, here comes... */ | 
|  | err = audit_tag_tree(old, new); | 
|  |  | 
|  | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid, | 
|  | uid, loginuid, sessionid, sid); | 
|  |  | 
|  | audit_log_format(ab, " op=make_equiv old="); | 
|  | audit_log_untrustedstring(ab, old); | 
|  | audit_log_format(ab, " new="); | 
|  | audit_log_untrustedstring(ab, new); | 
|  | audit_log_format(ab, " res=%d", !err); | 
|  | audit_log_end(ab); | 
|  | kfree(old); | 
|  | kfree(new); | 
|  | break; | 
|  | } | 
|  | case AUDIT_SIGNAL_INFO: | 
|  | len = 0; | 
|  | if (audit_sig_sid) { | 
|  | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 
|  | if (!sig_data) { | 
|  | if (audit_sig_sid) | 
|  | security_release_secctx(ctx, len); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sig_data->uid = audit_sig_uid; | 
|  | sig_data->pid = audit_sig_pid; | 
|  | if (audit_sig_sid) { | 
|  | memcpy(sig_data->ctx, ctx, len); | 
|  | security_release_secctx(ctx, len); | 
|  | } | 
|  | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 
|  | 0, 0, sig_data, sizeof(*sig_data) + len); | 
|  | kfree(sig_data); | 
|  | break; | 
|  | case AUDIT_TTY_GET: { | 
|  | struct audit_tty_status s; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (!tsk) | 
|  | err = -ESRCH; | 
|  | else { | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | s.enabled = tsk->signal->audit_tty != 0; | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0, | 
|  | &s, sizeof(s)); | 
|  | break; | 
|  | } | 
|  | case AUDIT_TTY_SET: { | 
|  | struct audit_tty_status *s; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | if (nlh->nlmsg_len < sizeof(struct audit_tty_status)) | 
|  | return -EINVAL; | 
|  | s = data; | 
|  | if (s->enabled != 0 && s->enabled != 1) | 
|  | return -EINVAL; | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (!tsk) | 
|  | err = -ESRCH; | 
|  | else { | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | tsk->signal->audit_tty = s->enabled != 0; | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | err = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return err < 0 ? err : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get message from skb.  Each message is processed by audit_receive_msg. | 
|  | * Malformed skbs with wrong length are discarded silently. | 
|  | */ | 
|  | static void audit_receive_skb(struct sk_buff *skb) | 
|  | { | 
|  | struct nlmsghdr *nlh; | 
|  | /* | 
|  | * len MUST be signed for NLMSG_NEXT to be able to dec it below 0 | 
|  | * if the nlmsg_len was not aligned | 
|  | */ | 
|  | int len; | 
|  | int err; | 
|  |  | 
|  | nlh = nlmsg_hdr(skb); | 
|  | len = skb->len; | 
|  |  | 
|  | while (NLMSG_OK(nlh, len)) { | 
|  | err = audit_receive_msg(skb, nlh); | 
|  | /* if err or if this message says it wants a response */ | 
|  | if (err || (nlh->nlmsg_flags & NLM_F_ACK)) | 
|  | netlink_ack(skb, nlh, err); | 
|  |  | 
|  | nlh = NLMSG_NEXT(nlh, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Receive messages from netlink socket. */ | 
|  | static void audit_receive(struct sk_buff  *skb) | 
|  | { | 
|  | mutex_lock(&audit_cmd_mutex); | 
|  | audit_receive_skb(skb); | 
|  | mutex_unlock(&audit_cmd_mutex); | 
|  | } | 
|  |  | 
|  | /* Initialize audit support at boot time. */ | 
|  | static int __init audit_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (audit_initialized == AUDIT_DISABLED) | 
|  | return 0; | 
|  |  | 
|  | printk(KERN_INFO "audit: initializing netlink socket (%s)\n", | 
|  | audit_default ? "enabled" : "disabled"); | 
|  | audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0, | 
|  | audit_receive, NULL, THIS_MODULE); | 
|  | if (!audit_sock) | 
|  | audit_panic("cannot initialize netlink socket"); | 
|  | else | 
|  | audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; | 
|  |  | 
|  | skb_queue_head_init(&audit_skb_queue); | 
|  | skb_queue_head_init(&audit_skb_hold_queue); | 
|  | audit_initialized = AUDIT_INITIALIZED; | 
|  | audit_enabled = audit_default; | 
|  | audit_ever_enabled |= !!audit_default; | 
|  |  | 
|  | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); | 
|  |  | 
|  | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) | 
|  | INIT_LIST_HEAD(&audit_inode_hash[i]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | __initcall(audit_init); | 
|  |  | 
|  | /* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */ | 
|  | static int __init audit_enable(char *str) | 
|  | { | 
|  | audit_default = !!simple_strtol(str, NULL, 0); | 
|  | if (!audit_default) | 
|  | audit_initialized = AUDIT_DISABLED; | 
|  |  | 
|  | printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled"); | 
|  |  | 
|  | if (audit_initialized == AUDIT_INITIALIZED) { | 
|  | audit_enabled = audit_default; | 
|  | audit_ever_enabled |= !!audit_default; | 
|  | } else if (audit_initialized == AUDIT_UNINITIALIZED) { | 
|  | printk(" (after initialization)"); | 
|  | } else { | 
|  | printk(" (until reboot)"); | 
|  | } | 
|  | printk("\n"); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("audit=", audit_enable); | 
|  |  | 
|  | static void audit_buffer_free(struct audit_buffer *ab) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!ab) | 
|  | return; | 
|  |  | 
|  | if (ab->skb) | 
|  | kfree_skb(ab->skb); | 
|  |  | 
|  | spin_lock_irqsave(&audit_freelist_lock, flags); | 
|  | if (audit_freelist_count > AUDIT_MAXFREE) | 
|  | kfree(ab); | 
|  | else { | 
|  | audit_freelist_count++; | 
|  | list_add(&ab->list, &audit_freelist); | 
|  | } | 
|  | spin_unlock_irqrestore(&audit_freelist_lock, flags); | 
|  | } | 
|  |  | 
|  | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, | 
|  | gfp_t gfp_mask, int type) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct audit_buffer *ab = NULL; | 
|  | struct nlmsghdr *nlh; | 
|  |  | 
|  | spin_lock_irqsave(&audit_freelist_lock, flags); | 
|  | if (!list_empty(&audit_freelist)) { | 
|  | ab = list_entry(audit_freelist.next, | 
|  | struct audit_buffer, list); | 
|  | list_del(&ab->list); | 
|  | --audit_freelist_count; | 
|  | } | 
|  | spin_unlock_irqrestore(&audit_freelist_lock, flags); | 
|  |  | 
|  | if (!ab) { | 
|  | ab = kmalloc(sizeof(*ab), gfp_mask); | 
|  | if (!ab) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ab->ctx = ctx; | 
|  | ab->gfp_mask = gfp_mask; | 
|  |  | 
|  | ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); | 
|  | if (!ab->skb) | 
|  | goto nlmsg_failure; | 
|  |  | 
|  | nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0); | 
|  |  | 
|  | return ab; | 
|  |  | 
|  | nlmsg_failure:                  /* Used by NLMSG_NEW */ | 
|  | kfree_skb(ab->skb); | 
|  | ab->skb = NULL; | 
|  | err: | 
|  | audit_buffer_free(ab); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_serial - compute a serial number for the audit record | 
|  | * | 
|  | * Compute a serial number for the audit record.  Audit records are | 
|  | * written to user-space as soon as they are generated, so a complete | 
|  | * audit record may be written in several pieces.  The timestamp of the | 
|  | * record and this serial number are used by the user-space tools to | 
|  | * determine which pieces belong to the same audit record.  The | 
|  | * (timestamp,serial) tuple is unique for each syscall and is live from | 
|  | * syscall entry to syscall exit. | 
|  | * | 
|  | * NOTE: Another possibility is to store the formatted records off the | 
|  | * audit context (for those records that have a context), and emit them | 
|  | * all at syscall exit.  However, this could delay the reporting of | 
|  | * significant errors until syscall exit (or never, if the system | 
|  | * halts). | 
|  | */ | 
|  | unsigned int audit_serial(void) | 
|  | { | 
|  | static DEFINE_SPINLOCK(serial_lock); | 
|  | static unsigned int serial = 0; | 
|  |  | 
|  | unsigned long flags; | 
|  | unsigned int ret; | 
|  |  | 
|  | spin_lock_irqsave(&serial_lock, flags); | 
|  | do { | 
|  | ret = ++serial; | 
|  | } while (unlikely(!ret)); | 
|  | spin_unlock_irqrestore(&serial_lock, flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline void audit_get_stamp(struct audit_context *ctx, | 
|  | struct timespec *t, unsigned int *serial) | 
|  | { | 
|  | if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { | 
|  | *t = CURRENT_TIME; | 
|  | *serial = audit_serial(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Obtain an audit buffer.  This routine does locking to obtain the | 
|  | * audit buffer, but then no locking is required for calls to | 
|  | * audit_log_*format.  If the tsk is a task that is currently in a | 
|  | * syscall, then the syscall is marked as auditable and an audit record | 
|  | * will be written at syscall exit.  If there is no associated task, tsk | 
|  | * should be NULL. */ | 
|  |  | 
|  | /** | 
|  | * audit_log_start - obtain an audit buffer | 
|  | * @ctx: audit_context (may be NULL) | 
|  | * @gfp_mask: type of allocation | 
|  | * @type: audit message type | 
|  | * | 
|  | * Returns audit_buffer pointer on success or NULL on error. | 
|  | * | 
|  | * Obtain an audit buffer.  This routine does locking to obtain the | 
|  | * audit buffer, but then no locking is required for calls to | 
|  | * audit_log_*format.  If the task (ctx) is a task that is currently in a | 
|  | * syscall, then the syscall is marked as auditable and an audit record | 
|  | * will be written at syscall exit.  If there is no associated task, then | 
|  | * task context (ctx) should be NULL. | 
|  | */ | 
|  | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, | 
|  | int type) | 
|  | { | 
|  | struct audit_buffer	*ab	= NULL; | 
|  | struct timespec		t; | 
|  | unsigned int		uninitialized_var(serial); | 
|  | int reserve; | 
|  | unsigned long timeout_start = jiffies; | 
|  |  | 
|  | if (audit_initialized != AUDIT_INITIALIZED) | 
|  | return NULL; | 
|  |  | 
|  | if (unlikely(audit_filter_type(type))) | 
|  | return NULL; | 
|  |  | 
|  | if (gfp_mask & __GFP_WAIT) | 
|  | reserve = 0; | 
|  | else | 
|  | reserve = 5; /* Allow atomic callers to go up to five | 
|  | entries over the normal backlog limit */ | 
|  |  | 
|  | while (audit_backlog_limit | 
|  | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { | 
|  | if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time | 
|  | && time_before(jiffies, timeout_start + audit_backlog_wait_time)) { | 
|  |  | 
|  | /* Wait for auditd to drain the queue a little */ | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | add_wait_queue(&audit_backlog_wait, &wait); | 
|  |  | 
|  | if (audit_backlog_limit && | 
|  | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) | 
|  | schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies); | 
|  |  | 
|  | __set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(&audit_backlog_wait, &wait); | 
|  | continue; | 
|  | } | 
|  | if (audit_rate_check() && printk_ratelimit()) | 
|  | printk(KERN_WARNING | 
|  | "audit: audit_backlog=%d > " | 
|  | "audit_backlog_limit=%d\n", | 
|  | skb_queue_len(&audit_skb_queue), | 
|  | audit_backlog_limit); | 
|  | audit_log_lost("backlog limit exceeded"); | 
|  | audit_backlog_wait_time = audit_backlog_wait_overflow; | 
|  | wake_up(&audit_backlog_wait); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ab = audit_buffer_alloc(ctx, gfp_mask, type); | 
|  | if (!ab) { | 
|  | audit_log_lost("out of memory in audit_log_start"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | audit_get_stamp(ab->ctx, &t, &serial); | 
|  |  | 
|  | audit_log_format(ab, "audit(%lu.%03lu:%u): ", | 
|  | t.tv_sec, t.tv_nsec/1000000, serial); | 
|  | return ab; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_expand - expand skb in the audit buffer | 
|  | * @ab: audit_buffer | 
|  | * @extra: space to add at tail of the skb | 
|  | * | 
|  | * Returns 0 (no space) on failed expansion, or available space if | 
|  | * successful. | 
|  | */ | 
|  | static inline int audit_expand(struct audit_buffer *ab, int extra) | 
|  | { | 
|  | struct sk_buff *skb = ab->skb; | 
|  | int oldtail = skb_tailroom(skb); | 
|  | int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); | 
|  | int newtail = skb_tailroom(skb); | 
|  |  | 
|  | if (ret < 0) { | 
|  | audit_log_lost("out of memory in audit_expand"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | skb->truesize += newtail - oldtail; | 
|  | return newtail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Format an audit message into the audit buffer.  If there isn't enough | 
|  | * room in the audit buffer, more room will be allocated and vsnprint | 
|  | * will be called a second time.  Currently, we assume that a printk | 
|  | * can't format message larger than 1024 bytes, so we don't either. | 
|  | */ | 
|  | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, | 
|  | va_list args) | 
|  | { | 
|  | int len, avail; | 
|  | struct sk_buff *skb; | 
|  | va_list args2; | 
|  |  | 
|  | if (!ab) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!ab->skb); | 
|  | skb = ab->skb; | 
|  | avail = skb_tailroom(skb); | 
|  | if (avail == 0) { | 
|  | avail = audit_expand(ab, AUDIT_BUFSIZ); | 
|  | if (!avail) | 
|  | goto out; | 
|  | } | 
|  | va_copy(args2, args); | 
|  | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); | 
|  | if (len >= avail) { | 
|  | /* The printk buffer is 1024 bytes long, so if we get | 
|  | * here and AUDIT_BUFSIZ is at least 1024, then we can | 
|  | * log everything that printk could have logged. */ | 
|  | avail = audit_expand(ab, | 
|  | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); | 
|  | if (!avail) | 
|  | goto out; | 
|  | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); | 
|  | } | 
|  | va_end(args2); | 
|  | if (len > 0) | 
|  | skb_put(skb, len); | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_format - format a message into the audit buffer. | 
|  | * @ab: audit_buffer | 
|  | * @fmt: format string | 
|  | * @...: optional parameters matching @fmt string | 
|  | * | 
|  | * All the work is done in audit_log_vformat. | 
|  | */ | 
|  | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  |  | 
|  | if (!ab) | 
|  | return; | 
|  | va_start(args, fmt); | 
|  | audit_log_vformat(ab, fmt, args); | 
|  | va_end(args); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_hex - convert a buffer to hex and append it to the audit skb | 
|  | * @ab: the audit_buffer | 
|  | * @buf: buffer to convert to hex | 
|  | * @len: length of @buf to be converted | 
|  | * | 
|  | * No return value; failure to expand is silently ignored. | 
|  | * | 
|  | * This function will take the passed buf and convert it into a string of | 
|  | * ascii hex digits. The new string is placed onto the skb. | 
|  | */ | 
|  | void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, | 
|  | size_t len) | 
|  | { | 
|  | int i, avail, new_len; | 
|  | unsigned char *ptr; | 
|  | struct sk_buff *skb; | 
|  | static const unsigned char *hex = "0123456789ABCDEF"; | 
|  |  | 
|  | if (!ab) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!ab->skb); | 
|  | skb = ab->skb; | 
|  | avail = skb_tailroom(skb); | 
|  | new_len = len<<1; | 
|  | if (new_len >= avail) { | 
|  | /* Round the buffer request up to the next multiple */ | 
|  | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); | 
|  | avail = audit_expand(ab, new_len); | 
|  | if (!avail) | 
|  | return; | 
|  | } | 
|  |  | 
|  | ptr = skb_tail_pointer(skb); | 
|  | for (i=0; i<len; i++) { | 
|  | *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */ | 
|  | *ptr++ = hex[buf[i] & 0x0F];	  /* Lower nibble */ | 
|  | } | 
|  | *ptr = 0; | 
|  | skb_put(skb, len << 1); /* new string is twice the old string */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Format a string of no more than slen characters into the audit buffer, | 
|  | * enclosed in quote marks. | 
|  | */ | 
|  | void audit_log_n_string(struct audit_buffer *ab, const char *string, | 
|  | size_t slen) | 
|  | { | 
|  | int avail, new_len; | 
|  | unsigned char *ptr; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (!ab) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!ab->skb); | 
|  | skb = ab->skb; | 
|  | avail = skb_tailroom(skb); | 
|  | new_len = slen + 3;	/* enclosing quotes + null terminator */ | 
|  | if (new_len > avail) { | 
|  | avail = audit_expand(ab, new_len); | 
|  | if (!avail) | 
|  | return; | 
|  | } | 
|  | ptr = skb_tail_pointer(skb); | 
|  | *ptr++ = '"'; | 
|  | memcpy(ptr, string, slen); | 
|  | ptr += slen; | 
|  | *ptr++ = '"'; | 
|  | *ptr = 0; | 
|  | skb_put(skb, slen + 2);	/* don't include null terminator */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_string_contains_control - does a string need to be logged in hex | 
|  | * @string: string to be checked | 
|  | * @len: max length of the string to check | 
|  | */ | 
|  | int audit_string_contains_control(const char *string, size_t len) | 
|  | { | 
|  | const unsigned char *p; | 
|  | for (p = string; p < (const unsigned char *)string + len; p++) { | 
|  | if (*p == '"' || *p < 0x21 || *p > 0x7e) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_n_untrustedstring - log a string that may contain random characters | 
|  | * @ab: audit_buffer | 
|  | * @len: length of string (not including trailing null) | 
|  | * @string: string to be logged | 
|  | * | 
|  | * This code will escape a string that is passed to it if the string | 
|  | * contains a control character, unprintable character, double quote mark, | 
|  | * or a space. Unescaped strings will start and end with a double quote mark. | 
|  | * Strings that are escaped are printed in hex (2 digits per char). | 
|  | * | 
|  | * The caller specifies the number of characters in the string to log, which may | 
|  | * or may not be the entire string. | 
|  | */ | 
|  | void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, | 
|  | size_t len) | 
|  | { | 
|  | if (audit_string_contains_control(string, len)) | 
|  | audit_log_n_hex(ab, string, len); | 
|  | else | 
|  | audit_log_n_string(ab, string, len); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_untrustedstring - log a string that may contain random characters | 
|  | * @ab: audit_buffer | 
|  | * @string: string to be logged | 
|  | * | 
|  | * Same as audit_log_n_untrustedstring(), except that strlen is used to | 
|  | * determine string length. | 
|  | */ | 
|  | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) | 
|  | { | 
|  | audit_log_n_untrustedstring(ab, string, strlen(string)); | 
|  | } | 
|  |  | 
|  | /* This is a helper-function to print the escaped d_path */ | 
|  | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, | 
|  | struct path *path) | 
|  | { | 
|  | char *p, *pathname; | 
|  |  | 
|  | if (prefix) | 
|  | audit_log_format(ab, " %s", prefix); | 
|  |  | 
|  | /* We will allow 11 spaces for ' (deleted)' to be appended */ | 
|  | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); | 
|  | if (!pathname) { | 
|  | audit_log_string(ab, "<no_memory>"); | 
|  | return; | 
|  | } | 
|  | p = d_path(path, pathname, PATH_MAX+11); | 
|  | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ | 
|  | /* FIXME: can we save some information here? */ | 
|  | audit_log_string(ab, "<too_long>"); | 
|  | } else | 
|  | audit_log_untrustedstring(ab, p); | 
|  | kfree(pathname); | 
|  | } | 
|  |  | 
|  | void audit_log_key(struct audit_buffer *ab, char *key) | 
|  | { | 
|  | audit_log_format(ab, " key="); | 
|  | if (key) | 
|  | audit_log_untrustedstring(ab, key); | 
|  | else | 
|  | audit_log_format(ab, "(null)"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log_end - end one audit record | 
|  | * @ab: the audit_buffer | 
|  | * | 
|  | * The netlink_* functions cannot be called inside an irq context, so | 
|  | * the audit buffer is placed on a queue and a tasklet is scheduled to | 
|  | * remove them from the queue outside the irq context.  May be called in | 
|  | * any context. | 
|  | */ | 
|  | void audit_log_end(struct audit_buffer *ab) | 
|  | { | 
|  | if (!ab) | 
|  | return; | 
|  | if (!audit_rate_check()) { | 
|  | audit_log_lost("rate limit exceeded"); | 
|  | } else { | 
|  | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); | 
|  | nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0); | 
|  |  | 
|  | if (audit_pid) { | 
|  | skb_queue_tail(&audit_skb_queue, ab->skb); | 
|  | wake_up_interruptible(&kauditd_wait); | 
|  | } else { | 
|  | audit_printk_skb(ab->skb); | 
|  | } | 
|  | ab->skb = NULL; | 
|  | } | 
|  | audit_buffer_free(ab); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * audit_log - Log an audit record | 
|  | * @ctx: audit context | 
|  | * @gfp_mask: type of allocation | 
|  | * @type: audit message type | 
|  | * @fmt: format string to use | 
|  | * @...: variable parameters matching the format string | 
|  | * | 
|  | * This is a convenience function that calls audit_log_start, | 
|  | * audit_log_vformat, and audit_log_end.  It may be called | 
|  | * in any context. | 
|  | */ | 
|  | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, | 
|  | const char *fmt, ...) | 
|  | { | 
|  | struct audit_buffer *ab; | 
|  | va_list args; | 
|  |  | 
|  | ab = audit_log_start(ctx, gfp_mask, type); | 
|  | if (ab) { | 
|  | va_start(args, fmt); | 
|  | audit_log_vformat(ab, fmt, args); | 
|  | va_end(args); | 
|  | audit_log_end(ab); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(audit_log_start); | 
|  | EXPORT_SYMBOL(audit_log_end); | 
|  | EXPORT_SYMBOL(audit_log_format); | 
|  | EXPORT_SYMBOL(audit_log); |